
Amazon Simple Storage Service
Developer Guide

API Version 2006-03-01

Amazon Simple Storage Service Developer Guide

Amazon Simple Storage Service: Developer Guide
Copyright © 2019 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

The AWS Documentation website is getting a new look!

Try it now and let us know what you think. Switch to the new look >>

You can return to the original look by selecting English in the language selector above.

https://docs.aws.amazon.com/en_pv/@@self@@

Amazon Simple Storage Service Developer Guide

Table of Contents
What is Amazon S3? 1

How Do I...? .. 1
Introduction 2

Overview of Amazon S3 and This Guide 2
Advantages of Using Amazon S3 2
Amazon S3 Concepts 3

Buckets ... 3
Objects ... 3
Keys 3
Regions 4
Amazon S3 Data Consistency Model ... 4

Amazon S3 Features 6
Storage Classes 6
Bucket Policies ... 6
AWS Identity and Access Management 7
Access Control Lists ... 7
Versioning 7
Operations 8

Amazon S3 Application Programming Interfaces (API) ... 8
The REST Interface 8
The SOAP Interface 8

Paying for Amazon S3 9
Related Services 9

Making Requests ... 10
About Access Keys 10

AWS Account Access Keys 10
IAM User Access Keys 10
Temporary Security Credentials ... 11

Request Endpoints ... 11
Making Requests over IPv6 12

Getting Started with IPv6 12
Using IPv6 Addresses in IAM Policies ... 13
Testing IP Address Compatibility ... 14
Using Dual-Stack Endpoints ... 14

Making Requests Using the AWS SDKs 19
Using AWS Account or IAM User Credentials ... 19
Using IAM User Temporary Credentials ... 26
Using Federated User Temporary Credentials ... 34

Making Requests Using the REST API ... 44
Dual-Stack Endpoints (REST API) ... 45
Virtual Hosting of Buckets ... 45
Request Redirection and the REST API ... 50

Buckets ... 53
Creating a Bucket 53

About Permissions 55
Managing Public Access to Buckets ... 55
Accessing a Bucket 55
Bucket Configuration Options 56
Restrictions and Limitations 58

Rules for Naming 58
Examples of Creating a Bucket 59

Using the Amazon S3 Console 60
Using the AWS SDK for Java 60
Using the AWS SDK for .NET 61

API Version 2006-03-01
iii

Amazon Simple Storage Service Developer Guide

Using the AWS SDK for Ruby Version 3 62
Using Other AWS SDKs 62

Deleting or Emptying a Bucket 62
Delete a Bucket 63
Empty a Bucket 65

Default Encryption for a Bucket 66
How to Set Up Amazon S3 Default Bucket Encryption 67
Moving to Default Encryption from Using Bucket Policies for Encryption Enforcement 68
Using Default Encryption with Replication 68
Monitoring Default Encryption with CloudTrail and CloudWatch 69
More Info 69

Bucket Website Configuration 69
Using the AWS Management Console 69
Using the AWS SDK for Java 70
Using the AWS SDK for .NET 71
Using the SDK for PHP 72
Using the REST API ... 73

Transfer Acceleration 73
Why use Transfer Acceleration? 74
Getting Started 74
Requirements for Using Amazon S3 Transfer Acceleration 75
Transfer Acceleration Examples 76

Requester Pays Buckets ... 80
Configure with the Console 81
Configure with the REST API ... 81
Charge Details ... 83

Access Control ... 84
Billing and Usage Reporting 84

Billing Reports ... 84
Usage Report ... 86
Understanding Billing and Usage Reports ... 87
Using Cost Allocation Tags 95

Objects ... 98
Object Key and Metadata 99

Object Keys 99
Object Metadata 101

Storage Classes 103
Storage Classes for Frequently Accessed Objects ... 104
Storage Class That Automatically Optimizes Frequently and Infrequently Accessed Objects 104
Storage Classes for Infrequently Accessed Objects ... 105
Storage Classes for Archiving Objects ... 106
Comparing the Amazon S3 Storage Classes 106
Setting the Storage Class of an Object ... 107

Subresources 108
Versioning 108
Object Tagging 110

API Operations Related to Object Tagging 112
Object Tagging and Additional Information 113
Managing Object Tags 116

Lifecycle Management 119
When Should I Use Lifecycle Configuration? 120
How Do I Configure a Lifecycle? ... 120
Additional Considerations 120
Lifecycle Configuration Elements 127
Examples of Lifecycle Configuration 133
Setting Lifecycle Configuration 143

Cross-Origin Resource Sharing (CORS) 151

API Version 2006-03-01
iv

Amazon Simple Storage Service Developer Guide

Cross-Origin Resource Sharing: Use-case Scenarios 152
How Do I Configure CORS on My Bucket? ... 152
How Does Amazon S3 Evaluate the CORS Configuration on a Bucket? ... 154
Enabling CORS 154
Troubleshooting CORS 160

Operations on Objects ... 160
Getting Objects ... 161
Uploading Objects ... 169
Copying Objects ... 210
Listing Object Keys 221
Deleting Objects ... 227
Selecting Content from Objects ... 245
Restoring Archived Objects ... 248
Querying Archived Objects ... 253

Storage Class Analysis ... 257
How to Set Up Storage Class Analysis ... 257
Storage Class Analysis ... 258
How Can I Export Storage Class Analysis Data? 260

Storage Class Analysis Export File Layout 261
Amazon S3 Analytics REST APIs ... 262

Security ... 263
Data Protection 263

Internetwork Privacy 264
Data Encryption 264

Identity and Access Management 301
Introduction 301
Using Bucket Policies and User Policies ... 341
Managing Access with ACLs 403
Blocking Public Access 414

Logging and Monitoring 421
Compliance Validation 422

Inventory 422
Resilience 431

Backup Encryption 432
Versioning 432
Locking Objects ... 453

Infrastructure Security ... 461
Configuration and Vulnerability Analysis ... 462
Security Best Practices 463

Amazon S3 Preventative Security Best Practices 463
Amazon S3 Monitoring and Auditing Best Practices 465

Batch Operations 468
Terminology 468
The Basics: Jobs 468

How a Job Works 469
Specifying a Manifest ... 469

Creating a Job 470
Creating a Job Request ... 470
Creating a Job Response 471
Granting Permissions for Batch Operations 471
Related Resources 475

Operations 475
PUT Object Copy 475
Initiate Restore Object ... 476
Invoke a Lambda Function 477
Put Object ACL 484
Put Object Tagging 484

API Version 2006-03-01
v

Amazon Simple Storage Service Developer Guide

Managing Jobs 485
Listing Jobs 485
Viewing Job Details ... 485
Assigning Job Priority ... 486
Job Status 486
Tracking Job Failure 488
Notifications and Logging 488
Completion Reports ... 489

Examples 489
Completion Report Examples 489
Cross Account Copy 491
AWS CLI Examples 495
Java Examples 498

Hosting a Static Website 503
Website Endpoints ... 504

Key Differences Between the Amazon Website and the REST API Endpoint ... 505
Configuring a Bucket for Website Hosting 505

Enabling Website Hosting 506
Configuring Index Document Support ... 506
Permissions Required for Website Access 508
(Optional) Configuring Web Traffic Logging 508
(Optional) Custom Error Document Support ... 509
(Optional) Configuring a Redirect ... 510

Example Walkthroughs 517
Example: Setting up a Static Website 517
Example: Setting up a Static Website Using a Custom Domain 519
Example: Speed Up Your Website with Amazon CloudFront 525
Clean Up Example Resources 528

Notifications 530
Overview 530
How to Enable Event Notifications 532
Event Notification Types and Destinations 533

Supported Event Types 533
Supported Destinations 534

Configuring Notifications with Object Key Name Filtering 534
Examples of Valid Notification Configurations with Object Key Name Filtering 535
Examples of Notification Configurations with Invalid Prefix/Suffix Overlapping 537

Granting Permissions to Publish Event Notification Messages to a Destination 539
Granting Permissions to Invoke an AWS Lambda Function 539
Granting Permissions to Publish Messages to an SNS Topic or an SQS Queue 539

Example Walkthrough 1 541
Walkthrough Summary 541
Step 1: Create an Amazon SNS Topic ... 542
Step 2: Create an Amazon SQS Queue 542
Step 3: Add a Notification Configuration to Your Bucket 544
Step 4: Test the Setup 546

Example Walkthrough 2 546
Event Message Structure 546

Replication 551
Types of Object Replication 551
When to Use Replication 551
When to Use CRR 551
When to Use SRR 552
Requirements for Replication 552
What Does Amazon S3 Replicate? 553

What Is Replicated? 553
What Isn't Replicated? 554

API Version 2006-03-01
vi

Amazon Simple Storage Service Developer Guide

Related Topics ... 555
Overview of Setting Up Replication 555

Replication Configuration Overview 556
Setting Up Permissions for Replication 564

Additional Replication Configurations 567
Changing the Replica Owner 568
Replicating Encrypted Objects ... 570

Replication Walkthroughs 575
Example 1: Configuring for Buckets in the Same Account 575
Example 2: Configuring for Buckets in Different Accounts 584
Example 3: Changing Replica Owner 585
Example 4: Replicating Encrypted Objects ... 589

Replication Status Information 594
Related Topics ... 595

Troubleshooting Replication 595
Related Topics ... 596

Replication Additional Considerations 596
Lifecycle Configuration and Object Replicas 597
Versioning Configuration and Replication Configuration 597
Logging Configuration and Replication Configuration 597
CRR and the Destination Region 598
Pausing Replication 598
Related Topics ... 598

Request Routing 599
Request Redirection and the REST API ... 599

DNS Routing 599
Temporary Request Redirection 600
Permanent Request Redirection 602
Request Redirection Examples 602

DNS Considerations 602
Optimizing Amazon S3 Performance 604

Performance Guidelines 604
Measure Performance 605
Scale Horizontally ... 605
Use Byte-Range Fetches 605
Retry Requests ... 605
Combine Amazon S3 and Amazon EC2 the Same Region 606
Use Transfer Acceleration to Minimize Latency 606
Use the Latest AWS SDKs 606

Performance Design Patterns 606
Caching Frequently Accessed Content 607
Timeouts and Retries for Latency-Sensitive Apps 607
Horizontal Scaling and Request Parallelization 608
Accelerating Geographically Disparate Data Transfers ... 609

Monitoring 610
Monitoring Tools ... 610

Automated Tools ... 610
Manual Tools ... 611

Monitoring Metrics with CloudWatch 611
Metrics and Dimensions 612
Amazon S3 CloudWatch Daily Storage Metrics for Buckets ... 612
Amazon S3 CloudWatch Request Metrics ... 612
Amazon S3 CloudWatch Dimensions 615
Accessing CloudWatch Metrics ... 616
Related Resources 617

Metrics Configurations for Buckets ... 617
Best-Effort CloudWatch Metrics Delivery 618

API Version 2006-03-01
vii

Amazon Simple Storage Service Developer Guide

Filtering Metrics Configurations 618
How to Add Metrics Configurations 618

Logging with Amazon S3 619
Logging API Calls with AWS CloudTrail .. 621

Amazon S3 Information in CloudTrail .. 621
Using CloudTrail Logs with Amazon S3 Server Access Logs and CloudWatch Logs 625
Example: Amazon S3 Log File Entries ... 626
Related Resources 628

Identify Amazon S3 Requests Using CloudTrail .. 628
How CloudTrail Captures Requests Made to Amazon S3 628
Enabling CloudTrail Event Logging for S3 Buckets and Objects ... 629
Identifying Requests Made to Amazon S3 in a CloudTrail Log 629
Using AWS CloudTrail to Identify Amazon S3 Signature Version 2 Requests ... 631
Using CloudTrail to Identify Access to Amazon S3 Objects ... 633
Related Resources 628

BitTorrent 636
How You are Charged for BitTorrent Delivery 636
Using BitTorrent to Retrieve Objects Stored in Amazon S3 637
Publishing Content Using Amazon S3 and BitTorrent 637

Error Handling 639
The REST Error Response 639

Response Headers 639
Error Response 640

The SOAP Error Response 640
Amazon S3 Error Best Practices 641

Retry InternalErrors ... 641
Tune Application for Repeated SlowDown errors ... 641
Isolate Errors ... 641

Troubleshooting Amazon S3 643
Troubleshooting Amazon S3 by Symptom 643

Significant Increases in HTTP 503 Responses to Requests to Buckets with Versioning Enabled 643
Unexpected Behavior When Accessing Buckets Set with CORS 643

Getting Amazon S3 Request IDs for AWS Support ... 644
Using HTTP to Obtain Request IDs 644
Using a Web Browser to Obtain Request IDs 644
Using AWS SDKs to Obtain Request IDs 644
Using the AWS CLI to Obtain Request IDs 646

Related Topics ... 646
Server Access Logging 647

How to Enable Server Access Logging 647
Log Object Key Format 648
How Are Logs Delivered? 649
Best Effort Server Log Delivery 649
Bucket Logging Status Changes Take Effect Over Time 649
Enabling Logging Using the Console 649
Enabling Logging Programmatically ... 650

Enabling Logging 650
Granting the Log Delivery Group WRITE and READ_ACP Permissions 650
Example: AWS SDK for .NET 651
Related Resources 652

Log Format 653
Additional Logging for Copy Operations 657
Custom Access Log Information 661
Programming Considerations for Extensible Server Access Log Format 661

Deleting Log Files ... 661
Related Resources 662

Using Amazon S3 access logs to identify Amazon S3 requests ... 662

API Version 2006-03-01
viii

Amazon Simple Storage Service Developer Guide

Enabling Amazon S3 Access Logs for Requests ... 662
Querying Amazon S3 Access Logs for Requests ... 664
Using Amazon S3 Log Files to Identify SigV2 Requests ... 666
Using Amazon S3 Log Files to Identify Object Access 667
Related Resources 668

AWS SDKs and Explorers ... 669
Specifying the Signature Version in Request Authentication 670

AWS Signature Version 2 Turned Off (Deprecated) for Amazon S3 671
Moving from Signature Version 2 to Signature Version 4 673

Setting Up the AWS CLI ... 675
Using the AWS SDK for Java 676

The Java API Organization 677
Testing the Amazon S3 Java Code Examples 677

Using the AWS SDK for .NET 677
The .NET API Organization 678
Running the Amazon S3 .NET Code Examples 678

Using the AWS SDK for PHP and Running PHP Examples 678
AWS SDK for PHP Levels ... 679
Running PHP Examples 679
Related Resources 679

Using the AWS SDK for Ruby - Version 3 679
The Ruby API Organization 680
Testing the Ruby Script Examples 680

Using the AWS SDK for Python (Boto) ... 681
Using the AWS Mobile SDKs for iOS and Android 681

More Info 681
Using the AWS Amplify JavaScript Library 681

More Info 681
Appendices 682

Appendix A: Using the SOAP API ... 682
Common SOAP API Elements 682
Authenticating SOAP Requests ... 682
Setting Access Policy with SOAP 683

Appendix B: Authenticating Requests (AWS Signature Version 2) ... 684
Authenticating Requests Using the REST API ... 686
Signing and Authenticating REST Requests ... 688
Browser-Based Uploads Using POST 697

Resources 713
SQL Reference 714

SELECT Command 714
SELECT List ... 714
FROM Clause 714
WHERE Clause 718
LIMIT Clause (Amazon S3 Select only) ... 718
Attribute Access 718
Case Sensitivity of Header/Attribute Names 719
Using Reserved Keywords as User-Defined Terms 720
Scalar Expressions 720

Data Types 721
Data Type Conversions 721
Supported Data Types 721

Operators ... 721
Logical Operators ... 721
Comparison Operators ... 722
Pattern Matching Operators ... 722
Math Operators ... 722
Operator Precedence 722

API Version 2006-03-01
ix

Amazon Simple Storage Service Developer Guide

Reserved Keywords 723
SQL Functions 727

Aggregate Functions (Amazon S3 Select only) ... 727
Conditional Functions 728
Conversion Functions 729
Date Functions 729
String Functions 735

Document History 738
Earlier Updates 741

AWS Glossary 755

API Version 2006-03-01
x

Amazon Simple Storage Service Developer Guide
How Do I...?

What is Amazon S3?
Amazon Simple Storage Service is storage for the Internet. It is designed to make web-scale computing
easier for developers.

Amazon S3 has a simple web services interface that you can use to store and retrieve any amount of
data, at any time, from anywhere on the web. It gives any developer access to the same highly scalable,
reliable, fast, inexpensive data storage infrastructure that Amazon uses to run its own global network of
web sites. The service aims to maximize benefits of scale and to pass those benefits on to developers.

This guide explains the core concepts of Amazon S3, such as buckets and objects, and how to work with
these resources using the Amazon S3 application programming interface (API).

How Do I...?

Information Relevant Sections

General product overview and pricing Amazon S3

Get a quick hands-on introduction to
Amazon S3

Amazon Simple Storage Service Getting Started Guide

Learn about Amazon S3 key
terminology and concepts

Introduction to Amazon S3 (p. 2)

How do I work with buckets? Working with Amazon S3 Buckets (p. 53)

How do I work with objects? Working with Amazon S3 Objects (p. 98)

How do I make requests? Making Requests (p. 10)

How do I manage access to my
resources?

Identity and Access Management in Amazon S3 (p. 301)

API Version 2006-03-01
1

https://aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/gsg/

Amazon Simple Storage Service Developer Guide
Overview of Amazon S3 and This Guide

Introduction to Amazon S3
This introduction to Amazon Simple Storage Service (Amazon S3) provides a detailed summary of this
web service. After reading this section, you should have a good idea of what it offers and how it can fit in
with your business.

Topics

• Overview of Amazon S3 and This Guide (p. 2)

• Advantages of Using Amazon S3 (p. 2)

• Amazon S3 Concepts (p. 3)

• Amazon S3 Features (p. 6)

• Amazon S3 Application Programming Interfaces (API) (p. 8)

• Paying for Amazon S3 (p. 9)

• Related Services (p. 9)

Overview of Amazon S3 and This Guide
Amazon S3 has a simple web services interface that you can use to store and retrieve any amount of
data, at any time, from anywhere on the web.

This guide describes how you send requests to create buckets, store and retrieve your objects, and
manage permissions on your resources. The guide also describes access control and the authentication
process. Access control defines who can access objects and buckets within Amazon S3, and the type of
access (for example, READ and WRITE). The authentication process verifies the identity of a user who is
trying to access Amazon Web Services (AWS).

Advantages of Using Amazon S3
Amazon S3 is intentionally built with a minimal feature set that focuses on simplicity and robustness.
Following are some of the advantages of using Amazon S3:

• Creating buckets – Create and name a bucket that stores data. Buckets are the fundamental container
in Amazon S3 for data storage.

• Storing data – Store an infinite amount of data in a bucket. Upload as many objects as you like into
an Amazon S3 bucket. Each object can contain up to 5 TB of data. Each object is stored and retrieved
using a unique developer-assigned key.

• Downloading data – Download your data or enable others to do so. Download your data anytime you
like, or allow others to do the same.

• Permissions – Grant or deny access to others who want to upload or download data into your
Amazon S3 bucket. Grant upload and download permissions to three types of users. Authentication
mechanisms can help keep data secure from unauthorized access.

• Standard interfaces – Use standards-based REST and SOAP interfaces designed to work with any
internet-development toolkit.

API Version 2006-03-01
2

Amazon Simple Storage Service Developer Guide
Amazon S3 Concepts

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or
the AWS SDKs.

Amazon S3 Concepts
This section describes key concepts and terminology you need to understand to use Amazon S3
effectively. They are presented in the order that you will most likely encounter them.

Topics
• Buckets (p. 3)
• Objects (p. 3)
• Keys (p. 3)
• Regions (p. 4)
• Amazon S3 Data Consistency Model (p. 4)

Buckets
A bucket is a container for objects stored in Amazon S3. Every object is contained in a bucket. For
example, if the object named photos/puppy.jpg is stored in the johnsmith bucket, then it is
addressable using the URL http://johnsmith.s3.amazonaws.com/photos/puppy.jpg.

Buckets serve several purposes:

• They organize the Amazon S3 namespace at the highest level.
• They identify the account responsible for storage and data transfer charges.
• They play a role in access control.
• They serve as the unit of aggregation for usage reporting.

You can configure buckets so that they are created in a specific AWS Region. For more information, see
Accessing a Bucket (p. 55). You can also configure a bucket so that every time an object is added to it,
Amazon S3 generates a unique version ID and assigns it to the object. For more information, see Using
Versioning (p. 432).

For more information about buckets, see Working with Amazon S3 Buckets (p. 53).

Objects
Objects are the fundamental entities stored in Amazon S3. Objects consist of object data and metadata.
The data portion is opaque to Amazon S3. The metadata is a set of name-value pairs that describe
the object. These include some default metadata, such as the date last modified, and standard HTTP
metadata, such as Content-Type. You can also specify custom metadata at the time the object is
stored.

An object is uniquely identified within a bucket by a key (name) and a version ID. For more information,
see Keys (p. 3) and Using Versioning (p. 432).

Keys
A key is the unique identifier for an object within a bucket. Every object in a bucket has exactly
one key. The combination of a bucket, key, and version ID uniquely identify each object. So you

API Version 2006-03-01
3

Amazon Simple Storage Service Developer Guide
Regions

can think of Amazon S3 as a basic data map between "bucket + key + version" and the object
itself. Every object in Amazon S3 can be uniquely addressed through the combination of the web
service endpoint, bucket name, key, and optionally, a version. For example, in the URL http://
doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl, "doc" is the name of the bucket and
"2006-03-01/AmazonS3.wsdl" is the key.

For more information about object keys, see Object Keys.

Regions
You can choose the geographical AWS Region where Amazon S3 will store the buckets that you create.
You might choose a Region to optimize latency, minimize costs, or address regulatory requirements.
Objects stored in a Region never leave the Region unless you explicitly transfer them to another Region.
For example, objects stored in the EU (Ireland) Region never leave it.

Note
You can only access Amazon S3 and its features in AWS Regions that are enabled for your
account.

For a list of Amazon S3 Regions and endpoints, see Regions and Endpoints in the AWS General Reference.

Amazon S3 Data Consistency Model
Amazon S3 provides read-after-write consistency for PUTS of new objects in your S3 bucket in all
Regions with one caveat. The caveat is that if you make a HEAD or GET request to the key name (to find
if the object exists) before creating the object, Amazon S3 provides eventual consistency for read-after-
write.

Amazon S3 offers eventual consistency for overwrite PUTS and DELETES in all Regions.

Updates to a single key are atomic. For example, if you PUT to an existing key, a subsequent read might
return the old data or the updated data, but it never returns corrupted or partial data.

Amazon S3 achieves high availability by replicating data across multiple servers within AWS data centers.
If a PUT request is successful, your data is safely stored. However, information about the changes
must replicate across Amazon S3, which can take some time, and so you might observe the following
behaviors:

• A process writes a new object to Amazon S3 and immediately lists keys within its bucket. Until the
change is fully propagated, the object might not appear in the list.

• A process replaces an existing object and immediately tries to read it. Until the change is fully
propagated, Amazon S3 might return the previous data.

• A process deletes an existing object and immediately tries to read it. Until the deletion is fully
propagated, Amazon S3 might return the deleted data.

• A process deletes an existing object and immediately lists keys within its bucket. Until the deletion is
fully propagated, Amazon S3 might list the deleted object.

Note
Amazon S3 does not currently support object locking. If two PUT requests are simultaneously
made to the same key, the request with the latest timestamp wins. If this is an issue, you will
need to build an object-locking mechanism into your application.
Updates are key-based. There is no way to make atomic updates across keys. For example, you
cannot make the update of one key dependent on the update of another key unless you design
this functionality into your application.

The following table describes the characteristics of an eventually consistent read and a consistent read.

API Version 2006-03-01
4

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html#object-keys
https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Amazon Simple Storage Service Developer Guide
Amazon S3 Data Consistency Model

Eventually Consistent Read Consistent Read

Stale reads possible No stale reads

Lowest read latency Potential higher read latency

Highest read throughput Potential lower read throughput

Concurrent Applications

This section provides examples of eventually consistent and consistent read requests when multiple
clients are writing to the same items.

In this example, both W1 (write 1) and W2 (write 2) complete before the start of R1 (read 1) and R2
(read 2). For a consistent read, R1 and R2 both return color = ruby. For an eventually consistent read,
R1 and R2 might return color = red or color = ruby depending on the amount of time that has
elapsed.

In the next example, W2 does not complete before the start of R1. Therefore, R1 might return color =
ruby or color = garnet for either a consistent read or an eventually consistent read. Also, depending
on the amount of time that has elapsed, an eventually consistent read might return no results.

For a consistent read, R2 returns color = garnet. For an eventually consistent read, R2 might return
color = ruby or color = garnet depending on the amount of time that has elapsed.

In the last example, Client 2 performs W2 before Amazon S3 returns a success for W1, so the outcome
of the final value is unknown (color = garnet or color = brick). Any subsequent reads (consistent

API Version 2006-03-01
5

Amazon Simple Storage Service Developer Guide
Amazon S3 Features

read or eventually consistent) might return either value. Also, depending on the amount of time that has
elapsed, an eventually consistent read might return no results.

Amazon S3 Features
This section describes important Amazon S3 features.

Topics

• Storage Classes (p. 6)

• Bucket Policies (p. 6)

• AWS Identity and Access Management (p. 7)

• Access Control Lists (p. 7)

• Versioning (p. 7)

• Operations (p. 8)

Storage Classes
Amazon S3 offers a range of storage classes designed for different use cases. These include Amazon S3
STANDARD for general-purpose storage of frequently accessed data, Amazon S3 STANDARD_IA for long-
lived, but less frequently accessed data, and GLACIER for long-term archive.

For more information, see Amazon S3 Storage Classes (p. 103).

Bucket Policies
Bucket policies provide centralized access control to buckets and objects based on a variety of conditions,
including Amazon S3 operations, requesters, resources, and aspects of the request (for example, IP
address). The policies are expressed in the access policy language and enable centralized management of
permissions. The permissions attached to a bucket apply to all of the objects in that bucket.

Both individuals and companies can use bucket policies. When companies register with Amazon S3,
they create an account. Thereafter, the company becomes synonymous with the account. Accounts are
financially responsible for the AWS resources that they (and their employees) create. Accounts have
the power to grant bucket policy permissions and assign employees permissions based on a variety of
conditions. For example, an account could create a policy that gives a user write access:

• To a particular S3 bucket

API Version 2006-03-01
6

Amazon Simple Storage Service Developer Guide
AWS Identity and Access Management

• From an account's corporate network
• During business hours

An account can grant one user limited read and write access, but allow another to create and delete
buckets also. An account could allow several field offices to store their daily reports in a single bucket. It
could allow each office to write only to a certain set of names (for example, "Nevada/*" or "Utah/*") and
only from the office's IP address range.

Unlike access control lists (described later), which can add (grant) permissions only on individual objects,
policies can either add or deny permissions across all (or a subset) of objects within a bucket. With one
request, an account can set the permissions of any number of objects in a bucket. An account can use
wildcards (similar to regular expression operators) on Amazon Resource Names (ARNs) and other values.
The account could then control access to groups of objects that begin with a common prefix or end with
a given extension, such as .html.

Only the bucket owner is allowed to associate a policy with a bucket. Policies (written in the access policy
language) allow or deny requests based on the following:

• Amazon S3 bucket operations (such as PUT ?acl), and object operations (such as PUT Object, or
GET Object)

• Requester
• Conditions specified in the policy

An account can control access based on specific Amazon S3 operations, such as GetObject,
GetObjectVersion, DeleteObject, or DeleteBucket.

The conditions can be such things as IP addresses, IP address ranges in CIDR notation, dates, user agents,
HTTP referrer, and transports (HTTP and HTTPS).

For more information, see Using Bucket Policies and User Policies (p. 341).

AWS Identity and Access Management
You can use AWS Identity and Access Management (IAM) to manage access to your Amazon S3 resources.

For example, you can use IAM with Amazon S3 to control the type of access a user or group of users has
to specific parts of an Amazon S3 bucket your AWS account owns.

For more information about IAM, see the following:

• AWS Identity and Access Management (IAM)
• Getting Started
• IAM User Guide

Access Control Lists
You can control access to each of your buckets and objects using an access control list (ACL). For more
information, see Managing Access with ACLs (p. 403).

Versioning
You can use versioning to keep multiple versions of an object in the same bucket. For more information,
see Object Versioning (p. 108).

API Version 2006-03-01
7

https://aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/

Amazon Simple Storage Service Developer Guide
Operations

Operations
Following are the most common operations that you'll execute through the API.

Common Operations

• Create a bucket – Create and name your own bucket in which to store your objects.
• Write an object – Store data by creating or overwriting an object. When you write an object, you

specify a unique key in the namespace of your bucket. This is also a good time to specify any access
control you want on the object.

• Read an object – Read data back. You can download the data via HTTP or BitTorrent.
• Delete an object – Delete some of your data.
• List keys – List the keys contained in one of your buckets. You can filter the key list based on a prefix.

These operations and all other functionality are described in detail throughout this guide.

Amazon S3 Application Programming Interfaces
(API)

The Amazon S3 architecture is designed to be programming language-neutral, using AWS supported
interfaces to store and retrieve objects.

Amazon S3 provides a REST and a SOAP interface. They are similar, but there are some differences. For
example, in the REST interface, metadata is returned in HTTP headers. Because we only support HTTP
requests of up to 4 KB (not including the body), the amount of metadata you can supply is restricted.

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or the
AWS SDKs.

The REST Interface
The REST API is an HTTP interface to Amazon S3. Using REST, you use standard HTTP requests to create,
fetch, and delete buckets and objects.

You can use any toolkit that supports HTTP to use the REST API. You can even use a browser to fetch
objects, as long as they are anonymously readable.

The REST API uses the standard HTTP headers and status codes, so that standard browsers and toolkits
work as expected. In some areas, we have added functionality to HTTP (for example, we added headers
to support access control). In these cases, we have done our best to add the new functionality in a way
that matched the style of standard HTTP usage.

The SOAP Interface
Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or the
AWS SDKs.

The SOAP API provides a SOAP 1.1 interface using document literal encoding. The most common way to
use SOAP is to download the WSDL (see http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl),

API Version 2006-03-01
8

http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl

Amazon Simple Storage Service Developer Guide
Paying for Amazon S3

use a SOAP toolkit such as Apache Axis or Microsoft .NET to create bindings, and then write code that
uses the bindings to call Amazon S3.

Paying for Amazon S3
Pricing for Amazon S3 is designed so that you don't have to plan for the storage requirements of your
application. Most storage providers force you to purchase a predetermined amount of storage and
network transfer capacity: If you exceed that capacity, your service is shut off or you are charged high
overage fees. If you do not exceed that capacity, you pay as though you used it all.

Amazon S3 charges you only for what you actually use, with no hidden fees and no overage charges.
This gives developers a variable-cost service that can grow with their business while enjoying the cost
advantages of the AWS infrastructure.

Before storing anything in Amazon S3, you must register with the service and provide a payment method
that is charged at the end of each month. There are no setup fees to begin using the service. At the end
of the month, your payment method is automatically charged for that month's usage.

For information about paying for Amazon S3 storage, see Amazon S3 Pricing.

Related Services
After you load your data into Amazon S3, you can use it with other AWS services. The following are the
services you might use most frequently:

• Amazon Elastic Compute Cloud (Amazon EC2) – This service provides virtual compute resources in
the cloud. For more information, see the Amazon EC2 product details page.

• Amazon EMR – This service enables businesses, researchers, data analysts, and developers to easily
and cost-effectively process vast amounts of data. It uses a hosted Hadoop framework running on the
web-scale infrastructure of Amazon EC2 and Amazon S3. For more information, see the Amazon EMR
product details page.

• AWS Snowball – This service accelerates transferring large amounts of data into and out of AWS using
physical storage devices, bypassing the internet. Each AWS Snowball device type can transport data
at faster-than internet speeds. This transport is done by shipping the data in the devices through a
regional carrier. For more information, see the AWS Snowball product details page.

API Version 2006-03-01
9

https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/ec2/
https://aws.amazon.com/elasticmapreduce/
https://aws.amazon.com/elasticmapreduce/
https://aws.amazon.com/snowball

Amazon Simple Storage Service Developer Guide
About Access Keys

Making Requests
Topics

• About Access Keys (p. 10)

• Request Endpoints (p. 11)

• Making Requests to Amazon S3 over IPv6 (p. 12)

• Making Requests Using the AWS SDKs (p. 19)

• Making Requests Using the REST API (p. 44)

Amazon S3 is a REST service. You can send requests to Amazon S3 using the REST API or the AWS
SDK (see Sample Code and Libraries) wrapper libraries that wrap the underlying Amazon S3 REST API,
simplifying your programming tasks.

Every interaction with Amazon S3 is either authenticated or anonymous. Authentication is a process
of verifying the identity of the requester trying to access an Amazon Web Services (AWS) product.
Authenticated requests must include a signature value that authenticates the request sender. The
signature value is, in part, generated from the requester's AWS access keys (access key ID and secret
access key). For more information about getting access keys, see How Do I Get Security Credentials? in
the AWS General Reference.

If you are using the AWS SDK, the libraries compute the signature from the keys you provide. However,
if you make direct REST API calls in your application, you must write the code to compute the signature
and add it to the request.

About Access Keys
The following sections review the types of access keys that you can use to make authenticated requests.

AWS Account Access Keys
The account access keys provide full access to the AWS resources owned by the account. The following
are examples of access keys:

• Access key ID (a 20-character, alphanumeric string). For example: AKIAIOSFODNN7EXAMPLE

• Secret access key (a 40-character string). For example: wJalrXUtnFEMI/K7MDENG/
bPxRfiCYEXAMPLEKEY

The access key ID uniquely identifies an AWS account. You can use these access keys to send
authenticated requests to Amazon S3.

IAM User Access Keys
You can create one AWS account for your company; however, there may be several employees in the
organization who need access to your organization's AWS resources. Sharing your AWS account access
keys reduces security, and creating individual AWS accounts for each employee might not be practical.

API Version 2006-03-01
10

https://aws.amazon.com/code
https://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

Amazon Simple Storage Service Developer Guide
Temporary Security Credentials

Also, you cannot easily share resources such as buckets and objects because they are owned by different
accounts. To share resources, you must grant permissions, which is additional work.

In such scenarios, you can use AWS Identity and Access Management (IAM) to create users under your
AWS account with their own access keys and attach IAM user policies granting appropriate resource
access permissions to them. To better manage these users, IAM enables you to create groups of users and
grant group-level permissions that apply to all users in that group.

These users are referred to as IAM users that you create and manage within AWS. The parent account
controls a user's ability to access AWS. Any resources an IAM user creates are under the control of and
paid for by the parent AWS account. These IAM users can send authenticated requests to Amazon S3
using their own security credentials. For more information about creating and managing users under
your AWS account, go to the AWS Identity and Access Management product details page.

Temporary Security Credentials
In addition to creating IAM users with their own access keys, IAM also enables you to grant temporary
security credentials (temporary access keys and a security token) to any IAM user to enable them to
access your AWS services and resources. You can also manage users in your system outside AWS. These
are referred to as federated users. Additionally, users can be applications that you create to access your
AWS resources.

IAM provides the AWS Security Token Service API for you to request temporary security credentials. You
can use either the AWS STS API or the AWS SDK to request these credentials. The API returns temporary
security credentials (access key ID and secret access key), and a security token. These credentials are
valid only for the duration you specify when you request them. You use the access key ID and secret key
the same way you use them when sending requests using your AWS account or IAM user access keys. In
addition, you must include the token in each request you send to Amazon S3.

An IAM user can request these temporary security credentials for their own use or hand them out to
federated users or applications. When requesting temporary security credentials for federated users, you
must provide a user name and an IAM policy defining the permissions you want to associate with these
temporary security credentials. The federated user cannot get more permissions than the parent IAM
user who requested the temporary credentials.

You can use these temporary security credentials in making requests to Amazon S3. The API libraries
compute the necessary signature value using those credentials to authenticate your request. If you send
requests using expired credentials, Amazon S3 denies the request.

For information on signing requests using temporary security credentials in your REST API requests, see
Signing and Authenticating REST Requests (p. 688). For information about sending requests using AWS
SDKs, see Making Requests Using the AWS SDKs (p. 19).

For more information about IAM support for temporary security credentials, see Temporary Security
Credentials in the IAM User Guide.

For added security, you can require multifactor authentication (MFA) when accessing your Amazon
S3 resources by configuring a bucket policy. For information, see Adding a Bucket Policy to Require
MFA (p. 375). After you require MFA to access your Amazon S3 resources, the only way you can access
these resources is by providing temporary credentials that are created with an MFA key. For more
information, see the AWS Multi-Factor Authentication detail page and Configuring MFA-Protected API
Access in the IAM User Guide.

Request Endpoints
You send REST requests to the service's predefined endpoint. For a list of all AWS services and their
corresponding endpoints, go to Regions and Endpoints in the AWS General Reference.

API Version 2006-03-01
11

https://aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://aws.amazon.com/mfa/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Simple Storage Service Developer Guide
Making Requests over IPv6

Making Requests to Amazon S3 over IPv6
Amazon Simple Storage Service (Amazon S3) supports the ability to access S3 buckets using the Internet
Protocol version 6 (IPv6), in addition to the IPv4 protocol. Amazon S3 dual-stack endpoints support
requests to S3 buckets over IPv6 and IPv4. There are no additional charges for accessing Amazon S3 over
IPv6. For more information about pricing, see Amazon S3 Pricing.

Topics

• Getting Started Making Requests over IPv6 (p. 12)

• Using IPv6 Addresses in IAM Policies (p. 13)

• Testing IP Address Compatibility (p. 14)

• Using Amazon S3 Dual-Stack Endpoints (p. 14)

Getting Started Making Requests over IPv6
To make a request to an S3 bucket over IPv6, you need to use a dual-stack endpoint. The next section
describes how to make requests over IPv6 by using dual-stack endpoints.

The following are some things you should know before trying to access a bucket over IPv6:

• The client and the network accessing the bucket must be enabled to use IPv6.

• Both virtual hosted-style and path style requests are supported for IPv6 access. For more information,
see Amazon S3 Dual-Stack Endpoints (p. 14).

• If you use source IP address filtering in your AWS Identity and Access Management (IAM) user or bucket
policies, you need to update the policies to include IPv6 address ranges. For more information, see
Using IPv6 Addresses in IAM Policies (p. 13).

• When using IPv6, server access log files output IP addresses in an IPv6 format. You need to update
existing tools, scripts, and software that you use to parse Amazon S3 log files so that they can parse
the IPv6 formatted Remote IP addresses. For more information, see Amazon S3 Server Access Log
Format (p. 653) and Amazon S3 Server Access Logging (p. 647).

Note
If you experience issues related to the presence of IPv6 addresses in log files, contact AWS
Support.

Making Requests over IPv6 by Using Dual-Stack Endpoints
You make requests with Amazon S3 API calls over IPv6 by using dual-stack endpoints. The Amazon
S3 API operations work the same way whether you're accessing Amazon S3 over IPv6 or over IPv4.
Performance should be the same too.

When using the REST API, you access a dual-stack endpoint directly. For more information, see Dual-
Stack Endpoints (p. 14).

When using the AWS Command Line Interface (AWS CLI) and AWS SDKs, you can use a parameter or flag
to change to a dual-stack endpoint. You can also specify the dual-stack endpoint directly as an override
of the Amazon S3 endpoint in the config file.

You can use a dual-stack endpoint to access a bucket over IPv6 from any of the following:

• The AWS CLI, see Using Dual-Stack Endpoints from the AWS CLI (p. 15).

• The AWS SDKs, see Using Dual-Stack Endpoints from the AWS SDKs (p. 16).

API Version 2006-03-01
12

https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/premiumsupport/
https://aws.amazon.com/premiumsupport/

Amazon Simple Storage Service Developer Guide
Using IPv6 Addresses in IAM Policies

• The REST API, see Making Requests to Dual-Stack Endpoints by Using the REST API (p. 45).

Features Not Available over IPv6
The following features are not currently supported when accessing an S3 bucket over IPv6:

• Static website hosting from an S3 bucket
• BitTorrent

Using IPv6 Addresses in IAM Policies
Before trying to access a bucket using IPv6, you must ensure that any IAM user or S3 bucket polices that
are used for IP address filtering are updated to include IPv6 address ranges. IP address filtering policies
that are not updated to handle IPv6 addresses may result in clients incorrectly losing or gaining access
to the bucket when they start using IPv6. For more information about managing access permissions with
IAM, see Identity and Access Management in Amazon S3 (p. 301).

IAM policies that filter IP addresses use IP Address Condition Operators. The following bucket policy
identifies the 54.240.143.* range of allowed IPv4 addresses by using IP address condition operators. Any
IP addresses outside of this range will be denied access to the bucket (examplebucket). Since all IPv6
addresses are outside of the allowed range, this policy prevents IPv6 addresses from being able to access
examplebucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "IPAllow",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::examplebucket/*",
 "Condition": {
 "IpAddress": {"aws:SourceIp": "54.240.143.0/24"}
 }
 }
]
}

You can modify the bucket policy's Condition element to allow both IPv4 (54.240.143.0/24) and
IPv6 (2001:DB8:1234:5678::/64) address ranges as shown in the following example. You can use the
same type of Condition block shown in the example to update both your IAM user and bucket policies.

 "Condition": {
 "IpAddress": {
 "aws:SourceIp": [
 "54.240.143.0/24",
 "2001:DB8:1234:5678::/64"
]
 }
 }

Before using IPv6 you must update all relevant IAM user and bucket policies that use IP address filtering
to allow IPv6 address ranges. We recommend that you update your IAM policies with your organization's
IPv6 address ranges in addition to your existing IPv4 address ranges. For an example of a bucket policy
that allows access over both IPv6 and IPv4, see Restricting Access to Specific IP Addresses (p. 372).

API Version 2006-03-01
13

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Conditions_IPAddress

Amazon Simple Storage Service Developer Guide
Testing IP Address Compatibility

You can review your IAM user policies using the IAM console at https://console.aws.amazon.com/iam/.
For more information about IAM, see the IAM User Guide. For information about editing S3 bucket
policies, see How Do I Add an S3 Bucket Policy? in the Amazon Simple Storage Service Console User Guide.

Testing IP Address Compatibility
If you are using use Linux/Unix or Mac OS X, you can test whether you can access a dual-stack endpoint
over IPv6 by using the curl command as shown in the following example:

Example

curl -v http://s3.dualstack.us-west-2.amazonaws.com/

You get back information similar to the following example. If you are connected over IPv6 the connected
IP address will be an IPv6 address.

* About to connect() to s3-us-west-2.amazonaws.com port 80 (#0)
* Trying IPv6 address... connected
* Connected to s3.dualstack.us-west-2.amazonaws.com (IPv6 address) port 80 (#0)
> GET / HTTP/1.1
> User-Agent: curl/7.18.1 (x86_64-unknown-linux-gnu) libcurl/7.18.1 OpenSSL/1.0.1t
 zlib/1.2.3
> Host: s3.dualstack.us-west-2.amazonaws.com

If you are using Microsoft Windows 7 or Windows 10, you can test whether you can access a dual-stack
endpoint over IPv6 or IPv4 by using the ping command as shown in the following example.

ping ipv6.s3.dualstack.us-west-2.amazonaws.com

Using Amazon S3 Dual-Stack Endpoints
Amazon S3 dual-stack endpoints support requests to S3 buckets over IPv6 and IPv4. This section
describes how to use dual-stack endpoints.

Topics

• Amazon S3 Dual-Stack Endpoints (p. 14)

• Using Dual-Stack Endpoints from the AWS CLI (p. 15)

• Using Dual-Stack Endpoints from the AWS SDKs (p. 16)

• Using Dual-Stack Endpoints from the REST API (p. 18)

Amazon S3 Dual-Stack Endpoints

When you make a request to a dual-stack endpoint, the bucket URL resolves to an IPv6 or an IPv4
address. For more information about accessing a bucket over IPv6, see Making Requests to Amazon S3
over IPv6 (p. 12).

When using the REST API, you directly access an Amazon S3 endpoint by using the endpoint name (URI).
You can access an S3 bucket through a dual-stack endpoint by using a virtual hosted-style or a path-style
endpoint name. Amazon S3 supports only regional dual-stack endpoint names, which means that you
must specify the region as part of the name.

API Version 2006-03-01
14

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-bucket-policy.html

Amazon Simple Storage Service Developer Guide
Using Dual-Stack Endpoints

Use the following naming conventions for the dual-stack virtual hosted-style and path-style endpoint
names:

• Virtual hosted-style dual-stack endpoint:

bucketname.s3.dualstack.aws-region.amazonaws.com

• Path-style dual-stack endpoint:

s3.dualstack.aws-region.amazonaws.com/bucketname

For more information about endpoint name style, see Accessing a Bucket (p. 55). For a list of Amazon
S3 endpoints, see Regions and Endpoints in the AWS General Reference.

Important
You can use transfer acceleration with dual-stack endpoints. For more information, see Getting
Started with Amazon S3 Transfer Acceleration (p. 74).

When using the AWS Command Line Interface (AWS CLI) and AWS SDKs, you can use a parameter or flag
to change to a dual-stack endpoint. You can also specify the dual-stack endpoint directly as an override
of the Amazon S3 endpoint in the config file. The following sections describe how to use dual-stack
endpoints from the AWS CLI and the AWS SDKs.

Using Dual-Stack Endpoints from the AWS CLI
This section provides examples of AWS CLI commands used to make requests to a dual-stack endpoint.
For instructions on setting up the AWS CLI, see Setting Up the AWS CLI (p. 675).

You set the configuration value use_dualstack_endpoint to true in a profile in your AWS Config
file to direct all Amazon S3 requests made by the s3 and s3api AWS CLI commands to the dual-stack
endpoint for the specified region. You specify the region in the config file or in a command using the --
region option.

When using dual-stack endpoints with the AWS CLI, both path and virtual addressing styles are
supported. The addressing style, set in the config file, controls if the bucket name is in the hostname or
part of the URL. By default, the CLI will attempt to use virtual style where possible, but will fall back to
path style if necessary. For more information, see AWS CLI Amazon S3 Configuration.

You can also make configuration changes by using a command, as shown in the following example,
which sets use_dualstack_endpoint to true and addressing_style to virtual in the default
profile.

$ aws configure set default.s3.use_dualstack_endpoint true
$ aws configure set default.s3.addressing_style virtual

If you want to use a dual-stack endpoint for specified AWS CLI commands only (not all commands), you
can use either of the following methods:

• You can use the dual-stack endpoint per command by setting the --endpoint-url parameter
to https://s3.dualstack.aws-region.amazonaws.com or http://s3.dualstack.aws-
region.amazonaws.com for any s3 or s3api command.

$ aws s3api list-objects --bucket bucketname --endpoint-url https://s3.dualstack.aws-
region.amazonaws.com

• You can set up separate profiles in your AWS Config file. For example, create one profile that sets
use_dualstack_endpoint to true and a profile that does not set use_dualstack_endpoint.

API Version 2006-03-01
15

https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
https://docs.aws.amazon.com/cli/latest/topic/s3-config.html

Amazon Simple Storage Service Developer Guide
Using Dual-Stack Endpoints

When you run a command, specify which profile you want to use, depending upon whether or not you
want to use the dual-stack endpoint.

Note
When using the AWS CLI you currently cannot use transfer acceleration with dual-stack
endpoints. However, support for the AWS CLI is coming soon. For more information, see Using
Transfer Acceleration from the AWS Command Line Interface (AWS CLI) (p. 76).

Using Dual-Stack Endpoints from the AWS SDKs
This section provides examples of how to access a dual-stack endpoint by using the AWS SDKs.

AWS SDK for Java Dual-Stack Endpoint Example

The following example shows how to enable dual-stack endpoints when creating an Amazon S3 client
using the AWS SDK for Java.

For instructions on creating and testing a working Java sample, see Testing the Amazon S3 Java Code
Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;

public class DualStackEndpoints {

 public static void main(String[] args) {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";

 try {
 // Create an Amazon S3 client with dual-stack endpoints enabled.
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .withDualstackEnabled(true)
 .build();

 s3Client.listObjects(bucketName);
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

If you are using the AWS SDK for Java on Windows, you might have to set the following Java virtual
machine (JVM) property:

java.net.preferIPv6Addresses=true

API Version 2006-03-01
16

Amazon Simple Storage Service Developer Guide
Using Dual-Stack Endpoints

AWS .NET SDK Dual-Stack Endpoint Example

When using the AWS SDK for .NET you use the AmazonS3Config class to enable the use of a dual-stack
endpoint as shown in the following example.

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class DualStackEndpointTest
 {
 private const string bucketName = "*** bucket name ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 client;

 public static void Main()
 {
 var config = new AmazonS3Config
 {
 UseDualstackEndpoint = true,
 RegionEndpoint = bucketRegion
 };
 client = new AmazonS3Client(config);
 Console.WriteLine("Listing objects stored in a bucket");
 ListingObjectsAsync().Wait();
 }

 private static async Task ListingObjectsAsync()
 {
 try
 {
 var request = new ListObjectsV2Request
 {
 BucketName = bucketName,
 MaxKeys = 10
 };
 ListObjectsV2Response response;
 do
 {
 response = await client.ListObjectsV2Async(request);

 // Process the response.
 foreach (S3Object entry in response.S3Objects)
 {
 Console.WriteLine("key = {0} size = {1}",
 entry.Key, entry.Size);
 }
 Console.WriteLine("Next Continuation Token: {0}",
 response.NextContinuationToken);
 request.ContinuationToken = response.NextContinuationToken;
 } while (response.IsTruncated == true);
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 Console.WriteLine("An AmazonS3Exception was thrown. Exception: " +
 amazonS3Exception.ToString());
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: " + e.ToString());

API Version 2006-03-01
17

Amazon Simple Storage Service Developer Guide
Using Dual-Stack Endpoints

 }
 }
 }
}

For a full .NET sample for listing objects, see Listing Keys Using the AWS SDK for .NET (p. 224).

For information about how to create and test a working .NET sample, see Running the Amazon S3 .NET
Code Examples (p. 678).

Using Dual-Stack Endpoints from the REST API
For information about making requests to dual-stack endpoints by using the REST API, see Making
Requests to Dual-Stack Endpoints by Using the REST API (p. 45).

API Version 2006-03-01
18

Amazon Simple Storage Service Developer Guide
Making Requests Using the AWS SDKs

Making Requests Using the AWS SDKs
Topics

• Making Requests Using AWS Account or IAM User Credentials (p. 19)

• Making Requests Using IAM User Temporary Credentials (p. 26)

• Making Requests Using Federated User Temporary Credentials (p. 34)

You can send authenticated requests to Amazon S3 using either the AWS SDK or by making the REST
API calls directly in your application. The AWS SDK API uses the credentials that you provide to compute
the signature for authentication. If you use the REST API directly in your applications, you must write
the necessary code to compute the signature for authenticating your request. For a list of available AWS
SDKs go to, Sample Code and Libraries.

Making Requests Using AWS Account or IAM User
Credentials
You can use your AWS account or IAM user security credentials to send authenticated requests to
Amazon S3. This section provides examples of how you can send authenticated requests using the AWS
SDK for Java, AWS SDK for .NET, and AWS SDK for PHP. For a list of available AWS SDKs, go to Sample
Code and Libraries.

Topics

• Making Requests Using AWS Account or IAM User Credentials - AWS SDK for Java (p. 20)

• Making Requests Using AWS Account or IAM User Credentials - AWS SDK for .NET (p. 21)

• Making Requests Using AWS Account or IAM User Credentials - AWS SDK for PHP (p. 23)

• Making Requests Using AWS Account or IAM User Credentials - AWS SDK for Ruby (p. 24)

Each of these AWS SDKs uses an SDK-specific credentials provider chain to find and use credentials and
perform actions on behalf of the credentials owner. What all these credentials provider chains have in
common is that they all look for your local AWS credentials file.

The easiest way to configure credentials for your AWS SDKs is to use an AWS credentials file. If you
use the AWS Command Line Interface (AWS CLI), you may already have a local AWS credentials file
configured. Otherwise, use the following procedure to set up a credentials file:

To create a local AWS credentials file

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Create a new user with permissions limited to the services and actions that you want your code
to have access to. For more information about creating a new IAM user, see Creating IAM Users
(Console), and follow the instructions through step 8.

3. Choose Download .csv to save a local copy of your AWS credentials.

4. On your computer, navigate to your home directory, and create an .aws directory. On Unix-based
systems, such as Linux or OS X, this is in the following location:

~/.aws

On Windows, this is in the following location:

API Version 2006-03-01
19

https://aws.amazon.com/code/
https://aws.amazon.com/code/
https://aws.amazon.com/code/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console

Amazon Simple Storage Service Developer Guide
Using AWS Account or IAM User Credentials

%HOMEPATH%\.aws

5. In the .aws directory, create a new file named credentials.

6. Open the credentials .csv file that you downloaded from the IAM console, and copy its contents into
the credentials file using the following format:

[default]
aws_access_key_id = your_access_key_id
aws_secret_access_key = your_secret_access_key

7. Save the credentials file, and delete the .csv file that you downloaded in step 3.

Your shared credentials file is now configured on your local computer, and it's ready to be used with the
AWS SDKs.

Making Requests Using AWS Account or IAM User Credentials -
AWS SDK for Java

To send authenticated requests to Amazon S3 using your AWS account or IAM user credentials, do the
following:

• Use the AmazonS3ClientBuilder class to create an AmazonS3Client instance.

• Execute one of the AmazonS3Client methods to send requests to Amazon S3. The client generates
the necessary signature from the credentials that you provide and includes it in the request.

The following example performs the preceding tasks. For information on creating and testing a working
sample, see Testing the Amazon S3 Java Code Examples (p. 677).

Example

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.ListObjectsRequest;
import com.amazonaws.services.s3.model.ObjectListing;
import com.amazonaws.services.s3.model.S3ObjectSummary;

import java.io.IOException;
import java.util.List;

public class MakingRequests {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

API Version 2006-03-01
20

Amazon Simple Storage Service Developer Guide
Using AWS Account or IAM User Credentials

 // Get a list of objects in the bucket, two at a time, and
 // print the name and size of each object.
 ListObjectsRequest listRequest = new
 ListObjectsRequest().withBucketName(bucketName).withMaxKeys(2);
 ObjectListing objects = s3Client.listObjects(listRequest);
 while (true) {
 List<S3ObjectSummary> summaries = objects.getObjectSummaries();
 for (S3ObjectSummary summary : summaries) {
 System.out.printf("Object \"%s\" retrieved with size %d\n",
 summary.getKey(), summary.getSize());
 }
 if (objects.isTruncated()) {
 objects = s3Client.listNextBatchOfObjects(objects);
 } else {
 break;
 }
 }
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Related Resources

• Using the AWS SDKs, CLI, and Explorers (p. 669)

Making Requests Using AWS Account or IAM User Credentials -
AWS SDK for .NET
To send authenticated requests using your AWS account or IAM user credentials:

• Create an instance of the AmazonS3Client class.
• Execute one of the AmazonS3Client methods to send requests to Amazon S3. The client generates

the necessary signature from the credentials that you provide and includes it in the request it sends to
Amazon S3.

The following C# example shows how to perform the preceding tasks. For information about running
the .NET examples in this guide and for instructions on how to store your credentials in a configuration
file, see Running the Amazon S3 .NET Code Examples (p. 678).

Example

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class MakeS3RequestTest

API Version 2006-03-01
21

Amazon Simple Storage Service Developer Guide
Using AWS Account or IAM User Credentials

 {
 private const string bucketName = "*** bucket name ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 client;

 public static void Main()
 {
 using (client = new AmazonS3Client(bucketRegion))
 {
 Console.WriteLine("Listing objects stored in a bucket");
 ListingObjectsAsync().Wait();
 }
 }

 static async Task ListingObjectsAsync()
 {
 try
 {
 ListObjectsRequest request = new ListObjectsRequest
 {
 BucketName = bucketName,
 MaxKeys = 2
 };
 do
 {
 ListObjectsResponse response = await client.ListObjectsAsync(request);
 // Process the response.
 foreach (S3Object entry in response.S3Objects)
 {
 Console.WriteLine("key = {0} size = {1}",
 entry.Key, entry.Size);
 }

 // If the response is truncated, set the marker to get the next
 // set of keys.
 if (response.IsTruncated)
 {
 request.Marker = response.NextMarker;
 }
 else
 {
 request = null;
 }
 } while (request != null);
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Error encountered on server. Message:'{0}' when writing
 an object", e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown encountered on server. Message:'{0}' when
 writing an object", e.Message);
 }
 }
 }
}

Note
You can create the AmazonS3Client client without providing your security credentials.
Requests sent using this client are anonymous requests, without a signature. Amazon S3 returns
an error if you send anonymous requests for a resource that is not publicly available.

API Version 2006-03-01
22

Amazon Simple Storage Service Developer Guide
Using AWS Account or IAM User Credentials

For working examples, see Working with Amazon S3 Objects (p. 98) and Working with Amazon S3
Buckets (p. 53). You can test these examples using your AWS Account or an IAM user credentials.

For example, to list all the object keys in your bucket, see Listing Keys Using the AWS SDK
for .NET (p. 224).

Related Resources

• Using the AWS SDKs, CLI, and Explorers (p. 669)

Making Requests Using AWS Account or IAM User Credentials -
AWS SDK for PHP
This section explains how to use a class from version 3 of the AWS SDK for PHP to send authenticated
requests using your AWS account or IAM user credentials. It assumes that you are already following the
instructions for Using the AWS SDK for PHP and Running PHP Examples (p. 678) and have the AWS
SDK for PHP properly installed.

The following PHP example shows how the client makes a request using your security credentials to list
all of the buckets for your account.

Example

require 'vendor/autoload.php';

use Aws\Sts\StsClient;
use Aws\S3\S3Client;
use Aws\S3\Exception\S3Exception;

$bucket = '*** Your Bucket Name ***';

$s3 = new S3Client([
 'region' => 'us-east-1',
 'version' => 'latest',
]);

// Retrieve the list of buckets.
$result = $s3->listBuckets();

try {
 // Retrieve a paginator for listing objects.
 $objects = $s3->getPaginator('ListObjects', [
 'Bucket' => $bucket
]);

 echo "Keys retrieved!" . PHP_EOL;

 // Print the list of objects to the page.
 foreach ($objects as $object) {
 echo $object['Key'] . PHP_EOL;
 }
} catch (S3Exception $e) {
 echo $e->getMessage() . PHP_EOL;
}

Note
You can create the S3Client client without providing your security credentials. Requests sent
using this client are anonymous requests, without a signature. Amazon S3 returns an error if you
send anonymous requests for a resource that is not publicly available.

API Version 2006-03-01
23

Amazon Simple Storage Service Developer Guide
Using AWS Account or IAM User Credentials

For working examples, see Operations on Objects (p. 160). You can test these examples using your AWS
account or IAM user credentials.

For an example of listing object keys in a bucket, see Listing Keys Using the AWS SDK for PHP (p. 226).

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• AWS SDK for PHP Documentation

Making Requests Using AWS Account or IAM User Credentials -
AWS SDK for Ruby
Before you can use version 3 of the AWS SDK for Ruby to make calls to Amazon S3, you must set the
AWS access credentials that the SDK uses to verify your access to your buckets and objects. If you
have shared credentials set up in the AWS credentials profile on your local system, version 3 of the
SDK for Ruby can use those credentials without your having to declare them in your code. For more
information about setting up shared credentials, see Making Requests Using AWS Account or IAM User
Credentials (p. 19).

The following Ruby code snippet uses the credentials in a shared AWS credentials file on a local
computer to authenticate a request to get all of the object key names in a specific bucket. It does the
following:

1. Creates an instance of the Aws::S3::Resource class.

2. Makes a request to Amazon S3 by enumerating objects in a bucket using the bucket method of
Aws::S3::Resource. The client generates the necessary signature value from the credentials in the
AWS credentials file on your computer, and includes it in the request it sends to Amazon S3.

3. Prints the array of object key names to the terminal.

Example

This snippet example does the following:
Creates an instance of the Aws::S3::Resource class.
Makes a request to Amazon S3 by enumerating objects in a bucket using the bucket method
 of Aws::S3::Resource.
The client generates the necessary signature value from the credentials in the AWS
 credentials file on your computer,
and includes it in the request it sends to Amazon S3.
Prints the array of object key names to the terminal.
The credentials that are used for this example come from a local AWS credentials file on
 the computer that is running this application.
The credentials are for an IAM user who can list objects in the bucket that the user
 specifies when they run the application.

Use the Amazon S3 modularized gem for version 3 of the AWS Ruby SDK.
require 'aws-sdk-s3'

Get an Amazon S3 resource.
s3 = Aws::S3::Resource.new(region: 'us-west-2')

Create an array of up to the first 100 object keynames in the bucket.
bucket = s3.bucket('example_bucket').objects.collect(&:key)

Print the array to the terminal.
puts bucket

API Version 2006-03-01
24

https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.S3.S3Client.html
http://aws.amazon.com/documentation/sdk-for-php/

Amazon Simple Storage Service Developer Guide
Using AWS Account or IAM User Credentials

If you don't have a local AWS credentials file, you can still create the Aws::S3::Resource resource
and execute code against Amazon S3 buckets and objects. Requests that are sent using version 3 of
the SDK for Ruby are anonymous, with no signature by default. Amazon S3 returns an error if you send
anonymous requests for a resource that's not publicly available.

You can use and expand the previous code snippet for SDK for Ruby applications, as in the following
more robust example. The credentials that are used for this example come from a local AWS credentials
file on the computer that is running this application. The credentials are for an IAM user who can list
objects in the bucket that the user specifies when they run the application.

This snippet example does the following:
Creates an instance of the Aws::S3::Resource class.
Makes a request to Amazon S3 by enumerating objects in a bucket using the bucket method
 of Aws::S3::Resource.
The client generates the necessary signature value from the credentials in the AWS
 credentials file on your computer,
and includes it in the request it sends to Amazon S3.
Prints the array of object key names to the terminal.
The credentials that are used for this example come from a local AWS credentials file on
 the computer that is running this application.
The credentials are for an IAM user who can list objects in the bucket that the user
 specifies when they run the application.

Use the Amazon S3 modularized gem for version 3 of the AWS Ruby SDK.
require 'aws-sdk-s3'

Usage: ruby auth_request_test.rb OPERATION BUCKET
Currently only the list operation is supported

The operation to perform on the bucket.
operation = 'list' # default
operation = ARGV[0] if (ARGV.length > 0)

if ARGV.length > 1
 bucket_name = ARGV[1]
else
 exit 1
end

Get an Amazon S3 resource.
s3 = Aws::S3::Resource.new(region: 'us-west-2')

Get the bucket by name.
bucket = s3.bucket(bucket_name)

case operation

when 'list'
 if bucket.exists?
 # Enumerate the bucket contents and object etags.
 puts "Contents of '%s':" % bucket_name
 puts ' Name => GUID'

 bucket.objects.limit(50).each do |obj|
 puts " #{obj.key} => #{obj.etag}"
 end
 else
 puts "The bucket '%s' does not exist!" % bucket_name
 end

else
 puts "Unknown operation: '%s'! Only list is supported." % operation
end

API Version 2006-03-01
25

Amazon Simple Storage Service Developer Guide
Using IAM User Temporary Credentials

Making Requests Using IAM User Temporary
Credentials
Topics

• Making Requests Using IAM User Temporary Credentials - AWS SDK for Java (p. 26)

• Making Requests Using IAM User Temporary Credentials - AWS SDK for .NET (p. 28)

• Making Requests Using AWS Account or IAM User Temporary Credentials - AWS SDK for
PHP (p. 30)

• Making Requests Using IAM User Temporary Credentials - AWS SDK for Ruby (p. 31)

An AWS Account or an IAM user can request temporary security credentials and use them to send
authenticated requests to Amazon S3. This section provides examples of how to use the AWS SDK for
Java, .NET, and PHP to obtain temporary security credentials and use them to authenticate your requests
to Amazon S3.

Making Requests Using IAM User Temporary Credentials - AWS
SDK for Java
An IAM user or an AWS Account can request temporary security credentials (see Making Requests (p. 10))
using the AWS SDK for Java and use them to access Amazon S3. These credentials expire after the
specified session duration. To use IAM temporary security credentials, do the following:

1. Create an instance of the AWSSecurityTokenServiceClient class. For information about
providing credentials, see Using the AWS SDKs, CLI, and Explorers (p. 669).

2. Assume the desired role by calling the assumeRole() method of the Security Token Service (STS)
client.

3. Start a session by calling the getSessionToken() method of the STS client. You provide session
information to this method using a GetSessionTokenRequest object.

The method returns the temporary security credentials.

4. Package the temporary security credentials into a BasicSessionCredentials object. You use this
object to provide the temporary security credentials to your Amazon S3 client.

5. Create an instance of the AmazonS3Client class using the temporary security credentials. You send
requests to Amazon S3 using this client. If you send requests using expired credentials, Amazon S3
will return an error.

Note
If you obtain temporary security credentials using your AWS account security credentials, the
temporary credentials are valid for only one hour. You can specify the session duration only if
you use IAM user credentials to request a session.

The following example lists a set of object keys in the specified bucket. The example obtains temporary
security credentials for a two-hour session and uses them to send an authenticated request to Amazon
S3.

If you want to test the sample using IAM user credentials, you will need to create an IAM user under your
AWS Account. For more information about how to create an IAM user, see Creating Your First IAM User
and Administrators Group in the IAM User Guide.

For instructions on creating and testing a working sample, see Testing the Amazon S3 Java Code
Examples (p. 677).

API Version 2006-03-01
26

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

Amazon Simple Storage Service Developer Guide
Using IAM User Temporary Credentials

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.AWSStaticCredentialsProvider;
import com.amazonaws.auth.BasicSessionCredentials;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.ObjectListing;
import com.amazonaws.services.securitytoken.AWSSecurityTokenService;
import com.amazonaws.services.securitytoken.AWSSecurityTokenServiceClientBuilder;
import com.amazonaws.services.securitytoken.model.Credentials;
import com.amazonaws.services.securitytoken.model.GetSessionTokenRequest;
import com.amazonaws.services.securitytoken.model.GetSessionTokenResult;

public class MakingRequestsWithIAMTempCredentials {
 public static void main(String[] args) {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";

 try {
 // Creating the STS client is part of your trusted code. It has
 // the security credentials you use to obtain temporary security credentials.
 AWSSecurityTokenService stsClient =
 AWSSecurityTokenServiceClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 // Start a session.
 GetSessionTokenRequest getSessionTokenRequest = new
 GetSessionTokenRequest().withDurationSeconds(7200);
 // The duration can be set to more than 3600 seconds only if temporary
 // credentials are requested by an IAM user rather than an account owner.
 GetSessionTokenResult sessionTokenResult =
 stsClient.getSessionToken(getSessionTokenRequest);
 Credentials sessionCredentials = sessionTokenResult
 .getCredentials()

 .withSessionToken(sessionTokenResult.getCredentials().getSessionToken())
 .withExpiration(sessionTokenResult.getCredentials().getExpiration());

 // Package the temporary security credentials as a BasicSessionCredentials
 object
 // for an Amazon S3 client object to use.
 BasicSessionCredentials basicSessionCredentials = new BasicSessionCredentials(
 sessionCredentials.getAccessKeyId(),
 sessionCredentials.getSecretAccessKey(),
 sessionCredentials.getSessionToken());

 // Provide temporary security credentials so that the Amazon S3 client
 // can send authenticated requests to Amazon S3. You create the client
 // using the basicSessionCredentials object.
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new
 AWSStaticCredentialsProvider(basicSessionCredentials))
 .withRegion(clientRegion)
 .build();

 // Verify that getting the session token worked and the permissions are set
 correctly
 // by getting a set of object keys from the bucket.
 ObjectListing objects = s3Client.listObjects(bucketName);
 System.out.println("No. of Objects: " + objects.getObjectSummaries().size());

API Version 2006-03-01
27

Amazon Simple Storage Service Developer Guide
Using IAM User Temporary Credentials

 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Related Resources

• Using the AWS SDKs, CLI, and Explorers (p. 669)

Making Requests Using IAM User Temporary Credentials - AWS
SDK for .NET
An IAM user or an AWS account can request temporary security credentials using the AWS SDK for .NET
and use them to access Amazon S3. These credentials expire after the session duration. To get temporary
security credentials and access Amazon S3, do the following:

1. Create an instance of the AWS Security Token Service client,
AmazonSecurityTokenServiceClient. For information about providing credentials, see Using
the AWS SDKs, CLI, and Explorers (p. 669).

2. Start a session by calling the GetSessionToken method of the STS client you created in the
preceding step. You provide session information to this method using a GetSessionTokenRequest
object.

The method returns your temporary security credentials.
3. Package the temporary security credentials in an instance of the SessionAWSCredentials object.

You use this object to provide the temporary security credentials to your Amazon S3 client.
4. Create an instance of the AmazonS3Client class by passing in the temporary security credentials.

You send requests to Amazon S3 using this client. If you send requests using expired credentials,
Amazon S3 returns an error.

Note
If you obtain temporary security credentials using your AWS account security credentials, those
credentials are valid for only one hour. You can specify a session duration only if you use IAM
user credentials to request a session.

The following C# example lists object keys in the specified bucket. For illustration, the example obtains
temporary security credentials for a default one-hour session and uses them to send authenticated
request to Amazon S3.

If you want to test the sample using IAM user credentials, you need to create an IAM user under your
AWS account. For more information about how to create an IAM user, see Creating Your First IAM User
and Administrators Group in the IAM User Guide. For more information about making requests, see
Making Requests (p. 10).

For instructions on creating and testing a working example, see Running the Amazon S3 .NET Code
Examples (p. 678).

API Version 2006-03-01
28

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

Amazon Simple Storage Service Developer Guide
Using IAM User Temporary Credentials

using Amazon.Runtime;
using Amazon.S3;
using Amazon.S3.Model;
using Amazon.SecurityToken;
using Amazon.SecurityToken.Model;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class TempCredExplicitSessionStartTest
 {
 private const string bucketName = "*** bucket name ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 s3Client;
 public static void Main()
 {
 ListObjectsAsync().Wait();
 }

 private static async Task ListObjectsAsync()
 {
 try
 {
 // Credentials use the default AWS SDK for .NET credential search chain.
 // On local development machines, this is your default profile.
 Console.WriteLine("Listing objects stored in a bucket");
 SessionAWSCredentials tempCredentials = await
 GetTemporaryCredentialsAsync();

 // Create a client by providing temporary security credentials.
 using (s3Client = new AmazonS3Client(tempCredentials, bucketRegion))
 {
 var listObjectRequest = new ListObjectsRequest
 {
 BucketName = bucketName
 };
 // Send request to Amazon S3.
 ListObjectsResponse response = await
 s3Client.ListObjectsAsync(listObjectRequest);
 List<S3Object> objects = response.S3Objects;
 Console.WriteLine("Object count = {0}", objects.Count);
 }
 }
 catch (AmazonS3Exception s3Exception)
 {
 Console.WriteLine(s3Exception.Message, s3Exception.InnerException);
 }
 catch (AmazonSecurityTokenServiceException stsException)
 {
 Console.WriteLine(stsException.Message, stsException.InnerException);
 }
 }

 private static async Task<SessionAWSCredentials> GetTemporaryCredentialsAsync()
 {
 using (var stsClient = new AmazonSecurityTokenServiceClient())
 {
 var getSessionTokenRequest = new GetSessionTokenRequest
 {
 DurationSeconds = 7200 // seconds
 };

 GetSessionTokenResponse sessionTokenResponse =

API Version 2006-03-01
29

Amazon Simple Storage Service Developer Guide
Using IAM User Temporary Credentials

 await stsClient.GetSessionTokenAsync(getSessionTokenRequest);

 Credentials credentials = sessionTokenResponse.Credentials;

 var sessionCredentials =
 new SessionAWSCredentials(credentials.AccessKeyId,
 credentials.SecretAccessKey,
 credentials.SessionToken);
 return sessionCredentials;
 }
 }
 }
}

Related Resources

• Using the AWS SDKs, CLI, and Explorers (p. 669)

Making Requests Using AWS Account or IAM User Temporary
Credentials - AWS SDK for PHP
This topic guides explains how to use classes from version 3 of the AWS SDK for PHP to request
temporary security credentials and use them to access Amazon S3. It assumes that you are already
following the instructions for Using the AWS SDK for PHP and Running PHP Examples (p. 678) and
have the AWS SDK for PHP properly installed.

An IAM user or an AWS account can request temporary security credentials using version 3 of the AWS
SDK for PHP. It can then use the temporary credentials to access Amazon S3. The credentials expire when
the session duration expires. By default, the session duration is one hour. If you use IAM user credentials,
you can specify the duration (from 1 to 36 hours) when requesting the temporary security credentials.
For more information about temporary security credentials, see Temporary Security Credentials in the
IAM User Guide. For more information about making requests, see Making Requests (p. 10).

Note
If you obtain temporary security credentials using your AWS account security credentials, the
temporary security credentials are valid for only one hour. You can specify the session duration
only if you use IAM user credentials to request a session.

Example

The following PHP example lists object keys in the specified bucket using temporary security credentials.
The example obtains temporary security credentials for a default one-hour session, and uses them to
send authenticated request to Amazon S3. For information about running the PHP examples in this
guide, see Running PHP Examples (p. 679).

If you want to test the example using IAM user credentials, you need to create an IAM user under your
AWS account. For information about how to create an IAM user, see Creating Your First IAM User and
Administrators Group in the IAM User Guide. For an example of setting the session duration when
using IAM user credentials to request a session, see Making Requests Using Federated User Temporary
Credentials - AWS SDK for PHP (p. 39).

 require 'vendor/autoload.php';

use Aws\Sts\StsClient;
use Aws\S3\S3Client;
use Aws\S3\Exception\S3Exception;

$bucket = '*** Your Bucket Name ***';

API Version 2006-03-01
30

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

Amazon Simple Storage Service Developer Guide
Using IAM User Temporary Credentials

$sts = new StsClient([
 'version' => 'latest',
 'region' => 'us-east-1'
]);

$sessionToken = $sts->getSessionToken();

$s3 = new S3Client([
 'region' => 'us-east-1',
 'version' => 'latest',
 'credentials' => [
 'key' => $sessionToken['Credentials']['AccessKeyId'],
 'secret' => $sessionToken['Credentials']['SecretAccessKey'],
 'token' => $sessionToken['Credentials']['SessionToken']
]
]);

$result = $s3->listBuckets();

try {
 // Retrieve a paginator for listing objects.
 $objects = $s3->getPaginator('ListObjects', [
 'Bucket' => $bucket
]);

 echo "Keys retrieved!" . PHP_EOL;

 // List objects
 foreach ($objects as $object) {
 echo $object['Key'] . PHP_EOL;
 }
} catch (S3Exception $e) {
 echo $e->getMessage() . PHP_EOL;
}

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class
• AWS SDK for PHP Documentation

Making Requests Using IAM User Temporary Credentials - AWS
SDK for Ruby
An IAM user or an AWS account can request temporary security credentials using AWS SDK for Ruby
and use them to access Amazon S3. These credentials expire after the session duration. By default, the
session duration is one hour. If you use IAM user credentials, you can specify the duration (from 1 to 36
hours) when requesting the temporary security credentials. For information about requesting temporary
security credentials, see Making Requests (p. 10).

Note
If you obtain temporary security credentials using your AWS account security credentials, the
temporary security credentials are valid for only one hour. You can specify session duration only
if you use IAM user credentials to request a session.

The following Ruby example creates a temporary user to list the items in a specified bucket for one hour.
To use this example, you must have AWS credentials that have the necessary permissions to create new
AWS Security Token Service (AWS STS) clients, and list Amazon S3 buckets.

This snippet example does the following:

API Version 2006-03-01
31

https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.S3.S3Client.html
http://aws.amazon.com/documentation/sdk-for-php/

Amazon Simple Storage Service Developer Guide
Using IAM User Temporary Credentials

The following Ruby example creates a temporary user to list the items in a specified
 bucket
for one hour. To use this example, you must have AWS credentials that have the necessary
permissions to create new AWS Security Token Service (AWS STS) clients, and list Amazon
 S3 buckets using temporary security credentials
using your AWS account security credentials, the temporary security credentials are valid
 for only one hour. You can
specify session duration only if you use &IAM; user credentials to request a session.

require 'aws-sdk-core'
require 'aws-sdk-s3'
require 'aws-sdk-iam'

USAGE = <<DOC

Usage: assumerole_create_bucket_policy.rb -b BUCKET -u USER [-r REGION] [-d] [-h]

 Assumes a role for USER to list items in BUCKET for one hour.

 BUCKET is required and must already exist.

 USER is required and if not found, is created.

 If REGION is not supplied, defaults to us-west-2.

 -d gives you extra (debugging) information.

 -h displays this message and quits.

DOC

def print_debug(debug, s)
 if debug
 puts s
 end
end

Get the user if they exist, otherwise create them
def get_user(region, user_name, debug)
 iam = Aws::IAM::Resource.new(region: region)

 # See if user exists
 user = iam.user(user_name)

 # If user does not exist, create them
 if user == nil
 user = iam.create_user(user_name: user_name)
 iam.wait_until(:user_exists, user_name: user_name)
 print_debug(debug, "Created new user #{user_name}")
 else
 print_debug(debug, "Found user #{user_name} in region #{region}")
 end

 user
end

main
region = 'us-west-2'
user_name = ''
bucket_name = ''

i = 0

while i < ARGV.length
 case ARGV[i]

API Version 2006-03-01
32

Amazon Simple Storage Service Developer Guide
Using IAM User Temporary Credentials

 when '-b'
 i += 1
 bucket_name = ARGV[i]

 when '-u'
 i += 1
 user_name = ARGV[i]

 when '-r'
 i += 1

 region = ARGV[i]

 when '-h'
 puts USAGE
 exit 0

 else
 puts 'Unrecognized option: ' + ARGV[i]
 puts USAGE
 exit 1

 end

 i += 1
end

if bucket_name == ''
 puts 'You must supply a bucket name'
 puts USAGE
 exit 1
end

if user_name == ''
 puts 'You must supply a user name'
 puts USAGE
 exit 1
end

Create a new Amazon STS client and get temporary credentials. This uses a role that was
 already created.
begin
 creds = Aws::AssumeRoleCredentials.new(
 client: Aws::STS::Client.new(region: region),
 role_arn: "arn:aws:iam::111122223333:role/assumedrolelist",
 role_session_name: "assumerole-s3-list"
)

 # Create an Amazon S3 resource with temporary credentials.
 s3 = Aws::S3::Resource.new(region: region, credentials: creds)

 puts "Contents of '%s':" % bucket_name
 puts ' Name => GUID'

 s3.bucket(bucket_name).objects.limit(50).each do |obj|
 puts " #{obj.key} => #{obj.etag}"
 end
rescue StandardError => ex
 puts 'Caught exception accessing bucket ' + bucket_name + ':'
 puts ex.message
end

API Version 2006-03-01
33

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

Making Requests Using Federated User Temporary
Credentials
You can request temporary security credentials and provide them to your federated users or applications
who need to access your AWS resources. This section provides examples of how you can use the AWS SDK
to obtain temporary security credentials for your federated users or applications and send authenticated
requests to Amazon S3 using those credentials. For a list of available AWS SDKs, see Sample Code and
Libraries.

Note
Both the AWS account and an IAM user can request temporary security credentials for federated
users. However, for added security, only an IAM user with the necessary permissions should
request these temporary credentials to ensure that the federated user gets at most the
permissions of the requesting IAM user. In some applications, you might find it suitable to
create an IAM user with specific permissions for the sole purpose of granting temporary security
credentials to your federated users and applications.

Making Requests Using Federated User Temporary Credentials -
AWS SDK for Java
You can provide temporary security credentials for your federated users and applications so that they
can send authenticated requests to access your AWS resources. When requesting these temporary
credentials, you must provide a user name and an IAM policy that describes the resource permissions that
you want to grant. By default, the session duration is one hour. You can explicitly set a different duration
value when requesting the temporary security credentials for federated users and applications.

Note
For added security when requesting temporary security credentials for federated users and
applications, we recommend that you use a dedicated IAM user with only the necessary access
permissions. The temporary user you create can never get more permissions than the IAM user
who requested the temporary security credentials. For more information, see AWS Identity and
Access Management FAQs .

To provide security credentials and send authenticated request to access resources, do the following:

• Create an instance of the AWSSecurityTokenServiceClient class. For information about providing
credentials, see Using the AWS SDK for Java (p. 676).

• Start a session by calling the getFederationToken() method of the Security Token Service (STS)
client. Provide session information, including the user name and an IAM policy, that you want to attach
to the temporary credentials. You can provide an optional session duration. This method returns your
temporary security credentials.

• Package the temporary security credentials in an instance of the BasicSessionCredentials object.
You use this object to provide the temporary security credentials to your Amazon S3 client.

• Create an instance of the AmazonS3Client class using the temporary security credentials. You send
requests to Amazon S3 using this client. If you send requests using expired credentials, Amazon S3
returns an error.

Example

The example lists keys in the specified S3 bucket. In the example, you obtain temporary security
credentials for a two-hour session for your federated user and use the credentials to send authenticated
requests to Amazon S3. To run the example, you need to create an IAM user with an attached policy that
allows the user to request temporary security credentials and list your AWS resources. The following
policy accomplishes this:

API Version 2006-03-01
34

https://aws.amazon.com/code/
https://aws.amazon.com/code/
https://aws.amazon.com/iam/faqs/#What_are_the_best_practices_for_using_temporary_security_credentials
https://aws.amazon.com/iam/faqs/#What_are_the_best_practices_for_using_temporary_security_credentials

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

{
 "Statement":[{
 "Action":["s3:ListBucket",
 "sts:GetFederationToken*"
],
 "Effect":"Allow",
 "Resource":"*"
 }
]
}

For more information about how to create an IAM user, see Creating Your First IAM User and
Administrators Group in the IAM User Guide.

After creating an IAM user and attaching the preceding policy, you can run the following example.
For instructions on creating and testing a working sample, see Testing the Amazon S3 Java Code
Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.AWSStaticCredentialsProvider;
import com.amazonaws.auth.BasicSessionCredentials;
import com.amazonaws.auth.policy.Policy;
import com.amazonaws.auth.policy.Resource;
import com.amazonaws.auth.policy.Statement;
import com.amazonaws.auth.policy.Statement.Effect;
import com.amazonaws.auth.policy.actions.S3Actions;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.ObjectListing;
import com.amazonaws.services.securitytoken.AWSSecurityTokenService;
import com.amazonaws.services.securitytoken.AWSSecurityTokenServiceClientBuilder;
import com.amazonaws.services.securitytoken.model.Credentials;
import com.amazonaws.services.securitytoken.model.GetFederationTokenRequest;
import com.amazonaws.services.securitytoken.model.GetFederationTokenResult;

import java.io.IOException;

public class MakingRequestsWithFederatedTempCredentials {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Specify bucket name ***";
 String federatedUser = "*** Federated user name ***";
 String resourceARN = "arn:aws:s3:::" + bucketName;

 try {
 AWSSecurityTokenService stsClient = AWSSecurityTokenServiceClientBuilder
 .standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 GetFederationTokenRequest getFederationTokenRequest = new
 GetFederationTokenRequest();
 getFederationTokenRequest.setDurationSeconds(7200);
 getFederationTokenRequest.setName(federatedUser);

 // Define the policy and add it to the request.
 Policy policy = new Policy();

API Version 2006-03-01
35

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

 policy.withStatements(new Statement(Effect.Allow)
 .withActions(S3Actions.ListObjects)
 .withResources(new Resource(resourceARN)));
 getFederationTokenRequest.setPolicy(policy.toJson());

 // Get the temporary security credentials.
 GetFederationTokenResult federationTokenResult =
 stsClient.getFederationToken(getFederationTokenRequest);
 Credentials sessionCredentials = federationTokenResult.getCredentials();

 // Package the session credentials as a BasicSessionCredentials
 // object for an Amazon S3 client object to use.
 BasicSessionCredentials basicSessionCredentials = new BasicSessionCredentials(
 sessionCredentials.getAccessKeyId(),
 sessionCredentials.getSecretAccessKey(),
 sessionCredentials.getSessionToken());
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new
 AWSStaticCredentialsProvider(basicSessionCredentials))
 .withRegion(clientRegion)
 .build();

 // To verify that the client works, send a listObjects request using
 // the temporary security credentials.
 ObjectListing objects = s3Client.listObjects(bucketName);
 System.out.println("No. of Objects = " + objects.getObjectSummaries().size());
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Related Resources

• Using the AWS SDKs, CLI, and Explorers (p. 669)

Making Requests Using Federated User Temporary Credentials -
AWS SDK for .NET
You can provide temporary security credentials for your federated users and applications so that they
can send authenticated requests to access your AWS resources. When requesting these temporary
credentials, you must provide a user name and an IAM policy that describes the resource permissions
that you want to grant. By default, the duration of a session is one hour. You can explicitly set a different
duration value when requesting the temporary security credentials for federated users and applications.
For information about sending authenticated requests, see Making Requests (p. 10).

Note
When requesting temporary security credentials for federated users and applications, for
added security, we suggest that you use a dedicated IAM user with only the necessary access
permissions. The temporary user you create can never get more permissions than the IAM user
who requested the temporary security credentials. For more information, see AWS Identity and
Access Management FAQs .

You do the following:

API Version 2006-03-01
36

https://aws.amazon.com/iam/faqs/#What_are_the_best_practices_for_using_temporary_security_credentials
https://aws.amazon.com/iam/faqs/#What_are_the_best_practices_for_using_temporary_security_credentials

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

• Create an instance of the AWS Security Token Service client, AmazonSecurityTokenServiceClient
class. For information about providing credentials, see Using the AWS SDK for .NET (p. 677).

• Start a session by calling the GetFederationToken method of the STS client. You need to provide
session information, including the user name and an IAM policy that you want to attach to the
temporary credentials. Optionally, you can provide a session duration. This method returns your
temporary security credentials.

• Package the temporary security credentials in an instance of the SessionAWSCredentials object.
You use this object to provide the temporary security credentials to your Amazon S3 client.

• Create an instance of the AmazonS3Client class by passing the temporary security credentials. You
use this client to send requests to Amazon S3. If you send requests using expired credentials, Amazon
S3 returns an error.

Example

The following C# example lists the keys in the specified bucket. In the example, you obtain temporary
security credentials for a two-hour session for your federated user (User1), and use the credentials to
send authenticated requests to Amazon S3.

• For this exercise, you create an IAM user with minimal permissions. Using the credentials of this IAM
user, you request temporary credentials for others. This example lists only the objects in a specific
bucket. Create an IAM user with the following policy attached:

{
 "Statement":[{
 "Action":["s3:ListBucket",
 "sts:GetFederationToken*"
],
 "Effect":"Allow",
 "Resource":"*"
 }
]
}

The policy allows the IAM user to request temporary security credentials and access permission only to
list your AWS resources. For more information about how to create an IAM user, see Creating Your First
IAM User and Administrators Group in the IAM User Guide.

• Use the IAM user security credentials to test the following example. The example sends authenticated
request to Amazon S3 using temporary security credentials. The example specifies the following policy
when requesting temporary security credentials for the federated user (User1), which restricts access
to listing objects in a specific bucket (YourBucketName). You must update the policy and provide your
own existing bucket name.

{
 "Statement":[
 {
 "Sid":"1",
 "Action":["s3:ListBucket"],
 "Effect":"Allow",
 "Resource":"arn:aws:s3:::YourBucketName"
 }
]
}

API Version 2006-03-01
37

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

• Example

Update the following sample and provide the bucket name that you specified in the preceding
federated user access policy. For instructions on how to create and test a working example, see
Running the Amazon S3 .NET Code Examples (p. 678).

using Amazon.Runtime;
using Amazon.S3;
using Amazon.S3.Model;
using Amazon.SecurityToken;
using Amazon.SecurityToken.Model;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class TempFederatedCredentialsTest
 {
 private const string bucketName = "*** bucket name ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 client;

 public static void Main()
 {
 ListObjectsAsync().Wait();
 }

 private static async Task ListObjectsAsync()
 {
 try
 {
 Console.WriteLine("Listing objects stored in a bucket");
 // Credentials use the default AWS SDK for .NET credential search chain.
 // On local development machines, this is your default profile.
 SessionAWSCredentials tempCredentials =
 await GetTemporaryFederatedCredentialsAsync();

 // Create a client by providing temporary security credentials.
 using (client = new AmazonS3Client(bucketRegion))
 {
 ListObjectsRequest listObjectRequest = new ListObjectsRequest();
 listObjectRequest.BucketName = bucketName;

 ListObjectsResponse response = await
 client.ListObjectsAsync(listObjectRequest);
 List<S3Object> objects = response.S3Objects;
 Console.WriteLine("Object count = {0}", objects.Count);

 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Error encountered ***. Message:'{0}' when writing an
 object", e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown encountered on server. Message:'{0}' when
 writing an object", e.Message);

API Version 2006-03-01
38

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

 }
 }

 private static async Task<SessionAWSCredentials>
 GetTemporaryFederatedCredentialsAsync()
 {
 AmazonSecurityTokenServiceConfig config = new
 AmazonSecurityTokenServiceConfig();
 AmazonSecurityTokenServiceClient stsClient =
 new AmazonSecurityTokenServiceClient(
 config);

 GetFederationTokenRequest federationTokenRequest =
 new GetFederationTokenRequest();
 federationTokenRequest.DurationSeconds = 7200;
 federationTokenRequest.Name = "User1";
 federationTokenRequest.Policy = @"{
 ""Statement"":
 [
 {
 ""Sid"":""Stmt1311212314284"",
 ""Action"":[""s3:ListBucket""],
 ""Effect"":""Allow"",
 ""Resource"":""arn:aws:s3:::" + bucketName + @"""
 }
]
 }
 ";

 GetFederationTokenResponse federationTokenResponse =
 await stsClient.GetFederationTokenAsync(federationTokenRequest);
 Credentials credentials = federationTokenResponse.Credentials;

 SessionAWSCredentials sessionCredentials =
 new SessionAWSCredentials(credentials.AccessKeyId,
 credentials.SecretAccessKey,
 credentials.SessionToken);
 return sessionCredentials;
 }
 }
}

Related Resources

• Using the AWS SDKs, CLI, and Explorers (p. 669)

Making Requests Using Federated User Temporary Credentials -
AWS SDK for PHP
This topic explains how to use classes from version 3 of the AWS SDK for PHP to request temporary
security credentials for federated users and applications and use them to access resources stored in
Amazon S3. It assumes that you are already following the instructions for Using the AWS SDK for PHP
and Running PHP Examples (p. 678) and have the AWS SDK for PHP properly installed.

You can provide temporary security credentials to your federated users and applications so they can send
authenticated requests to access your AWS resources. When requesting these temporary credentials,
you must provide a user name and an IAM policy that describes the resource permissions that you want
to grant. These credentials expire when the session duration expires. By default, the session duration
is one hour. You can explicitly set a different value for the duration when requesting the temporary
security credentials for federated users and applications. For more information about temporary security

API Version 2006-03-01
39

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

credentials, see Temporary Security Credentials in the IAM User Guide. For information about providing
temporary security credentials to your federated users and applications, see Making Requests (p. 10).

For added security when requesting temporary security credentials for federated users and applications,
we recommend using a dedicated IAM user with only the necessary access permissions. The temporary
user you create can never get more permissions than the IAM user who requested the temporary security
credentials. For information about identity federation, see AWS Identity and Access Management FAQs.

For information about running the PHP examples in this guide, see Running PHP Examples (p. 679).

Example

The following PHP example lists keys in the specified bucket. In the example, you obtain temporary
security credentials for an hour session for your federated user (User1). Then you use the temporary
security credentials to send authenticated requests to Amazon S3.

For added security when requesting temporary credentials for others, you use the security credentials
of an IAM user who has permissions to request temporary security credentials. To ensure that the IAM
user grants only the minimum application-specific permissions to the federated user, you can also limit
the access permissions of this IAM user. This example lists only objects in a specific bucket. Create an IAM
user with the following policy attached:

{
 "Statement":[{
 "Action":["s3:ListBucket",
 "sts:GetFederationToken*"
],
 "Effect":"Allow",
 "Resource":"*"
 }
]
}

The policy allows the IAM user to request temporary security credentials and access permission only to
list your AWS resources. For more information about how to create an IAM user, see Creating Your First
IAM User and Administrators Group in the IAM User Guide.

You can now use the IAM user security credentials to test the following example. The example sends an
authenticated request to Amazon S3 using temporary security credentials. When requesting temporary
security credentials for the federated user (User1), the example specifies the following policy, which
restricts access to list objects in a specific bucket. Update the policy with your bucket name.

{
 "Statement":[
 {
 "Sid":"1",
 "Action":["s3:ListBucket"],
 "Effect":"Allow",
 "Resource":"arn:aws:s3:::YourBucketName"
 }
]
}

In the following example, when specifying the policy resource, replace YourBucketName with the name
of your bucket.:

 require 'vendor/autoload.php';

use Aws\Sts\StsClient;
use Aws\S3\S3Client;

API Version 2006-03-01
40

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://aws.amazon.com/iam/faqs/#What_are_the_best_practices_for_using_temporary_security_credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

use Aws\S3\Exception\S3Exception;

$bucket = '*** Your Bucket Name ***';

// In real applications, the following code is part of your trusted code. It has
// the security credentials that you use to obtain temporary security credentials.
$sts = new StsClient(
 [
 'version' => 'latest',
 'region' => 'us-east-1']
);

// Fetch the federated credentials.
$sessionToken = $sts->getFederationToken([
 'Name' => 'User1',
 'DurationSeconds' => '3600',
 'Policy' => json_encode([
 'Statement' => [
 'Sid' => 'randomstatementid' . time(),
 'Action' => ['s3:ListBucket'],
 'Effect' => 'Allow',
 'Resource' => 'arn:aws:s3:::' . $bucket
]
])
]);

// The following will be part of your less trusted code. You provide temporary
// security credentials so the code can send authenticated requests to Amazon S3.

$s3 = new S3Client([
 'region' => 'us-east-1',
 'version' => 'latest',
 'credentials' => [
 'key' => $sessionToken['Credentials']['AccessKeyId'],
 'secret' => $sessionToken['Credentials']['SecretAccessKey'],
 'token' => $sessionToken['Credentials']['SessionToken']
]
]);

try {
 $result = $s3->listObjects([
 'Bucket' => $bucket
]);
} catch (S3Exception $e) {
 echo $e->getMessage() . PHP_EOL;
}

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class
• AWS SDK for PHP Documentation

API Version 2006-03-01
41

https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.S3.S3Client.html
http://aws.amazon.com/documentation/sdk-for-php/

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

Making Requests Using Federated User Temporary Credentials -
AWS SDK for Ruby
You can provide temporary security credentials for your federated users and applications so that they
can send authenticated requests to access your AWS resources. When requesting temporary credentials
from the IAM service, you must provide a user name and an IAM policy that describes the resource
permissions that you want to grant. By default, the session duration is one hour. However, if you are
requesting temporary credentials using IAM user credentials, you can explicitly set a different duration
value when requesting the temporary security credentials for federated users and applications. For
information about temporary security credentials for your federated users and applications, see Making
Requests (p. 10).

Note
For added security when you request temporary security credentials for federated users and
applications, you might want to use a dedicated IAM user with only the necessary access
permissions. The temporary user you create can never get more permissions than the IAM user
who requested the temporary security credentials. For more information, see AWS Identity and
Access Management FAQs .

Example

The following Ruby code example allows a federated user with a limited set of permissions to lists keys
in the specified bucket.

require 'aws-sdk-s3'
require 'aws-sdk-iam'

USAGE = <<DOC

Usage: ruby auth_federation_token_request_test.rb -b BUCKET -u USER [-r REGION] [-d] [-h]

 Creates a federated policy for USER to list items in BUCKET for one hour.

 BUCKET is required and must already exist.

 USER is required and if not found, is created.

 If REGION is not supplied, defaults to us-west-2.

 -d gives you extra (debugging) information.

 -h displays this message and quits.

DOC

def print_debug(debug, s)
 if debug
 puts s
 end
end

Get the user if they exist, otherwise create them
def get_user(region, user_name, debug)
 iam = Aws::IAM::Client.new(region: 'us-west-2')

 # See if user exists
 user = iam.user(user_name)

 # If user does not exist, create them
 if user == nil
 user = iam.create_user(user_name: user_name)
 iam.wait_until(:user_exists, user_name: user_name)

API Version 2006-03-01
42

https://aws.amazon.com/iam/faqs/#What_are_the_best_practices_for_using_temporary_security_credentials
https://aws.amazon.com/iam/faqs/#What_are_the_best_practices_for_using_temporary_security_credentials

Amazon Simple Storage Service Developer Guide
Using Federated User Temporary Credentials

 print_debug(debug, "Created new user #{user_name}")
 else
 print_debug(debug, "Found user #{user_name} in region #{region}")
 end

 user
end

main
region = 'us-west-2'
user_name = ''
bucket_name = ''

i = 0

while i < ARGV.length
 case ARGV[i]

 when '-b'
 i += 1
 bucket_name = ARGV[i]

 when '-u'
 i += 1
 user_name = ARGV[i]

 when '-r'
 i += 1
 region = ARGV[i]

 when '-h'
 puts USAGE
 exit 0

 else
 puts 'Unrecognized option: ' + ARGV[i]
 puts USAGE
 exit 1

 end

 i += 1
end

if bucket_name == ''
 puts 'You must supply a bucket name'
 puts USAGE
 exit 1
end

if user_name == ''
 puts 'You must supply a user name'
 puts USAGE
 exit 1
end

Create a new STS client and get temporary credentials.
sts = Aws::STS::Client.new(region: region)

creds = sts.get_federation_token({
 duration_seconds: 3600,
 name: user_name,
 policy: "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Sid\":\"Stmt1\",\"Effect\":\"Allow
\",\"Action\":\"s3:ListBucket\",\"Resource\":\"arn:aws:s3:::#{bucket_name}\"}]}",
})

API Version 2006-03-01
43

Amazon Simple Storage Service Developer Guide
Making Requests Using the REST API

Create an Amazon S3 resource with temporary credentials.
s3 = Aws::S3::Resource.new(region: region, credentials: creds)

puts "Contents of '%s':" % bucket_name
puts ' Name => GUID'

begin
 s3.bucket(bucket_name).objects.limit(50).each do |obj|
 puts " #{obj.key} => #{obj.etag}"
 end
rescue StandardError => ex
 puts 'Caught exception accessing bucket ' + bucket_name + ':'
 puts ex.message
end

Making Requests Using the REST API
This section contains information on how to make requests to Amazon S3 endpoints by using the REST
API. For a list of Amazon S3 endpoints, see Regions and Endpoints in the AWS General Reference.

Topics
• Making Requests to Dual-Stack Endpoints by Using the REST API (p. 45)
• Virtual Hosting of Buckets (p. 45)
• Request Redirection and the REST API (p. 50)

When making requests by using the REST API, you can use virtual hosted–style or path-style URIs for the
Amazon S3 endpoints. For more information, see Working with Amazon S3 Buckets (p. 53).

Example Virtual Hosted–Style Request

Following is an example of a virtual hosted–style request to delete the puppy.jpg file from the bucket
named examplebucket.

DELETE /puppy.jpg HTTP/1.1
Host: examplebucket.s3.amazonaws.com
Date: Mon, 11 Apr 2016 12:00:00 GMT
x-amz-date: Mon, 11 Apr 2016 12:00:00 GMT
Authorization: authorization string

Example Path-Style Request

Following is an example of a path-style version of the same request.

DELETE /examplebucket/puppy.jpg HTTP/1.1
Host: s3-us-west-2.amazonaws.com
Date: Mon, 11 Apr 2016 12:00:00 GMT
x-amz-date: Mon, 11 Apr 2016 12:00:00 GMT
Authorization: authorization string

Currently Amazon S3 supports virtual hosted-style and path-style access in all Regions but this will
be changing (see the following Important note.) The path-style syntax requires that you use the
Region-specific endpoint when attempting to access a bucket. For example, if you have a bucket called
mybucket that resides in the EU (Ireland) Region, you want to use path-style syntax, and the object
is named puppy.jpg, the correct URI is http://s3-eu-west-1.amazonaws.com/mybucket/
puppy.jpg.

API Version 2006-03-01
44

https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Amazon Simple Storage Service Developer Guide
Dual-Stack Endpoints (REST API)

You will receive an HTTP response code 307 Temporary Redirect error and a message indicating what the
correct URI is for your resource if you try to access a bucket outside the US East (N. Virginia) Region with
path-style syntax that uses either of the following:

• http://s3.amazonaws.com

• An endpoint for a Region different from the one where the bucket resides. For example, if you
use http://s3-us-west-1.amazonaws.com for a bucket that was created in the US West (N.
California) Region.

Important
Buckets created after September 30, 2020, will support only virtual hosted-style requests. Path-
style requests will continue to be supported for buckets created on or before this date. For more
information, see Amazon S3 Path Deprecation Plan – The Rest of the Story.

Making Requests to Dual-Stack Endpoints by Using
the REST API
When using the REST API, you can directly access a dual-stack endpoint by using a virtual hosted–style
or a path style endpoint name (URI). All Amazon S3 dual-stack endpoint names include the region in the
name. Unlike the standard IPv4-only endpoints, both virtual hosted–style and a path-style endpoints use
region-specific endpoint names.

Example Virtual Hosted–Style Dual-Stack Endpoint Request

You can use a virtual hosted–style endpoint in your REST request as shown in the following example that
retrieves the puppy.jpg object from the bucket named examplebucket.

GET /puppy.jpg HTTP/1.1
Host: examplebucket.s3.dualstack.us-west-2.amazonaws.com
Date: Mon, 11 Apr 2016 12:00:00 GMT
x-amz-date: Mon, 11 Apr 2016 12:00:00 GMT
Authorization: authorization string

Example Path-Style Dual-Stack Endpoint Request

Or you can use a path-style endpoint in your request as shown in the following example.

GET /examplebucket/puppy.jpg HTTP/1.1
Host: s3.dualstack.us-west-2.amazonaws.com
Date: Mon, 11 Apr 2016 12:00:00 GMT
x-amz-date: Mon, 11 Apr 2016 12:00:00 GMT
Authorization: authorization string

For more information about dual-stack endpoints, see Using Amazon S3 Dual-Stack Endpoints (p. 14).

Virtual Hosting of Buckets
Topics

• HTTP Host Header Bucket Specification (p. 46)
• Examples (p. 47)
• Customizing Amazon S3 URLs with CNAMEs (p. 48)
• Limitations (p. 49)
• Backward Compatibility (p. 50)

API Version 2006-03-01
45

https://aws.amazon.com/blogs/aws/amazon-s3-path-deprecation-plan-the-rest-of-the-story/

Amazon Simple Storage Service Developer Guide
Virtual Hosting of Buckets

In general, virtual hosting is the practice of serving multiple websites from a single web server. One
way to differentiate sites is by using the apparent hostname of the request instead of just the path
name part of the URI. An ordinary Amazon S3 REST request specifies a bucket by using the first
slash-delimited component of the Request-URI path. Or, you can use Amazon S3 virtual hosting to
address a bucket in a REST API call by using the HTTP Host header. In practice, Amazon S3 interprets
Host as meaning that most buckets are automatically accessible (for limited types of requests) at
http://bucketname.s3.amazonaws.com. Furthermore, by naming your bucket after your registered
domain name and by making that name a DNS alias for Amazon S3, you can completely customize the
URL of your Amazon S3 resources, for example, http://my.bucketname.com/.

Besides the attractiveness of customized URLs, a second benefit of virtual hosting is the ability to
publish to the "root directory" of your bucket's virtual server. This ability can be important because many
existing applications search for files in this standard location. For example, favicon.ico, robots.txt,
crossdomain.xml are all expected to be found at the root.

Currently Amazon S3 supports virtual hosted-style and path-style access in all Regions but this will
be changing (see the following Important note.) The path-style syntax requires that you use the
Region-specific endpoint when attempting to access a bucket. For example, if you have a bucket called
mybucket that resides in the EU (Ireland) Region, you want to use path-style syntax, and the object
is named puppy.jpg, the correct URI is http://s3-eu-west-1.amazonaws.com/mybucket/
puppy.jpg.

You will receive an HTTP response code 307 Temporary Redirect error and a message indicating what the
correct URI is for your resource if you try to access a bucket outside the US East (N. Virginia) Region with
path-style syntax that uses either of the following:

• http://s3.amazonaws.com

• An endpoint for a Region different from the one where the bucket resides. For example, if you
use http://s3-us-west-1.amazonaws.com for a bucket that was created in the US West (N.
California) Region.

Important
Buckets created after September 30, 2020, will support only virtual hosted-style requests. Path-
style requests will continue to be supported for buckets created on or before this date. For more
information, see Amazon S3 Path Deprecation Plan – The Rest of the Story.

If you use the US East (N. Virginia) endpoint (s3.amazonaws.com) instead of the Region-specific
endpoint (for example, s3-us-west-1.amazonaws.com), Amazon S3 routes any virtual hosted–style
requests to the US East (N. Virginia) Region by default. When you create a bucket in any Region that
was launched before March 20, 2019, Amazon S3 updates the DNS to reroute the request to the correct
location, which might take time. In the meantime, the default rule applies and your virtual hosted–style
request goes to the US East (N. Virginia) Region. Amazon S3 then redirects it with an HTTP 307 redirect
to the correct Region.

For S3 buckets in Regions launched after March 20, 2019, the DNS doesn't route your request directly to
the AWS Region where your bucket resides. It returns an HTTP 400 Bad Request error instead.

For more information, see Request Redirection and the REST API (p. 599).

When using virtual hosted–style buckets with SSL, the SSL wild-card certificate only matches buckets
that do not contain periods. To work around this, use HTTP or write your own certificate verification
logic.

HTTP Host Header Bucket Specification
As long as your GET request does not use the SSL endpoint, you can specify the bucket for the request by
using the HTTP Host header. The Host header in a REST request is interpreted as follows:

API Version 2006-03-01
46

https://aws.amazon.com/blogs/aws/amazon-s3-path-deprecation-plan-the-rest-of-the-story/

Amazon Simple Storage Service Developer Guide
Virtual Hosting of Buckets

• If the Host header is omitted or its value is 's3.amazonaws.com', the bucket for the request will be
the first slash-delimited component of the Request-URI, and the key for the request will be the rest
of the Request-URI. This is the ordinary method, as illustrated by the first and second examples in this
section. Omitting the Host header is valid only for HTTP 1.0 requests.

• Otherwise, if the value of the Host header ends in '.s3.amazonaws.com', the bucket name is the
leading component of the Host header's value up to '.s3.amazonaws.com'. The key for the request
is the Request-URI. This interpretation exposes buckets as subdomains of s3.amazonaws.com, as
illustrated by the third and fourth examples in this section.

• Otherwise, the bucket for the request is the lowercase value of the Host header, and the key for
the request is the Request-URI. This interpretation is useful when you have registered the same DNS
name as your bucket name and have configured that name to be a CNAME alias for Amazon S3. The
procedure for registering domain names and configuring DNS is beyond the scope of this guide, but
the result is illustrated by the final example in this section.

Examples
This section provides example URLs and requests.

Example Path Style Method

This example uses johnsmith.net as the bucket name and homepage.html as the key name.

The URL is as follows:

http://s3.amazonaws.com/johnsmith.net/homepage.html

The request is as follows:

GET /johnsmith.net/homepage.html HTTP/1.1
Host: s3.amazonaws.com

The request with HTTP 1.0 and omitting the host header is as follows:

GET /johnsmith.net/homepage.html HTTP/1.0

For information about DNS-compatible names, see Limitations (p. 49). For more information about
keys, see Keys (p. 3).

Example Virtual Hosted–Style Method

This example uses johnsmith.net as the bucket name and homepage.html as the key name.

The URL is as follows:

http://johnsmith.net.s3.amazonaws.com/homepage.html

The request is as follows:

GET /homepage.html HTTP/1.1
Host: johnsmith.net.s3.amazonaws.com

The virtual hosted–style method requires the bucket name to be DNS-compliant.

API Version 2006-03-01
47

Amazon Simple Storage Service Developer Guide
Virtual Hosting of Buckets

Example Virtual Hosted–Style Method for a Bucket in a Region Other Than US East (N.
Virginia) Region

This example uses johnsmith.eu as the name for a bucket in the EU (Ireland) Region and
homepage.html as the key name.

The URL is as follows:

http://johnsmith.eu.s3-eu-west-1.amazonaws.com/homepage.html

The request is as follows:

GET /homepage.html HTTP/1.1
Host: johnsmith.eu.s3-eu-west-1.amazonaws.com

Instead of using the Region-specific endpoint, you can also use the US East (N. Virginia) Region endpoint
no matter what Region the bucket resides in.

http://johnsmith.eu.s3.amazonaws.com/homepage.html

The request is as follows:

GET /homepage.html HTTP/1.1
Host: johnsmith.eu.s3.amazonaws.com

Example CNAME Method

This example uses www.johnsmith.net as the bucket name and homepage.html as the
key name. To use this method, you must configure your DNS name as a CNAME alias for
bucketname.s3.amazonaws.com.

The URL is as follows:

http://www.johnsmith.net/homepage.html

The example is as follows:

GET /homepage.html HTTP/1.1
Host: www.johnsmith.net

Customizing Amazon S3 URLs with CNAMEs
Depending on your needs, you might not want "s3.amazonaws.com" to appear on your website
or service. For example, if you host your website images on Amazon S3, you might prefer http://
images.johnsmith.net/ instead of http://johnsmith-images.s3.amazonaws.com/.

The bucket name must be the same as the CNAME. So http://images.johnsmith.net/filename
would be the same as http://images.johnsmith.net.s3.amazonaws.com/filename if a CNAME
were created to map images.johnsmith.net to images.johnsmith.net.s3.amazonaws.com.

Any bucket with a DNS-compatible name can be referenced as follows: http://
[BucketName].s3.amazonaws.com/[Filename], for example, http://
images.johnsmith.net.s3.amazonaws.com/mydog.jpg. By using CNAME, you can map
images.johnsmith.net to an Amazon S3 hostname so that the previous URL could become http://
images.johnsmith.net/mydog.jpg.

API Version 2006-03-01
48

Amazon Simple Storage Service Developer Guide
Virtual Hosting of Buckets

The CNAME DNS record should alias your domain name to the appropriate virtual hosted–style
hostname. For example, if your bucket name and domain name are images.johnsmith.net, the
CNAME record should alias to images.johnsmith.net.s3.amazonaws.com.

images.johnsmith.net CNAME images.johnsmith.net.s3.amazonaws.com.

Setting the alias target to s3.amazonaws.com also works, but it may result in extra HTTP redirects.

Amazon S3 uses the hostname to determine the bucket name. For example, suppose that you have
configured www.example.com as a CNAME for www.example.com.s3.amazonaws.com. When you
access http://www.example.com, Amazon S3 receives a request similar to the following:

Example

GET / HTTP/1.1
Host: www.example.com
Date: date
Authorization: signatureValue

Amazon S3 sees only the original hostname www.example.com and is unaware of the CNAME mapping
used to resolve the request. So the CNAME and the bucket name must be the same.

Any Amazon S3 endpoint can be used in a CNAME. For example, s3-ap-
southeast-1.amazonaws.com can be used in CNAMEs. For more information about endpoints, see
Request Endpoints (p. 11).

To associate a hostname with an Amazon S3 bucket using CNAMEs

1. Select a hostname that belongs to a domain you control. This example uses the images subdomain
of the johnsmith.net domain.

2. Create a bucket that matches the hostname. In this example, the host and bucket names are
images.johnsmith.net.

Note
The bucket name must exactly match the hostname.

3. Create a CNAME record that defines the hostname as an alias for the Amazon S3 bucket. For
example:

images.johnsmith.net CNAME images.johnsmith.net.s3.amazonaws.com

Important
For request routing reasons, the CNAME record must be defined exactly as shown in the
preceding example. Otherwise, it might appear to operate correctly but eventually results in
unpredictable behavior.

Note
The procedure for configuring DNS depends on your DNS server or DNS provider. For
specific information, see your server documentation or contact your provider.

Limitations
Virtual host URLs are supported for non-SSL (HTTP) requests only.

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or the
AWS SDKs.

API Version 2006-03-01
49

Amazon Simple Storage Service Developer Guide
Request Redirection and the REST API

Backward Compatibility
Early versions of Amazon S3 incorrectly ignored the HTTP Host header. Applications that depend on
this undocumented behavior must be updated to set the Host header correctly. Because Amazon S3
determines the bucket name from Host when it is present, the most likely symptom of this problem is to
receive an unexpected NoSuchBucket error result code.

Request Redirection and the REST API
Topics

• Redirects and HTTP User-Agents (p. 50)
• Redirects and 100-Continue (p. 50)
• Redirect Example (p. 51)

This section describes how to handle HTTP redirects by using the Amazon S3 REST API. For general
information about Amazon S3 redirects, see Request Redirection and the REST API (p. 599) in the
Amazon Simple Storage Service API Reference.

Redirects and HTTP User-Agents
Programs that use the Amazon S3 REST API should handle redirects either at the application layer or the
HTTP layer. Many HTTP client libraries and user agents can be configured to correctly handle redirects
automatically; however, many others have incorrect or incomplete redirect implementations.

Before you rely on a library to fulfill the redirect requirement, test the following cases:

• Verify all HTTP request headers are correctly included in the redirected request (the second request
after receiving a redirect) including HTTP standards such as Authorization and Date.

• Verify non-GET redirects, such as PUT and DELETE, work correctly.
• Verify large PUT requests follow redirects correctly.
• Verify PUT requests follow redirects correctly if the 100-continue response takes a long time to arrive.

HTTP user-agents that strictly conform to RFC 2616 might require explicit confirmation before following
a redirect when the HTTP request method is not GET or HEAD. It is generally safe to follow redirects
generated by Amazon S3 automatically, as the system will issue redirects only to hosts within the
amazonaws.com domain and the effect of the redirected request will be the same as that of the original
request.

Redirects and 100-Continue
To simplify redirect handling, improve efficiencies, and avoid the costs associated with sending a
redirected request body twice, configure your application to use 100-continues for PUT operations.
When your application uses 100-continue, it does not send the request body until it receives an
acknowledgement. If the message is rejected based on the headers, the body of the message is not sent.
For more information about 100-continue, go to RFC 2616 Section 8.2.3

Note
According to RFC 2616, when using Expect: Continue with an unknown HTTP server, you
should not wait an indefinite period before sending the request body. This is because some
HTTP servers do not recognize 100-continue. However, Amazon S3 does recognize if your
request contains an Expect: Continue and will respond with a provisional 100-continue
status or a final status code. Additionally, no redirect error will occur after receiving the
provisional 100 continue go-ahead. This will help you avoid receiving a redirect response while
you are still writing the request body.

API Version 2006-03-01
50

http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.2.3

Amazon Simple Storage Service Developer Guide
Request Redirection and the REST API

Redirect Example
This section provides an example of client-server interaction using HTTP redirects and 100-continue.

Following is a sample PUT to the quotes.s3.amazonaws.com bucket.

PUT /nelson.txt HTTP/1.1
Host: quotes.s3.amazonaws.com
Date: Mon, 15 Oct 2007 22:18:46 +0000

Content-Length: 6
Expect: 100-continue

Amazon S3 returns the following:

HTTP/1.1 307 Temporary Redirect
Location: http://quotes.s3-4c25d83b.amazonaws.com/nelson.txt?rk=8d47490b
Content-Type: application/xml
Transfer-Encoding: chunked
Date: Mon, 15 Oct 2007 22:18:46 GMT

Server: AmazonS3

<?xml version="1.0" encoding="UTF-8"?>
<Error>
 <Code>TemporaryRedirect</Code>
 <Message>Please re-send this request to the
 specified temporary endpoint. Continue to use the
 original request endpoint for future requests.
 </Message>
 <Endpoint>quotes.s3-4c25d83b.amazonaws.com</Endpoint>
 <Bucket>quotes</Bucket>
</Error>

The client follows the redirect response and issues a new request to the
quotes.s3-4c25d83b.amazonaws.com temporary endpoint.

PUT /nelson.txt?rk=8d47490b HTTP/1.1
Host: quotes.s3-4c25d83b.amazonaws.com
Date: Mon, 15 Oct 2007 22:18:46 +0000

Content-Length: 6
Expect: 100-continue

Amazon S3 returns a 100-continue indicating the client should proceed with sending the request body.

HTTP/1.1 100 Continue

The client sends the request body.

ha ha\n

Amazon S3 returns the final response.

HTTP/1.1 200 OK
Date: Mon, 15 Oct 2007 22:18:48 GMT

API Version 2006-03-01
51

Amazon Simple Storage Service Developer Guide
Request Redirection and the REST API

ETag: "a2c8d6b872054293afd41061e93bc289"
Content-Length: 0
Server: AmazonS3

API Version 2006-03-01
52

Amazon Simple Storage Service Developer Guide
Creating a Bucket

Working with Amazon S3 Buckets
To upload your data (photos, videos, documents etc.) to Amazon S3, you must first create an S3 bucket in
one of the AWS Regions. You can then upload any number of objects to the bucket.

In terms of implementation, buckets and objects are resources, and Amazon S3 provides APIs for you to
manage them. For example, you can create a bucket and upload objects using the Amazon S3 API. You
can also use the Amazon S3 console to perform these operations. The console uses the Amazon S3 APIs
to send requests to Amazon S3.

This section explains how to work with buckets. For information about working with objects, see Working
with Amazon S3 Objects (p. 98).

An Amazon S3 bucket name is globally unique, and the namespace is shared by all AWS accounts.
This means that after a bucket is created, the name of that bucket cannot be used by another AWS
account in any AWS Region until the bucket is deleted. You should not depend on specific bucket naming
conventions for availability or security verification purposes. For bucket naming guidelines, see Bucket
Restrictions and Limitations (p. 58).

Amazon S3 creates buckets in a Region you specify. To optimize latency, minimize costs, or address
regulatory requirements, choose any AWS Region that is geographically close to you. For example, if you
reside in Europe, you might find it advantageous to create buckets in the EU (Ireland) or EU (Frankfurt)
Regions. For a list of Amazon S3 Regions, see Regions and Endpoints in the AWS General Reference.

Note
Objects that belong to a bucket that you create in a specific AWS Region never leave that
Region, unless you explicitly transfer them to another Region. For example, objects that are
stored in the EU (Ireland) Region never leave it.

Topics
• Creating a Bucket (p. 53)
• Managing Public Access to Buckets (p. 55)
• Accessing a Bucket (p. 55)
• Bucket Configuration Options (p. 56)
• Bucket Restrictions and Limitations (p. 58)
• Examples of Creating a Bucket (p. 59)
• Deleting or Emptying a Bucket (p. 62)
• Amazon S3 Default Encryption for S3 Buckets (p. 66)
• Managing Bucket Website Configuration (p. 69)
• Amazon S3 Transfer Acceleration (p. 73)
• Requester Pays Buckets (p. 80)
• Buckets and Access Control (p. 84)
• Billing and Usage Reporting for S3 Buckets (p. 84)

Creating a Bucket
Amazon S3 provides APIs for creating and managing buckets. By default, you can create up to 100
buckets in each of your AWS accounts. If you need more buckets, you can increase your account bucket

API Version 2006-03-01
53

https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Amazon Simple Storage Service Developer Guide
Creating a Bucket

limit to a maximum of 1,000 buckets by submitting a service limit increase. To learn how to submit a
bucket limit increase, see AWS Service Limits in the AWS General Reference.

When you create a bucket, you provide a name and the AWS Region where you want to create the
bucket. For information about naming buckets, see Rules for Bucket Naming (p. 58).

You can store any number of objects in a bucket.

You can create a bucket using any of the following methods:

• Using the console
• Programmatically, using the AWS SDKs

Note
If you need to, you can also make the Amazon S3 REST API calls directly from your code.
However, this can be cumbersome because it requires you to write code to authenticate your
requests. For more information, see PUT Bucket in the Amazon Simple Storage Service API
Reference.

When using the AWS SDKs, you first create a client and then use the client to send a request to create
a bucket. When you create the client, you can specify an AWS Region. US East (N. Virginia) is the
default Region. Note the following:
• If you create a client by specifying the US East (N. Virginia) Region, the client uses the following

endpoint to communicate with Amazon S3:

s3.amazonaws.com

Note
• You can use this client to create a bucket in any AWS Region that was launched until

March 20, 2019. To create a bucket in Regions that were launched after March 20, 2019,
you must create a client specific to the Region in which you want to create the bucket.
For more information about enabling or disabling an AWS Region, see AWS Regions and
Endpoints in the AWS General Reference.

• Buckets created after September 30, 2020, will support only virtual hosted-style
requests. Path-style requests will continue to be supported for buckets created on or
before this date. For more information, see Amazon S3 Path Deprecation Plan – The Rest
of the Story.

In your create bucket request:
• If you don’t specify a Region, Amazon S3 creates the bucket in the US East (N. Virginia) Region.
• If you specify an AWS Region, Amazon S3 creates the bucket in the specified Region.

• If you create a client by specifying any other AWS Region, each of these Regions maps to the Region-
specific endpoint:

s3.<region>.amazonaws.com

For example, if you create a client by specifying the eu-west-1 Region, it maps to the following
Region-specific endpoint:

s3.eu-west-1.amazonaws.com

In this case, you can use the client to create a bucket only in the eu-west-1 Region. Amazon S3
returns an error if you specify any other Region in your request to create a bucket.

• If you create a client to access a dual-stack endpoint, you must specify an AWS Region. For more
information, see Dual-Stack Endpoints (p. 14).

API Version 2006-03-01
54

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://aws.amazon.com/blogs/aws/amazon-s3-path-deprecation-plan-the-rest-of-the-story/
https://aws.amazon.com/blogs/aws/amazon-s3-path-deprecation-plan-the-rest-of-the-story/

Amazon Simple Storage Service Developer Guide
About Permissions

For a list of available AWS Regions, see Regions and Endpoints in the AWS General Reference.

For examples, see Examples of Creating a Bucket (p. 59).

About Permissions
You can use your AWS account root credentials to create a bucket and perform any other Amazon
S3 operation. However, AWS recommends not using the root credentials of your AWS account to
make requests such as to create a bucket. Instead, create an IAM user, and grant that user full access
(users by default have no permissions). We refer to these users as administrator users. You can use the
administrator user credentials, instead of the root credentials of your account, to interact with AWS and
perform tasks, such as create a bucket, create users, and grant them permissions.

For more information, see Root Account Credentials vs. IAM User Credentials in the AWS General
Reference and IAM Best Practices in the IAM User Guide.

The AWS account that creates a resource owns that resource. For example, if you create an IAM user in
your AWS account and grant the user permission to create a bucket, the user can create a bucket. But
the user does not own the bucket; the AWS account to which the user belongs owns the bucket. The user
will need additional permission from the resource owner to perform any other bucket operations. For
more information about managing permissions for your Amazon S3 resources, see Identity and Access
Management in Amazon S3 (p. 301).

Managing Public Access to Buckets
Public access is granted to buckets and objects through access control lists (ACLs), bucket policies, or
both. To help you manage public access to Amazon S3 resources, Amazon S3 provides block public access
settings. Amazon S3 block public access settings can override ACLs and bucket policies so that you can
enforce uniform limits on public access to these resources. You can apply block public access settings to
individual buckets or to all buckets in your account.

To help ensure that all of your Amazon S3 buckets and objects have their public access blocked, we
recommend that you turn on all four settings for block public access for your account. These settings
block public access for all current and future buckets.

Before applying these settings, verify that your applications will work correctly without public access. If
you require some level of public access to your buckets or objects, for example to host a static website as
described at Hosting a Static Website on Amazon S3 (p. 503), you can customize the individual settings
to suit your storage use cases. For more information, see Using Amazon S3 Block Public Access (p. 414).

Accessing a Bucket
You can access your bucket using the Amazon S3 console. Using the console UI, you can perform almost
all bucket operations without having to write any code.

If you access a bucket programmatically, note that Amazon S3 supports RESTful architecture in which
your buckets and objects are resources, each with a resource URI that uniquely identifies the resource.

Amazon S3 supports both virtual-hosted–style and path-style URLs to access a bucket.

• In a virtual-hosted–style URL, the bucket name is part of the domain name in the URL. For example:
• http://bucket.s3-aws-region.amazonaws.com

API Version 2006-03-01
55

https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
https://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Simple Storage Service Developer Guide
Bucket Configuration Options

• http://bucket.s3.amazonaws.com

Note
Buckets created in Regions launched after March 20, 2019 are not reachable via the
https://bucket.s3.amazonaws.com naming scheme.

In a virtual-hosted–style URL, you can use either of these endpoints. If you make a request to the
http://bucket.s3.amazonaws.com endpoint, the DNS has sufficient information to route your
request directly to the Region where your bucket resides.

For more information, see Virtual Hosting of Buckets (p. 45).

• In a path-style URL, the bucket name is not part of the domain. For example:

• Region-specific endpoint, http://s3-aws-region.amazonaws.com/bucket
• US East (N. Virginia) Region endpoint, http://s3.amazonaws.com/bucket

In a path-style URL, the endpoint you use must match the Region in which the bucket resides. For
example, if your bucket is in the South America (São Paulo) Region, you must use the http://s3.sa-
east-1.amazonaws.com/bucket endpoint. If your bucket is in the US East (N. Virginia) Region, you
must use the http://s3.amazonaws.com/bucket endpoint.

Important
Because buckets can be accessed using path-style and virtual-hosted–style URLs, we
recommend that you create buckets with DNS-compliant bucket names. For more information,
see Bucket Restrictions and Limitations (p. 58).

Accessing an S3 Bucket over IPv6

Amazon S3 has a set of dual-stack endpoints, which support requests to S3 buckets over both Internet
Protocol version 6 (IPv6) and IPv4. For more information, see Making Requests over IPv6 (p. 12).

Bucket Configuration Options
Amazon S3 supports various options for you to configure your bucket. For example, you can configure
your bucket for website hosting, add configuration to manage lifecycle of objects in the bucket, and
configure the bucket to log all access to the bucket. Amazon S3 supports subresources for you to store,
and manage the bucket configuration information. That is, using the Amazon S3 API, you can create and
manage these subresources. You can also use the console or the AWS SDKs.

Note
There are also object-level configurations. For example, you can configure object-level
permissions by configuring an access control list (ACL) specific to that object.

These are referred to as subresources because they exist in the context of a specific bucket or object. The
following table lists subresources that enable you to manage bucket-specific configurations.

Subresource Description

cors (cross-origin
resource sharing)

You can configure your bucket to allow cross-origin requests.

For more information, see Enabling Cross-Origin Resource Sharing.

event notification You can enable your bucket to send you notifications of specified bucket events.

For more information, see Configuring Amazon S3 Event Notifications (p. 530).

API Version 2006-03-01
56

https://docs.aws.amazon.com/AmazonS3/latest/dev/cors.html

Amazon Simple Storage Service Developer Guide
Bucket Configuration Options

Subresource Description

lifecycle You can define lifecycle rules for objects in your bucket that have a well-defined
lifecycle. For example, you can define a rule to archive objects one year after
creation, or delete an object 10 years after creation.

For more information, see Object Lifecycle Management.

location When you create a bucket, you specify the AWS Region where you want Amazon
S3 to create the bucket. Amazon S3 stores this information in the location
subresource and provides an API for you to retrieve this information.

logging Logging enables you to track requests for access to your bucket. Each access
log record provides details about a single access request, such as the requester,
bucket name, request time, request action, response status, and error code, if
any. Access log information can be useful in security and access audits. It can also
help you learn about your customer base and understand your Amazon S3 bill.

For more information, see Amazon S3 Server Access Logging (p. 647).

object locking To use Amazon S3 object lock, you must enable it for a bucket. You can also
optionally configure a default retention mode and period that applies to new
objects that are placed in the bucket.

For more information, see Bucket Configuration (p. 456).

policy and ACL
(access control list)

All your resources (such as buckets and objects) are private by default. Amazon
S3 supports both bucket policy and access control list (ACL) options for you to
grant and manage bucket-level permissions. Amazon S3 stores the permission
information in the policy and acl subresources.

For more information, see Identity and Access Management in Amazon
S3 (p. 301).

replication Replication is the automatic, asynchronous copying of objects across
buckets in different or the same AWS Regions. For more information, see
Replication (p. 551).

requestPayment By default, the AWS account that creates the bucket (the bucket owner) pays
for downloads from the bucket. Using this subresource, the bucket owner
can specify that the person requesting the download will be charged for the
download. Amazon S3 provides an API for you to manage this subresource.

For more information, see Requester Pays Buckets (p. 80).

tagging You can add cost allocation tags to your bucket to categorize and track your AWS
costs. Amazon S3 provides the tagging subresource to store and manage tags on
a bucket. Using tags you apply to your bucket, AWS generates a cost allocation
report with usage and costs aggregated by your tags.

For more information, see Billing and Usage Reporting for S3 Buckets (p. 84).

transfer
acceleration

Transfer Acceleration enables fast, easy, and secure transfers of files over long
distances between your client and an S3 bucket. Transfer Acceleration takes
advantage of Amazon CloudFront’s globally distributed edge locations.

For more information, see Amazon S3 Transfer Acceleration (p. 73).

API Version 2006-03-01
57

https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html

Amazon Simple Storage Service Developer Guide
Restrictions and Limitations

Subresource Description

versioning Versioning helps you recover accidental overwrites and deletes.

We recommend versioning as a best practice to recover objects from being
deleted or overwritten by mistake.

For more information, see Using Versioning (p. 432).

website You can configure your bucket for static website hosting. Amazon S3 stores this
configuration by creating a website subresource.

For more information, see Hosting a Static Website on Amazon S3.

Bucket Restrictions and Limitations
A bucket is owned by the AWS account that created it. By default, you can create up to 100 buckets in
each of your AWS accounts. If you need additional buckets, you can increase your account bucket limit
to a maximum of 1,000 buckets by submitting a service limit increase. For information about how to
increase your bucket limit, see AWS Service Limits in the AWS General Reference.

Bucket ownership is not transferable; however, if a bucket is empty, you can delete it. After a bucket is
deleted, the name becomes available to reuse, but the name might not be available for you to reuse for
various reasons. For example, some other account could create a bucket with that name. Note, too, that
it might take some time before the name can be reused. So if you want to use the same bucket name,
don't delete the bucket.

There is no limit to the number of objects that can be stored in a bucket and no difference in
performance whether you use many buckets or just a few. You can store all of your objects in a single
bucket, or you can organize them across several buckets.

Important
After you have created a bucket, you can't change its Region.

You cannot create a bucket within another bucket.

The high-availability engineering of Amazon S3 is focused on get, put, list, and delete operations.
Because bucket operations work against a centralized, global resource space, it is not appropriate to
create or delete buckets on the high-availability code path of your application. It is better to create or
delete buckets in a separate initialization or setup routine that you run less often.

Note
If your application automatically creates buckets, choose a bucket naming scheme that is
unlikely to cause naming conflicts. Ensure that your application logic will choose a different
bucket name if a bucket name is already taken.

Rules for Bucket Naming
After you create an S3 bucket, you can't change the bucket name, so choose the name wisely.

Important
On March 1, 2018, we updated our naming conventions for S3 buckets in the US East (N.
Virginia) Region to match the naming conventions that we use in all other worldwide AWS
Regions. Amazon S3 no longer supports creating bucket names that contain uppercase letters
or underscores. This change ensures that each bucket can be addressed using virtual host style
addressing, such as https://myawsbucket.s3.amazonaws.com. We highly recommend
that you review your existing bucket-creation processes to ensure that you follow these DNS-
compliant naming conventions.

API Version 2006-03-01
58

https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon Simple Storage Service Developer Guide
Examples of Creating a Bucket

The following are the rules for naming S3 buckets in all AWS Regions:

• Bucket names must be unique across all existing bucket names in Amazon S3.
• Bucket names must comply with DNS naming conventions.
• Bucket names must be at least 3 and no more than 63 characters long.
• Bucket names must not contain uppercase characters or underscores.
• Bucket names must start with a lowercase letter or number.
• Bucket names must be a series of one or more labels. Adjacent labels are separated by a single period

(.). Bucket names can contain lowercase letters, numbers, and hyphens. Each label must start and end
with a lowercase letter or a number.

• Bucket names must not be formatted as an IP address (for example, 192.168.5.4).
• When you use virtual hosted–style buckets with Secure Sockets Layer (SSL), the SSL wildcard

certificate only matches buckets that don't contain periods. To work around this, use HTTP or write
your own certificate verification logic. We recommend that you do not use periods (".") in bucket names
when using virtual hosted–style buckets.

Legacy Non–DNS-Compliant Bucket Names
Beginning on March 1, 2018, we updated our naming conventions for S3 buckets in the US East (N.
Virginia) Region to require DNS-compliant names.

The US East (N. Virginia) Region previously allowed more relaxed standards for bucket naming, which
could have resulted in a bucket name that is not DNS-compliant. For example, MyAWSbucket was a
valid bucket name, even though it contains uppercase letters. If you try to access this bucket by using
a virtual-hosted–style request (http://MyAWSbucket.s3.amazonaws.com/yourobject), the URL
resolves to the bucket myawsbucket and not the bucket MyAWSbucket. In response, Amazon S3 returns
a "bucket not found" error. For more information about virtual-hosted–style access to your buckets, see
Virtual Hosting of Buckets (p. 45).

The legacy rules for bucket names in the US East (N. Virginia) Region allowed bucket names to be as
long as 255 characters, and bucket names could contain any combination of uppercase letters, lowercase
letters, numbers, periods (.), hyphens (-), and underscores (_).

The name of the bucket used for Amazon S3 Transfer Acceleration must be DNS-compliant and must
not contain periods ("."). For more information about transfer acceleration, see Amazon S3 Transfer
Acceleration (p. 73).

Examples of Creating a Bucket
Topics

• Using the Amazon S3 Console (p. 60)
• Using the AWS SDK for Java (p. 60)
• Using the AWS SDK for .NET (p. 61)
• Using the AWS SDK for Ruby Version 3 (p. 62)
• Using Other AWS SDKs (p. 62)

The following code examples create a bucket programmatically using the AWS SDKs for Java, .NET, and
Ruby. The code examples perform the following tasks:

• Create a bucket, if the bucket doesn't already exist—The examples create a bucket by performing the
following tasks:

API Version 2006-03-01
59

Amazon Simple Storage Service Developer Guide
Using the Amazon S3 Console

• Create a client by explicitly specifying an AWS Region (the example uses the s3-eu-
west-1 Region). Accordingly, the client communicates with Amazon S3 using the s3-eu-
west-1.amazonaws.com endpoint. You can specify any other AWS Region. For a list of AWS
Regions, see Regions and Endpoints in the AWS General Reference.

• Send a create bucket request by specifying only a bucket name. The create bucket request doesn't
specify another AWS Region. The client sends a request to Amazon S3 to create the bucket in the
Region you specified when creating the client. Once you have created a bucket, you can't change its
Region.

Note
If you explicitly specify an AWS Region in your create bucket request that is different from
the Region you specified when you created the client, you might get an error. For more
information, see Creating a Bucket (p. 53).

The SDK libraries send the PUT bucket request to Amazon S3 to create the bucket. For more
information, see PUT Bucket.

• Retrieve information about the location of the bucket—Amazon S3 stores bucket location information
in the location subresource that is associated with the bucket. The SDK libraries send the GET Bucket
location request (see GET Bucket location) to retrieve this information.

Using the Amazon S3 Console
To create a bucket using the Amazon S3 console, see How Do I Create an S3 Bucket? in the Amazon
Simple Storage Service Console User Guide.

Using the AWS SDK for Java
Example

This example shows how to create an Amazon S3 bucket using the AWS SDK for Java. For instructions on
creating and testing a working sample, see Testing the Amazon S3 Java Code Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.CreateBucketRequest;
import com.amazonaws.services.s3.model.GetBucketLocationRequest;

import java.io.IOException;

public class CreateBucket {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 if (!s3Client.doesBucketExistV2(bucketName)) {
 // Because the CreateBucketRequest object doesn't specify a region, the
 // bucket is created in the region specified in the client.

API Version 2006-03-01
60

https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlocation.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html

Amazon Simple Storage Service Developer Guide
Using the AWS SDK for .NET

 s3Client.createBucket(new CreateBucketRequest(bucketName));

 // Verify that the bucket was created by retrieving it and checking its
 location.
 String bucketLocation = s3Client.getBucketLocation(new
 GetBucketLocationRequest(bucketName));
 System.out.println("Bucket location: " + bucketLocation);
 }
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it and returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Using the AWS SDK for .NET
For information about how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 678).

Example

using Amazon.S3;
using Amazon.S3.Model;
using Amazon.S3.Util;
using System;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class CreateBucketTest
 {
 private const string bucketName = "*** bucket name ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 s3Client;
 public static void Main()
 {
 s3Client = new AmazonS3Client(bucketRegion);
 CreateBucketAsync().Wait();
 }

 static async Task CreateBucketAsync()
 {
 try
 {
 if (!(await AmazonS3Util.DoesS3BucketExistAsync(s3Client, bucketName)))
 {
 var putBucketRequest = new PutBucketRequest
 {
 BucketName = bucketName,
 UseClientRegion = true
 };

 PutBucketResponse putBucketResponse = await
 s3Client.PutBucketAsync(putBucketRequest);

API Version 2006-03-01
61

Amazon Simple Storage Service Developer Guide
Using the AWS SDK for Ruby Version 3

 }
 // Retrieve the bucket location.
 string bucketLocation = await FindBucketLocationAsync(s3Client);
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Error encountered on server. Message:'{0}' when writing
 an object", e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown encountered on server. Message:'{0}' when
 writing an object", e.Message);
 }
 }
 static async Task<string> FindBucketLocationAsync(IAmazonS3 client)
 {
 string bucketLocation;
 var request = new GetBucketLocationRequest()
 {
 BucketName = bucketName
 };
 GetBucketLocationResponse response = await
 client.GetBucketLocationAsync(request);
 bucketLocation = response.Location.ToString();
 return bucketLocation;
 }
 }
}

Using the AWS SDK for Ruby Version 3
For information about how to create and test a working sample, see Using the AWS SDK for Ruby -
Version 3 (p. 679).

Example

require 'aws-sdk-s3'

s3 = Aws::S3::Client.new(region: 'us-west-2')
s3.create_bucket(bucket: 'bucket-name')

Using Other AWS SDKs
For information about using other AWS SDKs, see Sample Code and Libraries.

Deleting or Emptying a Bucket
It is easy to delete an empty bucket. However, in some situations, you may need to delete or empty a
bucket that contains objects. In this section, we'll explain how to delete objects in an unversioned bucket,
and how to delete object versions and delete markers in a bucket that has versioning enabled. For more
information about versioning, see Using Versioning (p. 432). In some situations, you may choose to
empty a bucket instead of deleting it. This section explains various options you can use to delete or
empty a bucket that contains objects.

Topics
• Delete a Bucket (p. 63)
• Empty a Bucket (p. 65)

API Version 2006-03-01
62

https://aws.amazon.com/code/

Amazon Simple Storage Service Developer Guide
Delete a Bucket

Delete a Bucket
You can delete a bucket and its content programmatically using the AWS SDKs. You can also use lifecycle
configuration on a bucket to empty its content and then delete the bucket. There are additional options,
such as using Amazon S3 console and AWS CLI, but there are limitations on these methods based on the
number of objects in your bucket and the bucket's versioning status.

Delete a Bucket: Using the Amazon S3 Console
The Amazon S3 console supports deleting a bucket that may or may not be empty. For information
about using the Amazon S3 console to delete a bucket, see How Do I Delete an S3 Bucket? in the Amazon
Simple Storage Service Console User Guide.

Delete a Bucket: Using the AWS CLI
You can delete a bucket that contains objects using the AWS CLI only if the bucket does not have
versioning enabled. If your bucket does not have versioning enabled, you can use the rb (remove bucket)
AWS CLI command with --force parameter to remove a non-empty bucket. This command deletes all
objects first and then deletes the bucket.

 $ aws s3 rb s3://bucket-name --force

For more information, see Using High-Level S3 Commands with the AWS Command Line Interface in the
AWS Command Line Interface User Guide.

To delete a non-empty bucket that does not have versioning enabled, you have the following options:

• Delete the bucket programmatically using the AWS SDK.
• Delete all of the objects using the bucket's lifecycle configuration and then delete the empty bucket

using the Amazon S3 console.

Delete a Bucket: Using Lifecycle Configuration
You can configure lifecycle on your bucket to expire objects, Amazon S3 then deletes expired objects.
You can add lifecycle configuration rules to expire all or a subset of objects with a specific key name
prefix. For example, to remove all objects in a bucket, you can set a lifecycle rule to expire objects one
day after creation.

If your bucket has versioning enabled, you can also configure the rule to expire noncurrent objects.

After Amazon S3 deletes all of the objects in your bucket, you can delete the bucket or keep it.

Important
If you just want to empty the bucket and not delete it, make sure you remove the lifecycle
configuration rule you added to empty the bucket so that any new objects you create in the
bucket will remain in the bucket.

For more information, see Object Lifecycle Management (p. 119) and Configuring Object
Expiration (p. 126).

Delete a Bucket: Using the AWS SDKs
You can use the AWS SDKs to delete a bucket. The following sections provide examples of how to delete
a bucket using the AWS SDK for Java and .NET. First, the code deletes objects in the bucket and then it
deletes the bucket. For information about other AWS SDKs, see Tools for Amazon Web Services.

API Version 2006-03-01
63

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html
https://docs.aws.amazon.com/cli/latest/userguide/using-s3-commands.html
https://aws.amazon.com/tools/

Amazon Simple Storage Service Developer Guide
Delete a Bucket

Delete a Bucket Using the AWS SDK for Java

The following Java example deletes a bucket that contains objects. The example deletes all objects, and
then it deletes the bucket. The example works for buckets with or without versioning enabled.

Note
For buckets without versioning enabled, you can delete all objects directly and then delete the
bucket. For buckets with versioning enabled, you must delete all object versions before deleting
the bucket.

For instructions on creating and testing a working sample, see Testing the Amazon S3 Java Code
Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.util.Iterator;

public class DeleteBucket {

 public static void main(String[] args) {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 // Delete all objects from the bucket. This is sufficient
 // for unversioned buckets. For versioned buckets, when you attempt to delete
 objects, Amazon S3 inserts
 // delete markers for all objects, but doesn't delete the object versions.
 // To delete objects from versioned buckets, delete all of the object versions
 before deleting
 // the bucket (see below for an example).
 ObjectListing objectListing = s3Client.listObjects(bucketName);
 while (true) {
 Iterator<S3ObjectSummary> objIter =
 objectListing.getObjectSummaries().iterator();
 while (objIter.hasNext()) {
 s3Client.deleteObject(bucketName, objIter.next().getKey());
 }

 // If the bucket contains many objects, the listObjects() call
 // might not return all of the objects in the first listing. Check to
 // see whether the listing was truncated. If so, retrieve the next page of
 objects
 // and delete them.
 if (objectListing.isTruncated()) {
 objectListing = s3Client.listNextBatchOfObjects(objectListing);
 } else {
 break;
 }
 }

 // Delete all object versions (required for versioned buckets).

API Version 2006-03-01
64

Amazon Simple Storage Service Developer Guide
Empty a Bucket

 VersionListing versionList = s3Client.listVersions(new
 ListVersionsRequest().withBucketName(bucketName));
 while (true) {
 Iterator<S3VersionSummary> versionIter =
 versionList.getVersionSummaries().iterator();
 while (versionIter.hasNext()) {
 S3VersionSummary vs = versionIter.next();
 s3Client.deleteVersion(bucketName, vs.getKey(), vs.getVersionId());
 }

 if (versionList.isTruncated()) {
 versionList = s3Client.listNextBatchOfVersions(versionList);
 } else {
 break;
 }
 }

 // After all objects and object versions are deleted, delete the bucket.
 s3Client.deleteBucket(bucketName);
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client couldn't
 // parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Empty a Bucket
You can empty a bucket's content (that is, delete all content, but keep the bucket) programmatically
using the AWS SDK. You can also specify lifecycle configuration on a bucket to expire objects so that
Amazon S3 can delete them. There are additional options, such as using Amazon S3 console and AWS
CLI, but there are limitations on this method based on the number of objects in your bucket and the
bucket's versioning status.

Topics
• Empty a Bucket: Using the Amazon S3 console (p. 65)
• Empty a Bucket: Using the AWS CLI (p. 65)
• Empty a Bucket: Using Lifecycle Configuration (p. 66)
• Empty a Bucket: Using the AWS SDKs (p. 66)

Empty a Bucket: Using the Amazon S3 console
For information about using the Amazon S3 console to empty a bucket, see How Do I Empty an S3
Bucket? in the Amazon Simple Storage Service Console User Guide

Empty a Bucket: Using the AWS CLI
You can empty a bucket using the AWS CLI only if the bucket does not have versioning enabled. If your
bucket does not have versioning enabled, you can use the rm (remove) AWS CLI command with the --
recursive parameter to empty a bucket (or remove a subset of objects with a specific key name prefix).

The following rm command removes objects with key name prefix doc, for example, doc/doc1 and
doc/doc2.

API Version 2006-03-01
65

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html

Amazon Simple Storage Service Developer Guide
Default Encryption for a Bucket

$ aws s3 rm s3://bucket-name/doc --recursive

Use the following command to remove all objects without specifying a prefix.

$ aws s3 rm s3://bucket-name --recursive

For more information, see Using High-Level S3 Commands with the AWS Command Line Interface in the
AWS Command Line Interface User Guide.

Note
You cannot remove objects from a bucket with versioning enabled. Amazon S3 adds a delete
marker when you delete an object, which is what this command will do. For more information
about versioning, see Using Versioning (p. 432).

To empty a bucket with versioning enabled, you have the following options:

• Delete the bucket programmatically using the AWS SDK.
• Use the bucket's lifecycle configuration to request that Amazon S3 delete the objects.
• Use the Amazon S3 console. For more information, see How Do I Empty an S3 Bucket? in the Amazon

Simple Storage Service Console User Guide.

Empty a Bucket: Using Lifecycle Configuration
You can configure lifecycle on your bucket to expire objects and request that Amazon S3 delete expired
objects. You can add lifecycle configuration rules to expire all or a subset of objects with a specific key
name prefix. For example, to remove all objects in a bucket, you can set lifecycle rule to expire objects
one day after creation.

If your bucket has versioning enabled, you can also configure the rule to expire noncurrent objects.

Warning
After your objects expire, Amazon S3 deletes the expired objects. If you just want to empty the
bucket and not delete it, make sure you remove the lifecycle configuration rule you added to
empty the bucket so that any new objects you create in the bucket will remain in the bucket.

For more information, see Object Lifecycle Management (p. 119) and Configuring Object
Expiration (p. 126).

Empty a Bucket: Using the AWS SDKs
You can use the AWS SDKs to empty a bucket or remove a subset of objects with a specific key name
prefix.

For an example of how to empty a bucket using AWS SDK for Java, see Delete a Bucket Using the AWS
SDK for Java (p. 64). The code deletes all objects, regardless of whether the bucket has versioning
enabled or not, and then it deletes the bucket. To just empty the bucket, make sure you remove the
statement that deletes the bucket.

For more information about using other AWS SDKs, see Tools for Amazon Web Services.

Amazon S3 Default Encryption for S3 Buckets
Amazon S3 default encryption provides a way to set the default encryption behavior for an S3 bucket.
You can set default encryption on a bucket so that all objects are encrypted when they are stored in the
bucket. The objects are encrypted using server-side encryption with either Amazon S3-managed keys
(SSE-S3) or AWS KMS-managed keys (SSE-KMS).

API Version 2006-03-01
66

https://docs.aws.amazon.com/cli/latest/userguide/using-s3-commands.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/empty-bucket.html
https://aws.amazon.com/tools/

Amazon Simple Storage Service Developer Guide
How to Set Up Amazon S3 Default Bucket Encryption

When you use server-side encryption, Amazon S3 encrypts an object before saving it to disk in its data
centers and decrypts it when you download the objects. For more information about protecting data
using server-side encryption and encryption key management, see Protecting Data Using Server-Side
Encryption (p. 265).

Default encryption works with all existing and new S3 buckets. Without default encryption, to encrypt
all objects stored in a bucket, you must include encryption information with every object storage
request. You must also set up an S3 bucket policy to reject storage requests that don't include encryption
information.

There are no new charges for using default encryption for S3 buckets. Requests to configure the default
encryption feature incur standard Amazon S3 request charges. For information about pricing, see
Amazon S3 Pricing. For SSE-KMS encryption key storage, AWS Key Management Service charges apply
and are listed at AWS KMS Pricing.

Topics

• How Do I Set Up Amazon S3 Default Encryption for an S3 Bucket? (p. 67)

• Moving to Default Encryption from Using Bucket Policies for Encryption Enforcement (p. 68)

• Using Default Encryption with Replication (p. 68)

• Monitoring Default Encryption with CloudTrail and CloudWatch (p. 69)

• More Info (p. 69)

How Do I Set Up Amazon S3 Default Encryption for
an S3 Bucket?
This section describes how to set up Amazon S3 default encryption. You can use the AWS SDKs, the
Amazon S3 REST API, the AWS Command Line Interface (AWS CLI), or the Amazon S3 console to enable
the default encryption. The easiest way to set up default encryption for an S3 bucket is by using the AWS
Management Console.

You can set up default encryption on a bucket using any of the following ways:

• Use the Amazon S3 console. For more information, see How Do I Enable Default Encryption for an S3
Bucket? in the Amazon Simple Storage Service Console User Guide.

• Use the following REST APIs:

• Use the REST API PUT Bucket encryption operation to enable default encryption and to set the type
of server-side encryption to use—SSE-S3 or SSE-KMS.

• Use the REST API DELETE Bucket encryption to disable the default encryption of objects. After you
disable default encryption, Amazon S3 encrypts objects only if PUT requests include the encryption
information. For more information, see PUT Object and PUT Object - Copy.

• Use the REST API GET Bucket encryption to check the current default encryption configuration.

• Use the AWS CLI and AWS SDKs. For more information, see Using the AWS SDKs, CLI, and
Explorers (p. 669).

After you enable default encryption for a bucket, the following encryption behavior applies:

• There is no change to the encryption of the objects that existed in the bucket before default
encryption was enabled.

• When you upload objects after enabling default encryption:

• If your PUT request headers don't include encryption information, Amazon S3 uses the bucket’s
default encryption settings to encrypt the objects.

API Version 2006-03-01
67

https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/kms/pricing/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/default-bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/default-bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTencryption.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEencryption.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETencryption.html

Amazon Simple Storage Service Developer Guide
Moving to Default Encryption from Using

Bucket Policies for Encryption Enforcement

• If your PUT request headers include encryption information, Amazon S3 uses the encryption
information from the PUT request to encrypt objects before storing them in Amazon S3. If the PUT
succeeds, the response is an HTTP/1.1 200 OK with the encryption information in the response
headers. For more information, see PUT Object.

• If you use the SSE-KMS option for your default encryption configuration, you are subject to the RPS
(requests per second) limits of AWS KMS. For more information about AWS KMS limits and how to
request a limit increase, see AWS KMS limits.

Moving to Default Encryption from Using Bucket
Policies for Encryption Enforcement
If you currently enforce object encryption for an S3 bucket by using a bucket policy to reject PUT
requests without encryption headers, we recommend that you use the following procedure to start using
default encryption.

To change from using a bucket policy to reject PUT requests without encryption headers to
using default encryption

1. If you plan to specify that default encryption use SSE-KMS, make sure that all PUT and GET object
requests are signed using Signature Version 4 and sent over an SSL connection to Amazon S3. For
information about using AWS KMS, see Protecting Data Using Server-Side Encryption with keys
stored in AWS KMS(SSE-KMS) (p. 265).

Note
By default, the Amazon S3 console, the AWS CLI version 1.11.108 and later, and all AWS
SDKs released after May 2016 use Signature Version 4 signed requests sent to Amazon S3
over an SSL connection.

2. Delete the bucket policy statements that reject PUT requests without encryption headers. (We
recommend that you save a backup copy of the bucket policy that is being replaced.)

3. To ensure that the encryption behavior is set as you want, test multiple PUT requests to closely
simulate your actual workload.

4. If you are using default encryption with SSE-KMS, monitor your clients for failing PUT and GET
requests that weren’t failing before your changes. Most likely these are the requests that you didn't
update according to Step 1. Change the failing PUT or GET requests to be signed with AWS Signature
Version 4 and sent over SSL.

After you enable default encryption for your S3 bucket, objects stored in Amazon S3 through any PUT
requests without encryption headers are encrypted using the bucket-level default encryption settings.

Using Default Encryption with Replication
After you enable default encryption for a replication destination bucket, the following encryption
behavior applies:

• If objects in the source bucket are not encrypted, the replica objects in the destination bucket are
encrypted using the default encryption settings of the destination bucket. This results in the ETag of
the source object being different from the ETag of the replica object. You must update applications
that use the ETag to accommodate for this difference.

• If objects in the source bucket are encrypted using SSE-S3 or SSE-KMS, the replica objects in the
destination bucket use the same encryption as the source object encryption. The default encryption
settings of the destination bucket are not used.

API Version 2006-03-01
68

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html

Amazon Simple Storage Service Developer Guide
Monitoring Default Encryption

with CloudTrail and CloudWatch

Monitoring Default Encryption with CloudTrail and
CloudWatch
You can track default encryption configuration requests through AWS CloudTrail events. The API
event names used in CloudTrail logs are PutBucketEncryption, GetBucketEncryption, and
DeleteBucketEncryption. You can also create Amazon CloudWatch Events with S3 bucket-level
operations as the event type. For more information about CloudTrail events, see How Do I Enable Object-
Level Logging for an S3 Bucket with CloudWatch Data Events?

You can use CloudTrail logs for object-level Amazon S3 actions to track PUT and POST requests to
Amazon S3 to verify whether default encryption is being used to encrypt objects when incoming PUT
requests don't have encryption headers.

When Amazon S3 encrypts an object using the default encryption settings, the log includes
the following field as the name/value pair: "SSEApplied":"Default_SSE_S3" or
"SSEApplied":"Default_SSE_KMS".

When Amazon S3 encrypts an object using the PUT encryption headers, the log includes the
following field as the name/value pair: "SSEApplied":"SSE_S3", "SSEApplied":"SSE_KMS,
or "SSEApplied":"SSE_C". For multipart uploads, this information is included in the
InitiateMultipartUpload API requests. For more information about using CloudTrail and
CloudWatch, see Monitoring Amazon S3 (p. 610).

More Info
• PUT Bucket encryption
• DELETE Bucket encryption
• GET Bucket encryption

Managing Bucket Website Configuration
Topics

• Managing Websites with the AWS Management Console (p. 69)
• Managing Websites with the AWS SDK for Java (p. 70)
• Managing Websites with the AWS SDK for .NET (p. 71)
• Managing Websites with the AWS SDK for PHP (p. 72)
• Managing Websites with the REST API (p. 73)

You can host static websites in Amazon S3 by configuring your bucket for website hosting. For more
information, see Hosting a Static Website on Amazon S3 (p. 503). There are several ways you can
manage your bucket's website configuration. You can use the AWS Management Console to manage
configuration without writing any code. You can programmatically create, update, and delete the website
configuration by using the AWS SDKs. The SDKs provide wrapper classes around the Amazon S3 REST
API. If your application requires it, you can send REST API requests directly from your application.

Managing Websites with the AWS Management
Console
For more information, see Configuring a Bucket for Website Hosting (p. 505).

API Version 2006-03-01
69

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-cloudtrail-events.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-cloudtrail-events.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTencryption.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEencryption.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETencryption.html

Amazon Simple Storage Service Developer Guide
Using the AWS SDK for Java

Managing Websites with the AWS SDK for Java
The following example shows how to use the AWS SDK for Java to manage website configuration
for a bucket. To add a website configuration to a bucket, you provide a bucket name and a website
configuration. The website configuration must include an index document and can include an optional
error document. These documents must already exist in the bucket. For more information, see PUT
Bucket website. For more information about the Amazon S3 website feature, see Hosting a Static
Website on Amazon S3 (p. 503).

Example

The following example uses the AWS SDK for Java to add a website configuration to a bucket, retrieve
and print the configuration, and then delete the configuration and verify the deletion. For instructions on
how to create and test a working sample, see Testing the Amazon S3 Java Code Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketWebsiteConfiguration;

import java.io.IOException;

public class WebsiteConfiguration {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String indexDocName = "*** Index document name ***";
 String errorDocName = "*** Error document name ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(clientRegion)
 .withCredentials(new ProfileCredentialsProvider())
 .build();

 // Print the existing website configuration, if it exists.
 printWebsiteConfig(s3Client, bucketName);

 // Set the new website configuration.
 s3Client.setBucketWebsiteConfiguration(bucketName, new
 BucketWebsiteConfiguration(indexDocName, errorDocName));

 // Verify that the configuration was set properly by printing it.
 printWebsiteConfig(s3Client, bucketName);

 // Delete the website configuration.
 s3Client.deleteBucketWebsiteConfiguration(bucketName);

 // Verify that the website configuration was deleted by printing it.
 printWebsiteConfig(s3Client, bucketName);
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();

API Version 2006-03-01
70

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTwebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTwebsite.html

Amazon Simple Storage Service Developer Guide
Using the AWS SDK for .NET

 }
 }

 private static void printWebsiteConfig(AmazonS3 s3Client, String bucketName) {
 System.out.println("Website configuration: ");
 BucketWebsiteConfiguration bucketWebsiteConfig =
 s3Client.getBucketWebsiteConfiguration(bucketName);
 if (bucketWebsiteConfig == null) {
 System.out.println("No website config.");
 } else {
 System.out.println("Index doc: " +
 bucketWebsiteConfig.getIndexDocumentSuffix());
 System.out.println("Error doc: " + bucketWebsiteConfig.getErrorDocument());
 }
 }
}

Managing Websites with the AWS SDK for .NET
The following example shows how to use the AWS SDK for .NET to manage website configuration
for a bucket. To add a website configuration to a bucket, you provide a bucket name and a website
configuration. The website configuration must include an index document and can contain an optional
error document. These documents must be stored in the bucket. For more information, see PUT Bucket
website. For more information about the Amazon S3 website feature, see Hosting a Static Website on
Amazon S3 (p. 503).

Example

The following C# code example adds a website configuration to the specified bucket. The configuration
specifies both the index document and the error document names. For instructions on how to create and
test a working sample, see Running the Amazon S3 .NET Code Examples (p. 678).

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class WebsiteConfigTest
 {
 private const string bucketName = "*** bucket name ***";
 private const string indexDocumentSuffix = "*** index object key ***"; // For
 example, index.html.
 private const string errorDocument = "*** error object key ***"; // For example,
 error.html.
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 client;
 public static void Main()
 {
 client = new AmazonS3Client(bucketRegion);
 AddWebsiteConfigurationAsync(bucketName, indexDocumentSuffix,
 errorDocument).Wait();
 }

 static async Task AddWebsiteConfigurationAsync(string bucketName,
 string indexDocumentSuffix,
 string errorDocument)
 {

API Version 2006-03-01
71

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTwebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTwebsite.html

Amazon Simple Storage Service Developer Guide
Using the SDK for PHP

 try
 {
 // 1. Put the website configuration.
 PutBucketWebsiteRequest putRequest = new PutBucketWebsiteRequest()
 {
 BucketName = bucketName,
 WebsiteConfiguration = new WebsiteConfiguration()
 {
 IndexDocumentSuffix = indexDocumentSuffix,
 ErrorDocument = errorDocument
 }
 };
 PutBucketWebsiteResponse response = await
 client.PutBucketWebsiteAsync(putRequest);

 // 2. Get the website configuration.
 GetBucketWebsiteRequest getRequest = new GetBucketWebsiteRequest()
 {
 BucketName = bucketName
 };
 GetBucketWebsiteResponse getResponse = await
 client.GetBucketWebsiteAsync(getRequest);
 Console.WriteLine("Index document: {0}",
 getResponse.WebsiteConfiguration.IndexDocumentSuffix);
 Console.WriteLine("Error document: {0}",
 getResponse.WebsiteConfiguration.ErrorDocument);
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Error encountered on server. Message:'{0}' when writing
 an object", e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown encountered on server. Message:'{0}' when
 writing an object", e.Message);
 }
 }
 }
}

Managing Websites with the AWS SDK for PHP
This topic explains how to use classes from the AWS SDK for PHP to configure and manage an Amazon
S3 bucket for website hosting. It assumes that you are already following the instructions for Using
the AWS SDK for PHP and Running PHP Examples (p. 678) and have the AWS SDK for PHP properly
installed. For more information about the Amazon S3 website feature, see Hosting a Static Website on
Amazon S3 (p. 503).

The following PHP example adds a website configuration to the specified bucket. The
create_website_config method explicitly provides the index document and error document names.
The example also retrieves the website configuration and prints the response. For more information
about the Amazon S3 website feature, see Hosting a Static Website on Amazon S3 (p. 503).

For instructions on creating and testing a working sample, see Using the AWS SDK for PHP and Running
PHP Examples (p. 678).

 require 'vendor/autoload.php';

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';

API Version 2006-03-01
72

Amazon Simple Storage Service Developer Guide
Using the REST API

$s3 = new S3Client([
 'version' => 'latest',
 'region' => 'us-east-1'
]);

// Add the website configuration.
$s3->putBucketWebsite([
 'Bucket' => $bucket,
 'WebsiteConfiguration' => [
 'IndexDocument' => ['Suffix' => 'index.html'],
 'ErrorDocument' => ['Key' => 'error.html']
]
]);

// Retrieve the website configuration.
$result = $s3->getBucketWebsite([
 'Bucket' => $bucket
]);
echo $result->getPath('IndexDocument/Suffix');

// Delete the website configuration.
$s3->deleteBucketWebsite([
 'Bucket' => $bucket
]);

Related Resources
• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• AWS SDK for PHP Documentation

Managing Websites with the REST API
You can use the AWS Management Console or the AWS SDK to configure a bucket as a website. However,
if your application requires it, you can send REST requests directly. For more information, see the
following sections in the Amazon Simple Storage Service API Reference.

• PUT Bucket website

• GET Bucket website

• DELETE Bucket website

Amazon S3 Transfer Acceleration
Amazon S3 Transfer Acceleration enables fast, easy, and secure transfers of files over long distances
between your client and an S3 bucket. Transfer Acceleration takes advantage of Amazon CloudFront’s
globally distributed edge locations. As the data arrives at an edge location, data is routed to Amazon S3
over an optimized network path.

When using Transfer Acceleration, additional data transfer charges may apply. For more information
about pricing, see Amazon S3 Pricing.

Topics
• Why Use Amazon S3 Transfer Acceleration? (p. 74)

• Getting Started with Amazon S3 Transfer Acceleration (p. 74)

API Version 2006-03-01
73

https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.S3.S3Client.html
http://aws.amazon.com/documentation/sdk-for-php/
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTwebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETwebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEwebsite.html
https://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Why use Transfer Acceleration?

• Requirements for Using Amazon S3 Transfer Acceleration (p. 75)
• Amazon S3 Transfer Acceleration Examples (p. 76)

Why Use Amazon S3 Transfer Acceleration?
You might want to use Transfer Acceleration on a bucket for various reasons, including the following:

• You have customers that upload to a centralized bucket from all over the world.
• You transfer gigabytes to terabytes of data on a regular basis across continents.
• You are unable to utilize all of your available bandwidth over the Internet when uploading to Amazon

S3.

For more information about when to use Transfer Acceleration, see Amazon S3 FAQs.

Using the Amazon S3 Transfer Acceleration Speed Comparison
Tool
You can use the Amazon S3 Transfer Acceleration Speed Comparison tool to compare accelerated and
non-accelerated upload speeds across Amazon S3 regions. The Speed Comparison tool uses multipart
uploads to transfer a file from your browser to various Amazon S3 regions with and without using
Transfer Acceleration.

You can access the Speed Comparison tool using either of the following methods:

• Copy the following URL into your browser window, replacing region with the region that you are
using (for example, us-west-2) and yourBucketName with the name of the bucket that you want to
evaluate:

http://s3-accelerate-speedtest.s3-accelerate.amazonaws.com/en/accelerate-
speed-comparsion.html?region=region&origBucketName=yourBucketName

For a list of the regions supported by Amazon S3, see Regions and Endpoints in the Amazon Web
Services General Reference.

• Use the Amazon S3 console. For details, see Enabling Transfer Acceleration in the Amazon Simple
Storage Service Console User Guide.

Getting Started with Amazon S3 Transfer
Acceleration
To get started using Amazon S3 Transfer Acceleration, perform the following steps:

1. Enable Transfer Acceleration on a bucket – For your bucket to work with transfer acceleration, the
bucket name must conform to DNS naming requirements and must not contain periods (".").

You can enable Transfer Acceleration on a bucket any of the following ways:
• Use the Amazon S3 console. For more information, see Enabling Transfer Acceleration in the

Amazon Simple Storage Service Console User Guide.
• Use the REST API PUT Bucket accelerate operation.
• Use the AWS CLI and AWS SDKs. For more information, see Using the AWS SDKs, CLI, and

Explorers (p. 669).

API Version 2006-03-01
74

https://aws.amazon.com/s3/faqs/#s3ta
http://s3-accelerate-speedtest.s3-accelerate.amazonaws.com/en/accelerate-speed-comparsion.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-transfer-acceleration.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-transfer-acceleration.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTaccelerate.html

Amazon Simple Storage Service Developer Guide
Requirements for Using Amazon S3 Transfer Acceleration

2. Transfer data to and from the acceleration-enabled bucket by using one of the following s3-
accelerate endpoint domain names:
• bucketname.s3-accelerate.amazonaws.com – to access an acceleration-enabled bucket.
• bucketname.s3-accelerate.dualstack.amazonaws.com – to access an acceleration-enabled

bucket over IPv6. Amazon S3 dual-stack endpoints support requests to S3 buckets over IPv6 and
IPv4. The Transfer Acceleration dual-stack endpoint only uses the virtual hosted-style type of
endpoint name. For more information, see Getting Started Making Requests over IPv6 (p. 12) and
Using Amazon S3 Dual-Stack Endpoints (p. 14).

Important
Support for the dual-stack accelerated endpoint currently is only available from the AWS
Java SDK. Support for the AWS CLI and other AWS SDKs is coming soon.

Note
You can continue to use the regular endpoint in addition to the accelerate endpoints.

You can point your Amazon S3 PUT object and GET object requests to the s3-accelerate endpoint
domain name after you enable Transfer Acceleration. For example, let's say you currently have a REST
API application using PUT Object that uses the host name mybucket.s3.amazonaws.com in the PUT
request. To accelerate the PUT you simply change the host name in your request to mybucket.s3-
accelerate.amazonaws.com. To go back to using the standard upload speed, simply change the name
back to mybucket.s3.amazonaws.com.

After Transfer Acceleration is enabled, it can take up to 20 minutes for you to realize the performance
benefit. However, the accelerate endpoint will be available as soon as you enable Transfer
Acceleration.

You can use the accelerate endpoint in the AWS CLI, AWS SDKs, and other tools that transfer data
to and from Amazon S3. If you are using the AWS SDKs, some of the supported languages use
an accelerate endpoint client configuration flag so you don't need to explicitly set the endpoint
for Transfer Acceleration to bucketname.s3-accelerate.amazonaws.com. For examples of how
to use an accelerate endpoint client configuration flag, see Amazon S3 Transfer Acceleration
Examples (p. 76).

You can use all of the Amazon S3 operations through the transfer acceleration endpoints, except for
the following the operations: GET Service (list buckets), PUT Bucket (create bucket), and DELETE Bucket.
Also, Amazon S3 Transfer Acceleration does not support cross region copies using PUT Object - Copy.

Requirements for Using Amazon S3 Transfer
Acceleration
The following are the requirements for using Transfer Acceleration on an S3 bucket:

• Transfer Acceleration is only supported on virtual style requests. For more information about virtual
style requests, see Making Requests Using the REST API (p. 44).

• The name of the bucket used for Transfer Acceleration must be DNS-compliant and must not contain
periods (".").

• Transfer Acceleration must be enabled on the bucket. After enabling Transfer Acceleration on a bucket
it might take up to 20 minutes before the data transfer speed to the bucket increases.

• To access the bucket that is enabled for Transfer Acceleration, you must use the endpoint
bucketname.s3-accelerate.amazonaws.com. or the dual-stack endpoint bucketname.s3-
accelerate.dualstack.amazonaws.com to connect to the enabled bucket over IPv6.

• You must be the bucket owner to set the transfer acceleration state. The bucket owner can
assign permissions to other users to allow them to set the acceleration state on a bucket. The
s3:PutAccelerateConfiguration permission permits users to enable or disable Transfer

API Version 2006-03-01
75

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETE.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html

Amazon Simple Storage Service Developer Guide
Transfer Acceleration Examples

Acceleration on a bucket. The s3:GetAccelerateConfiguration permission permits users
to return the Transfer Acceleration state of a bucket, which is either Enabled or Suspended.
For more information about these permissions, see Permissions Related to Bucket Subresource
Operations (p. 347) and Identity and Access Management in Amazon S3 (p. 301).

More Info
• GET Bucket accelerate

• PUT Bucket accelerate

Amazon S3 Transfer Acceleration Examples
This section provides examples of how to enable Amazon S3 Transfer Acceleration on a bucket and
use the acceleration endpoint for the enabled bucket. Some of the AWS SDK supported languages
(for example, Java and .NET) use an accelerate endpoint client configuration flag so you don't need to
explicitly set the endpoint for Transfer Acceleration to bucketname.s3-accelerate.amazonaws.com. For
more information about Transfer Acceleration, see Amazon S3 Transfer Acceleration (p. 73).

Topics

• Using the Amazon S3 Console (p. 76)

• Using Transfer Acceleration from the AWS Command Line Interface (AWS CLI) (p. 76)

• Using Transfer Acceleration from the AWS SDK for Java (p. 77)

• Using Transfer Acceleration from the AWS SDK for .NET (p. 79)

• Using Transfer Acceleration from the AWS SDK for JavaScript (p. 80)

• Using Transfer Acceleration from the AWS SDK for Python (Boto) (p. 80)

• Using Other AWS SDKs (p. 80)

Using the Amazon S3 Console

For information about enabling Transfer Acceleration on a bucket using the Amazon S3 console, see
Enabling Transfer Acceleration in the Amazon Simple Storage Service Console User Guide.

Using Transfer Acceleration from the AWS Command Line
Interface (AWS CLI)

This section provides examples of AWS CLI commands used for Transfer Acceleration. For instructions on
setting up the AWS CLI, see Setting Up the AWS CLI (p. 675).

Enabling Transfer Acceleration on a Bucket Using the AWS CLI

Use the AWS CLI put-bucket-accelerate-configuration command to enable or suspend Transfer
Acceleration on a bucket. The following example sets Status=Enabled to enable Transfer Acceleration
on a bucket. You use Status=Suspended to suspend Transfer Acceleration.

Example

$ aws s3api put-bucket-accelerate-configuration --bucket bucketname --accelerate-
configuration Status=Enabled

API Version 2006-03-01
76

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETaccelerate.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTaccelerate.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-transfer-acceleration.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/put-bucket-accelerate-configuration.html

Amazon Simple Storage Service Developer Guide
Transfer Acceleration Examples

Using the Transfer Acceleration from the AWS CLI

Setting the configuration value use_accelerate_endpoint to true in a profile in your AWS Config
File will direct all Amazon S3 requests made by s3 and s3api AWS CLI commands to the accelerate
endpoint: s3-accelerate.amazonaws.com. Transfer Acceleration must be enabled on your bucket to
use the accelerate endpoint.

All request are sent using the virtual style of bucket addressing: my-bucket.s3-
accelerate.amazonaws.com. Any ListBuckets, CreateBucket, and DeleteBucket requests will
not be sent to the accelerate endpoint as the endpoint does not support those operations. For more
information about use_accelerate_endpoint, see AWS CLI S3 Configuration.

The following example sets use_accelerate_endpoint to true in the default profile.

Example

$ aws configure set default.s3.use_accelerate_endpoint true

If you want to use the accelerate endpoint for some AWS CLI commands but not others, you can use
either one of the following two methods:

• You can use the accelerate endpoint per command by setting the --endpoint-url parameter to
https://s3-accelerate.amazonaws.com or http://s3-accelerate.amazonaws.com for any
s3 or s3api command.

• You can setup separate profiles in your AWS Config File. For example, create one profile that sets
use_accelerate_endpoint to true and a profile that does not set use_accelerate_endpoint.
When you execute a command specify which profile you want to use, depending upon whether or not
you want to use the accelerate endpoint.

AWS CLI Examples of Uploading an Object to a Bucket Enabled for Transfer
Acceleration

The following example uploads a file to a bucket enabled for Transfer Acceleration by using the default
profile that has been configured to use the accelerate endpoint.

Example

$ aws s3 cp file.txt s3://bucketname/keyname --region region

The following example uploads a file to a bucket enabled for Transfer Acceleration by using the --
endpoint-url parameter to specify the accelerate endpoint.

Example

$ aws configure set s3.addressing_style virtual
$ aws s3 cp file.txt s3://bucketname/keyname --region region --endpoint-url http://s3-
accelerate.amazonaws.com

Using Transfer Acceleration from the AWS SDK for Java
Example

The following example shows how to use an accelerate endpoint to upload an object to Amazon S3. The
example does the following:

• Creates an AmazonS3Client that is configured to use accelerate endpoints. All buckets that the client
accesses must have transfer acceleration enabled.

API Version 2006-03-01
77

https://docs.aws.amazon.com/cli/latest/topic/s3-config.html

Amazon Simple Storage Service Developer Guide
Transfer Acceleration Examples

• Enables transfer acceleration on a specified bucket. This step is necessary only if the bucket you specify
doesn't already have transfer acceleration enabled.

• Verifies that transfer acceleration is enabled for the specified bucket.
• Uploads a new object to the specified bucket using the bucket's accelerate endpoint.

For more information about using Transfer Acceleration, see Getting Started with Amazon S3 Transfer
Acceleration (p. 74). For instructions on creating and testing a working sample, see Testing the
Amazon S3 Java Code Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketAccelerateConfiguration;
import com.amazonaws.services.s3.model.BucketAccelerateStatus;
import com.amazonaws.services.s3.model.GetBucketAccelerateConfigurationRequest;
import com.amazonaws.services.s3.model.SetBucketAccelerateConfigurationRequest;

public class TransferAcceleration {
 public static void main(String[] args) {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String keyName = "*** Key name ***";

 try {
 // Create an Amazon S3 client that is configured to use the accelerate
 endpoint.
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(clientRegion)
 .withCredentials(new ProfileCredentialsProvider())
 .enableAccelerateMode()
 .build();

 // Enable Transfer Acceleration for the specified bucket.
 s3Client.setBucketAccelerateConfiguration(
 new SetBucketAccelerateConfigurationRequest(bucketName,
 new BucketAccelerateConfiguration(
 BucketAccelerateStatus.Enabled)));

 // Verify that transfer acceleration is enabled for the bucket.
 String accelerateStatus = s3Client.getBucketAccelerateConfiguration(
 new GetBucketAccelerateConfigurationRequest(bucketName))
 .getStatus();
 System.out.println("Bucket accelerate status: " + accelerateStatus);

 // Upload a new object using the accelerate endpoint.
 s3Client.putObject(bucketName, keyName, "Test object for transfer
 acceleration");
 System.out.println("Object \"" + keyName + "\" uploaded with transfer
 acceleration.");
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }

API Version 2006-03-01
78

Amazon Simple Storage Service Developer Guide
Transfer Acceleration Examples

}

Using Transfer Acceleration from the AWS SDK for .NET
The following example shows how to use the AWS SDK for .NET to enable Transfer Acceleration on a
bucket. For instructions on how to create and test a working sample, see Running the Amazon S3 .NET
Code Examples (p. 678).

Example

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class TransferAccelerationTest
 {
 private const string bucketName = "*** bucket name ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 s3Client;
 public static void Main()
 {
 s3Client = new AmazonS3Client(bucketRegion);
 EnableAccelerationAsync().Wait();
 }

 static async Task EnableAccelerationAsync()
 {
 try
 {
 var putRequest = new PutBucketAccelerateConfigurationRequest
 {
 BucketName = bucketName,
 AccelerateConfiguration = new AccelerateConfiguration
 {
 Status = BucketAccelerateStatus.Enabled
 }
 };
 await s3Client.PutBucketAccelerateConfigurationAsync(putRequest);

 var getRequest = new GetBucketAccelerateConfigurationRequest
 {
 BucketName = bucketName
 };
 var response = await
 s3Client.GetBucketAccelerateConfigurationAsync(getRequest);

 Console.WriteLine("Acceleration state = '{0}' ", response.Status);
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 Console.WriteLine(
 "Error occurred. Message:'{0}' when setting transfer acceleration",
 amazonS3Exception.Message);
 }
 }
 }
}

API Version 2006-03-01
79

Amazon Simple Storage Service Developer Guide
Requester Pays Buckets

When uploading an object to a bucket that has Transfer Acceleration enabled, you specify using
acceleration endpoint at the time of creating a client as shown:

var client = new AmazonS3Client(new AmazonS3Config
 {
 RegionEndpoint = TestRegionEndpoint,
 UseAccelerateEndpoint = true
 }

Using Transfer Acceleration from the AWS SDK for JavaScript
For an example of enabling Transfer Acceleration by using the AWS SDK for JavaScript, see Calling the
putBucketAccelerateConfiguration operation in the AWS SDK for JavaScript API Reference.

Using Transfer Acceleration from the AWS SDK for Python
(Boto)
For an example of enabling Transfer Acceleration by using the SDK for Python, see
put_bucket_accelerate_configuration in the AWS SDK for Python (Boto 3) API Reference.

Using Other AWS SDKs
For information about using other AWS SDKs, see Sample Code and Libraries.

Requester Pays Buckets
Topics

• Configure Requester Pays by Using the Amazon S3 Console (p. 81)
• Configure Requester Pays with the REST API (p. 81)
• Charge Details (p. 83)

In general, bucket owners pay for all Amazon S3 storage and data transfer costs associated with their
bucket. A bucket owner, however, can configure a bucket to be a Requester Pays bucket. With Requester
Pays buckets, the requester instead of the bucket owner pays the cost of the request and the data
download from the bucket. The bucket owner always pays the cost of storing data.

Typically, you configure buckets to be Requester Pays when you want to share data but not incur charges
associated with others accessing the data. You might, for example, use Requester Pays buckets when
making available large datasets, such as zip code directories, reference data, geospatial information, or
web crawling data.

Important
If you enable Requester Pays on a bucket, anonymous access to that bucket is not allowed.

You must authenticate all requests involving Requester Pays buckets. The request authentication enables
Amazon S3 to identify and charge the requester for their use of the Requester Pays bucket.

When the requester assumes an AWS Identity and Access Management (IAM) role prior to making their
request, the account to which the role belongs is charged for the request. For more information about
IAM roles, see IAM Roles in the IAM User Guide.

After you configure a bucket to be a Requester Pays bucket, requesters must include x-amz-request-
payer in their requests either in the header, for POST, GET and HEAD requests, or as a parameter in
a REST request to show that they understand that they will be charged for the request and the data
download.

API Version 2006-03-01
80

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#putBucketAccelerateConfiguration-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#putBucketAccelerateConfiguration-property
http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.put_bucket_accelerate_configuration
http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.put_bucket_accelerate_configuration
https://aws.amazon.com/code/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon Simple Storage Service Developer Guide
Configure with the Console

Requester Pays buckets do not support the following.

• Anonymous requests

• BitTorrent

• SOAP requests

• You cannot use a Requester Pays bucket as the target bucket for end user logging, or vice versa;
however, you can turn on end user logging on a Requester Pays bucket where the target bucket is not a
Requester Pays bucket.

Configure Requester Pays by Using the Amazon S3
Console
You can configure a bucket for Requester Pays by using the Amazon S3 console.

To configure a bucket for Requester Pays

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. In the Buckets list, click the details icon on the left of the bucket name and then click Properties to
display bucket properties.

3. In the Properties pane, click Requester Pays.

4. Select the Enabled check box.

Configure Requester Pays with the REST API
Topics

• Setting the requestPayment Bucket Configuration (p. 81)

• Retrieving the requestPayment Configuration (p. 82)

• Downloading Objects in Requester Pays Buckets (p. 83)

Setting the requestPayment Bucket Configuration

Only the bucket owner can set the RequestPaymentConfiguration.payer configuration value of a
bucket to BucketOwner, the default, or Requester. Setting the requestPayment resource is optional.
By default, the bucket is not a Requester Pays bucket.

To revert a Requester Pays bucket to a regular bucket, you use the value BucketOwner. Typically, you
would use BucketOwner when uploading data to the Amazon S3 bucket, and then you would set the
value to Requester before publishing the objects in the bucket.

API Version 2006-03-01
81

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
Configure with the REST API

To set requestPayment

• Use a PUT request to set the Payer value to Requester on a specified bucket.

PUT ?requestPayment HTTP/1.1
Host: [BucketName].s3.amazonaws.com
Content-Length: 173
Date: Wed, 01 Mar 2009 12:00:00 GMT
Authorization: AWS [Signature]

<RequestPaymentConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<Payer>Requester</Payer>
</RequestPaymentConfiguration>

If the request succeeds, Amazon S3 returns a response similar to the following.

HTTP/1.1 200 OK
x-amz-id-2: [id]
x-amz-request-id: [request_id]
Date: Wed, 01 Mar 2009 12:00:00 GMT
Content-Length: 0
Connection: close
Server: AmazonS3
x-amz-request-charged:requester

You can set Requester Pays only at the bucket level; you cannot set Requester Pays for specific objects
within the bucket.

You can configure a bucket to be BucketOwner or Requester at any time. Realize, however, that there
might be a small delay, on the order of minutes, before the new configuration value takes effect.

Note
Bucket owners who give out presigned URLs should think twice before configuring a bucket to
be Requester Pays, especially if the URL has a very long lifetime. The bucket owner is charged
each time the requester uses a presigned URL that uses the bucket owner's credentials.

Retrieving the requestPayment Configuration
You can determine the Payer value that is set on a bucket by requesting the resource requestPayment.

To return the requestPayment resource

• Use a GET request to obtain the requestPayment resource, as shown in the following request.

GET ?requestPayment HTTP/1.1
Host: [BucketName].s3.amazonaws.com
Date: Wed, 01 Mar 2009 12:00:00 GMT
Authorization: AWS [Signature]

If the request succeeds, Amazon S3 returns a response similar to the following.

HTTP/1.1 200 OK
x-amz-id-2: [id]
x-amz-request-id: [request_id]
Date: Wed, 01 Mar 2009 12:00:00 GMT
Content-Type: [type]
Content-Length: [length]
Connection: close

API Version 2006-03-01
82

Amazon Simple Storage Service Developer Guide
Charge Details

Server: AmazonS3

<?xml version="1.0" encoding="UTF-8"?>
<RequestPaymentConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<Payer>Requester</Payer>
</RequestPaymentConfiguration>

This response shows that the payer value is set to Requester.

Downloading Objects in Requester Pays Buckets
Because requesters are charged for downloading data from Requester Pays buckets, the requests must
contain a special parameter, x-amz-request-payer, which confirms that the requester knows he or
she will be charged for the download. To access objects in Requester Pays buckets, requests must include
one of the following.

• For GET, HEAD, and POST requests, include x-amz-request-payer : requester in the header
• For signed URLs, include x-amz-request-payer=requester in the request

If the request succeeds and the requester is charged, the response includes the header x-amz-request-
charged:requester. If x-amz-request-payer is not in the request, Amazon S3 returns a 403 error
and charges the bucket owner for the request.

Note
Bucket owners do not need to add x-amz-request-payer to their requests.
Ensure that you have included x-amz-request-payer and its value in your signature
calculation. For more information, see Constructing the CanonicalizedAmzHeaders
Element (p. 691).

To download objects from a Requester Pays bucket

• Use a GET request to download an object from a Requester Pays bucket, as shown in the following
request.

GET / [destinationObject] HTTP/1.1
Host: [BucketName].s3.amazonaws.com
x-amz-request-payer : requester
Date: Wed, 01 Mar 2009 12:00:00 GMT
Authorization: AWS [Signature]

If the GET request succeeds and the requester is charged, the response includes x-amz-request-
charged:requester.

Amazon S3 can return an Access Denied error for requests that try to get objects from a Requester
Pays bucket. For more information, see Error Responses.

Charge Details
The charge for successful Requester Pays requests is straightforward: the requester pays for the data
transfer and the request; the bucket owner pays for the data storage. However, the bucket owner is
charged for the request under the following conditions:

• The requester doesn't include the parameter x-amz-request-payer in the header (GET, HEAD, or
POST) or as a parameter (REST) in the request (HTTP code 403).

• Request authentication fails (HTTP code 403).
• The request is anonymous (HTTP code 403).

API Version 2006-03-01
83

https://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html

Amazon Simple Storage Service Developer Guide
Access Control

• The request is a SOAP request.

Buckets and Access Control
Each bucket has an associated access control policy. This policy governs the creation, deletion and
enumeration of objects within the bucket. For more information, see Identity and Access Management in
Amazon S3 (p. 301).

Billing and Usage Reporting for S3 Buckets
When using Amazon Simple Storage Service (Amazon S3), you don't have to pay any upfront fees or
commit to how much content you'll store. As with the other Amazon Web Services (AWS) services, you
pay as you go and pay only for what you use.

AWS provides the following reports for Amazon S3:

• Billing reports – Multiple reports that provide high-level views of all of the activity for the AWS
services that you're using, including Amazon S3. AWS always bills the owner of the S3 bucket for
Amazon S3 fees, unless the bucket was created as a Requester Pays bucket. For more information
about Requester Pays, see Requester Pays Buckets (p. 80). For more information about billing
reports, see AWS Billing Reports for Amazon S3 (p. 84).

• Usage report – A summary of activity for a specific service, aggregated by hour, day, or month.
You can choose which usage type and operation to include. You can also choose how the data is
aggregated. For more information, see AWS Usage Report for Amazon S3 (p. 86).

The following topics provide information about billing and usage reporting for Amazon S3.

Topics
• AWS Billing Reports for Amazon S3 (p. 84)
• AWS Usage Report for Amazon S3 (p. 86)
• Understanding Your AWS Billing and Usage Reports for Amazon S3 (p. 87)
• Using Cost Allocation S3 Bucket Tags (p. 95)

AWS Billing Reports for Amazon S3
Your monthly bill from AWS separates your usage information and cost by AWS service and function.
There are several AWS billing reports available, the monthly report, the cost allocation report, and
detailed billing reports. For information about how to see your billing reports, see Viewing Your Bill in
the AWS Billing and Cost Management User Guide.

You can also download a usage report that gives more detail about your Amazon S3 storage usage than
the billing reports. For more information, see AWS Usage Report for Amazon S3 (p. 86).

The following table lists the charges associated with Amazon S3 usage.

Amazon S3 Usage Charges

Charge Comments

Storage You pay for storing objects in your S3 buckets.
The rate you’re charged depends on your objects'
size, how long you stored the objects during

API Version 2006-03-01
84

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/getting-viewing-bill.html

Amazon Simple Storage Service Developer Guide
Billing Reports

Charge Comments

the month, and the storage class—STANDARD,
INTELLIGENT_TIERING, STANDARD_IA (IA for
infrequent access), ONEZONE_IA, GLACIER,
DEEP_ARCHIVE or Reduced Redundancy Storage
(RRS). For more information about storage classes,
see Amazon S3 Storage Classes (p. 103).

Monitoring and Automation You pay a monthly monitoring and automation
fee per object stored in the INTELLIGENT_TIERING
storage class to monitor access patterns
and move objects between access tiers in
INTELLIGENT_TIERING.

Requests You pay for requests, for example, GET requests,
made against your S3 buckets and objects.
This includes lifecycle requests. The rates for
requests depend on what kind of request you’re
making. For information about request pricing,
see Amazon S3 Pricing.

Retrievals You pay for retrieving objects that are stored
in STANDARD_IA, ONEZONE_IA, GLACIER and
DEEP_ARCHIVE storage.

Early Deletes If you delete an object stored in
INTELLIGENT_TIERING, STANDARD_IA,
ONEZONE_IA, GLACIER, or DEEP_ARCHIVE
storage before the minimum storage commitment
has passed, you pay an early deletion fee for that
object.

Storage Management You pay for the storage management features
(Amazon S3 inventory, analytics, and object
tagging) that are enabled on your account’s
buckets.

Bandwidth You pay for all bandwidth into and out of Amazon
S3, except for the following:

• Data transferred in from the internet
• Data transferred out to an Amazon Elastic

Compute Cloud (Amazon EC2) instance, when
the instance is in the same AWS Region as the
S3 bucket

• Data transferred out to Amazon CloudFront
(CloudFront)

You also pay a fee for any data transferred using
Amazon S3 Transfer Acceleration.

For detailed information on Amazon S3 usage charges for storage, data transfer, and services, see
Amazon S3 Pricing and the Amazon S3 FAQ.

For information on understanding codes and abbreviations used in the billing and usage reports for
Amazon S3, see Understanding Your AWS Billing and Usage Reports for Amazon S3 (p. 87).

API Version 2006-03-01
85

https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/faqs/#billing

Amazon Simple Storage Service Developer Guide
Usage Report

More Info
• AWS Usage Report for Amazon S3 (p. 86)

• Using Cost Allocation S3 Bucket Tags (p. 95)

• AWS Billing and Cost Management

• Amazon S3 Pricing

• Amazon S3 FAQ

• Glacier Pricing

AWS Usage Report for Amazon S3
For more detail about your Amazon S3 storage usage, download dynamically generated AWS usage
reports. You can choose which usage type, operation, and time period to include. You can also choose
how the data is aggregated.

When you download a usage report, you can choose to aggregate usage data by hour, day, or month.
The Amazon S3 usage report lists operations by usage type and AWS Region, for example, the amount of
data transferred out of the Asia Pacific (Sydney) Region.

The Amazon S3 usage report includes the following information:

• Service – Amazon Simple Storage Service

• Operation – The operation performed on your bucket or object. For a detailed explanation of Amazon
S3 operations, see Tracking Operations in Your Usage Reports (p. 95).

• UsageType – One of the following values:

• A code that identifies the type of storage

• A code that identifies the type of request

• A code that identifies the type of retrieval

• A code that identifies the type of data transfer

• A code that identifies early deletions from INTELLIGENT_TIERING, STANDARD_IA, ONEZONE_IA,
GLACIER, or DEEP_ARCHIVE storage

• StorageObjectCount – The count of objects stored within a given bucket

For a detailed explanation of Amazon S3 usage types, see Understanding Your AWS Billing and Usage
Reports for Amazon S3 (p. 87).

• Resource – The name of the bucket associated with the listed usage.

• StartTime – Start time of the day that the usage applies to, in Coordinated Universal Time (UTC).

• EndTime – End time of the day that the usage applies to, in Coordinated Universal Time (UTC).

• UsageValue – One of the following volume values:

• The number of requests during the specified time period

• The amount of data transferred, in bytes

• The amount of data stored, in byte-hours, which is the number of bytes stored in a given hour

• The amount of data associated with restorations from DEEP_ARCHIVE, GLACIER, STANDARD_IA, or
ONEZONE_IA storage, in bytes

Tip
For detailed information about every request that Amazon S3 receives for your objects, turn
on server access logging for your buckets. For more information, see Amazon S3 Server Access
Logging (p. 647).

API Version 2006-03-01
86

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2//billing-what-is.html
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/faqs/#billing
https://aws.amazon.com/glacier/pricing/

Amazon Simple Storage Service Developer Guide
Understanding Billing and Usage Reports

You can download a usage report as an XML or a comma-separated values (CSV) file. The following is an
example CSV usage report opened in a spreadsheet application.

For information on understanding the usage report, see Understanding Your AWS Billing and Usage
Reports for Amazon S3 (p. 87).

Downloading the AWS Usage Report
You can download a usage report as an .xml or a .csv file.

To download the usage report

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. In the title bar, choose your AWS Identity and Access Management (IAM) user name, and then choose
My Billing Dashboard.

3. In the navigation pane, choose Reports.

4. In the Other Reports section, choose AWS Usage Report.

5. For Services:, choose Amazon Simple Storage Service.

6. For Download Usage Report, choose the following settings:

• Usage Types – For a detailed explanation of Amazon S3 usage types, see Understanding Your
AWS Billing and Usage Reports for Amazon S3 (p. 87).

• Operation – For a detailed explanation of Amazon S3 operations, see Tracking Operations in Your
Usage Reports (p. 95).

• Time Period – The time period that you want the report to cover.

• Report Granularity – Whether you want the report to include subtotals by the hour, by the day, or
by the month.

7. To choose the format for the report, choose the Download for that format, and then follow the
prompts to see or save the report.

More Info
• Understanding Your AWS Billing and Usage Reports for Amazon S3 (p. 87)

• AWS Billing Reports for Amazon S3 (p. 84)

Understanding Your AWS Billing and Usage Reports
for Amazon S3
Amazon S3 billing and usage reports use codes and abbreviations. For example, for usage type, which is
defined in the following table, region is replaced with one of the following abbreviations:

• APE1: Asia Pacific (Hong Kong)

API Version 2006-03-01
87

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
Understanding Billing and Usage Reports

• APN1: Asia Pacific (Tokyo)
• APN2: Asia Pacific (Seoul)
• APS1: Asia Pacific (Singapore)
• APS2: Asia Pacific (Sydney)
• APS3: Asia Pacific (Mumbai)
• CAN1: Canada (Central)
• EUN1: EU (Stockholm)
• EUC1: EU (Frankfurt)
• EU: EU (Ireland)
• EUW2: EU (London)
• EUW3: EU (Paris)
• SAE1: South America (São Paulo)
• UGW1: AWS GovCloud (US-West)
• UGE1: AWS GovCloud (US-East)
• USE1 (or no prefix): US East (N. Virginia)
• USE2: US East (Ohio)
• USW1: US West (N. California)
• USW2: US West (Oregon)

For information about pricing by AWS Region, see Amazon S3 Pricing.

The first column in the following table lists usage types that appear in your billing and usage reports.

Usage Types

Usage Type Units Granularity Description

region1-region2-AWS-In-Bytes Bytes Hourly The amount of data
transferred in to AWS
Region1 from AWS Region2

region1-region2-AWS-Out-Bytes Bytes Hourly The amount of data
transferred from AWS
Region1 to AWS Region2

region-BatchOperations-Jobs Count Hourly The number of Amazon
S3 batch operations jobs
performed.

region-BatchOperations-Objects Count Hourly The number of object
operations performed
by Amazon S3 batch
operations.

region-DataTransfer-In-Bytes Bytes Hourly The amount of data
transferred into Amazon S3
from the internet

region-DataTransfer-Out-Bytes Bytes Hourly The amount of data
transferred from Amazon
S3 to the internet1

region-C3DataTransfer-In-Bytes Bytes Hourly The amount of data
transferred into Amazon S3

API Version 2006-03-01
88

https://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Understanding Billing and Usage Reports

Usage Type Units Granularity Description

from Amazon EC2 within
the same AWS Region

region-C3DataTransfer-Out-Bytes Bytes Hourly The amount of data
transferred from Amazon
S3 to Amazon EC2 within
the same AWS Region

region-S3G-DataTransfer-In-Bytes Bytes Hourly The amount of data
transferred into Amazon
S3 to restore objects from
GLACIER or DEEP_ARCHIVE
storage

region-S3G-DataTransfer-Out-Bytes Bytes Hourly The amount of data
transferred from Amazon
S3 to transition objects to
GLACIER or DEEP_ARCHIVE
storage

region-DataTransfer-Regional-Bytes Bytes Hourly The amount of data
transferred from Amazon
S3 to AWS resources within
the same AWS Region

StorageObjectCount Count Daily The number of objects
stored within a given
bucket

region-CloudFront-In-Bytes Bytes Hourly The amount of data
transferred into an AWS
Region from a CloudFront
distribution

region-CloudFront-Out-Bytes Bytes Hourly The amount of data
transferred from an AWS
Region to a CloudFront
distribution

region-EarlyDelete-ByteHrs Byte-Hours2 Hourly Prorated storage usage
for objects deleted from,
GLACIER storage before
the 90-day minimum
commitment ended3

region-EarlyDelete-GDA Byte-Hours2 Hourly Prorated storage usage
for objects deleted from
DEEP_ARCHIVE storage
before the 180-day
minimum commitment
ended 3

region-EarlyDelete-SIA Byte-Hours Hourly Prorated storage usage
for objects deleted from
STANDARD_IA before
the 30-day minimum
commitment ended4

API Version 2006-03-01
89

Amazon Simple Storage Service Developer Guide
Understanding Billing and Usage Reports

Usage Type Units Granularity Description

region-EarlyDelete-ZIA Byte-Hours Hourly Prorated storage usage
for objects deleted from
ONEZONE_IA before
the 30-day minimum
commitment ended4

region-EarlyDelete-SIA-SmObjects Byte-Hours Hourly Prorated storage usage for
small objects (smaller than
128 KB) that were deleted
from STANDARD_IA before
the 30-day minimum
commitment ended4

region-EarlyDelete-ZIA-SmObjects Byte-Hours Hourly Prorated storage usage for
small objects (smaller than
128 KB) that were deleted
from ONEZONE_IA before
the 30-day minimum
commitment ended4

region-Inventory-ObjectsListed Objects Hourly The number of objects
listed for an object group
(objects are grouped by
bucket or prefix) with an
inventory list

region-Requests-GLACIER-Tier1 Count Hourly The number of
PUT, COPY, POST,
InitiateMultipartUpload,
UploadPart, or
CompleteMultipartUpload
requests on GLACIER
objects

region-Requests-GLACIER-Tier2 Count Hourly The number of GET and all
other requests not listed on
GLACIER objects

region-Requests-SIA-Tier1 Count Hourly The number of PUT, COPY,
POST, or LIST requests on
STANDARD_IA objects

region-Requests-ZIA-Tier1 Count Hourly The number of PUT, COPY,
POST, or LIST requests on
ONEZONE_IA objects

region-Requests-SIA-Tier2 Count Hourly The number of GET and
all other non-SIA-Tier1
requests on STANDARD_IA
objects

region-Requests-ZIA-Tier2 Count Hourly The number of GET and
all other non-ZIA-Tier1
requests on ONEZONE_IA
objects

API Version 2006-03-01
90

Amazon Simple Storage Service Developer Guide
Understanding Billing and Usage Reports

Usage Type Units Granularity Description

region-Requests-Tier1 Count Hourly The number of PUT, COPY,
POST, or LIST requests for
STANDARD, RRS, and tags

region-Requests-Tier2 Count Hourly The number of GET and all
other non-Tier1 requests

region-Requests-Tier3 Count Hourly The number of lifecycle
requests to GLACIER
or DEEP_ARCHIVE and
standard GLACIER restore
requests

region-Requests-Tier4 Count Hourly The number of
lifecycle transitions to
INTELLIGENT_TIERING,
STANDARD_IA, or
ONEZONE_IA storage

region-Requests-Tier5 Count Hourly The number of Bulk
GLACIER restore requests

region-Requests-GDA-Tier1 Count Hourly The number of
PUT, COPY, POST,
InitiateMultipartUpload,
UploadPart, or
CompleteMultipartUpload
requests on DEEP Archive
objects

region-Requests-GDA-Tier2 Count Hourly The number of GET, HEAD,
and LIST requests

region-Requests-GDA-Tier3 Count Hourly The number of
DEEP_ARCHIVE standard
restore requests

region-Requests-GDA-Tier5 Count Hourly The number of Bulk
DEEP_ARCHIVE restore
requests

region-Requests-Tier6 Count Hourly The number of Expedited
GLACIER restore requests

region-Bulk-Retrieval-Bytes Bytes Hourly The number of bytes of
data retrieved with Bulk
GLACIER or DEEP_ARCHIVE
requests

region-Requests-INT-Tier1 Count Hourly The number of PUT, COPY,
POST, or LIST requests
on INTELLIGENT_TIERING
objects

API Version 2006-03-01
91

Amazon Simple Storage Service Developer Guide
Understanding Billing and Usage Reports

Usage Type Units Granularity Description

region-Requests-INT-Tier2 Count Hourly The number of GET and all
other non-Tier1 requests
for INTELLIGENT_TIERING
objects

region-Select-Returned-INT-Bytes Bytes Hourly The number of bytes
of data returned with
Select requests from
INTELLIGENT_TIERING
storage

region-Select-Scanned-INT-Bytes Bytes Hourly The number of bytes
of data scanned with
Select requests from
INTELLIGENT_TIERING
storage

region-EarlyDelete-INT Byte-Hours Hourly Prorated storage usage
for objects deleted from
INTELLIGENT_TIERING
before the 30-day
minimum commitment
ended

region-Monitoring-Automation-INT Objects Hourly The number of unique
objects monitored
and auto-tiered in the
INTELLIGENT_TIERING
storage class

region-Expedited-Retrieval-Bytes Bytes Hourly The number of bytes
of data retrieved with
Expedited GLACIER
requests

region-Standard-Retrieval-Bytes Bytes Hourly The number of bytes
of data retrieved with
standard GLACIER or
DEEP_ARCHIVE requests

region-Retrieval-SIA Bytes Hourly The number of bytes
of data retrieved from
STANDARD_IA storage

region-Retrieval-ZIA Bytes Hourly The number of bytes
of data retrieved from
ONEZONE_IA storage

region-StorageAnalytics-ObjCount Objects Hourly The number of unique
objects in each object
group (where objects are
grouped by bucket or
prefix) tracked by storage
analytics

API Version 2006-03-01
92

Amazon Simple Storage Service Developer Guide
Understanding Billing and Usage Reports

Usage Type Units Granularity Description

region-Select-Scanned-Bytes Bytes Hourly The number of bytes of
data scanned with Select
requests from STANDARD
storage

region-Select-Scanned-SIA-Bytes Bytes Hourly The number of bytes
of data scanned with
Select requests from
STANDARD_IA storage

region-Select-Scanned-ZIA-Bytes Bytes Hourly The number of bytes of
data scanned with Select
requests from ONEZONE_IA
storage

region-Select-Returned-Bytes Bytes Hourly The number of bytes of
data returned with Select
requests from STANDARD
storage

region-Select-Returned-SIA-Bytes Bytes Hourly The number of bytes
of data returned with
Select requests from
STANDARD_IA storage

region-Select-Returned-ZIA-Bytes Bytes Hourly The number of bytes of
data returned with Select
requests from ONEZONE_IA
storage

region-TagStorage-TagHrs Tag-Hours Daily The total of tags on all
objects in the bucket
reported by hour

region-TimedStorage-ByteHrs Byte-Hours Daily The number of byte-hours
that data was stored in
STANDARD storage

region-TimedStorage-GLACIERByteHrs Byte-Hours Daily The number of byte-hours
that data was stored in
GLACIER storage

region-TimedStorage-GlacierStaging Byte-Hours Daily The number of byte-hours
that data was stored in
GLACIER staging storage

region-TimedStorage-GDA-ByteHrs Byte-Hours Daily The number of byte-hours
that data was stored in
DEEP_ARCHIVE storage

region-TimedStorage-GDA-Staging Byte-Hours Daily The number of byte-hours
that data was stored in
DEEP_ARCHIVE staging
storage

API Version 2006-03-01
93

Amazon Simple Storage Service Developer Guide
Understanding Billing and Usage Reports

Usage Type Units Granularity Description

region-TimedStorage-INT-FA-ByteHrs Byte-Hours Daily The number of byte-hours
that data was stored in
the frequent access tier
of INTELLIGENT_TIERING
storage

region-TimedStorage-INT-IA-ByteHrs Byte-Hours Daily The number of byte-hours
that data was stored in
the infrequent access tier
of INTELLIGENT_TIERING
storage

region-TimedStorage-RRS-ByteHrsb Byte-Hours Daily The number of byte-hours
that data was stored in
Reduced Redundancy
Storage (RRS) storage

region-TimedStorage-SIA-ByteHrs Byte-Hours Daily The number of byte-hours
that data was stored in
STANDARD_IA storage

region-TimedStorage-ZIA-ByteHrs Byte-Hours Daily The number of byte-hours
that data was stored in
ONEZONE_IA storage

region-TimedStorage-SIA-SmObjects Byte-Hours Daily The number of byte-hours
that small objects (smaller
than 128 KB) were stored in
STANDARD_IA storage

region-TimedStorage-ZIA-SmObjects Byte-Hours Daily The number of byte-hours
that small objects (smaller
than 128 KB) were stored in
ONEZONE_IA storage

Notes:

1. If you terminate a transfer before completion, the amount of data that is transferred might exceed
the amount of data that your application receives. This discrepancy can occur because a transfer
termination request cannot be executed instantaneously, and some amount of data might be in transit
pending execution of the termination request. This data in transit is billed as data transferred “out.”

2. For more information on the byte-hours unit, see Converting Usage Byte-Hours to Billed GB-
Months (p. 95).

3. When objects that are archived to the GLACIER or DEEP_ARCHIVE storage class are deleted,
overwritten, or transitioned to a different storage class before the minimum storage commitment has
passed, which is 90 days for GLACIER or 180-days for DEEP_ARCHIVE, there is a prorated charge per
gigabyte for the remaining days.

4. For objects that are in INTELLIGENT_TIERING, STANDARD_IA, or ONEZONE_IA storage, when they are
deleted, overwritten, or transitioned to a different storage class prior to 30 days, there is a prorated
charge per gigabyte for the remaining days.

5. For small objects (smaller than 128 KB) that are in STANDARD_IA or ONEZONE_IA storage, when
they are deleted, overwritten, or transitioned to a different storage class prior to 30 days, there is a
prorated charge per gigabyte for the remaining days.

API Version 2006-03-01
94

Amazon Simple Storage Service Developer Guide
Using Cost Allocation Tags

6. There is no minimum billable object size for objects in the INTELLIGENT_TIERING storage class, but
objects that are smaller than 128 KB are not eligible for auto-tiering and are always charged at the
rate for the INTELLIGENT_TIERING frequent access tier.

Tracking Operations in Your Usage Reports
Operations describe the action taken on your AWS object or bucket by the specified usage type.
Operations are indicated by self-explanatory codes, such as PutObject or ListBucket. To see which
actions on your bucket generated a specific type of usage, use these codes. When you create a usage
report, you can choose to include All Operations, or a specific operation, for example, GetObject, to
report on.

Converting Usage Byte-Hours to Billed GB-Months
The volume of storage that we bill you for each month is based on the average amount of storage you
used throughout the month. You are billed for all of the object data and metadata stored in buckets
that you created under your AWS account. For more information about metadata, see Object Key and
Metadata (p. 99).

We measure your storage usage in TimedStorage-ByteHrs, which are totaled up at the end of the month
to generate your monthly charges. The usage report reports your storage usage in byte-hours and the
billing reports report storage usage in GB-months. To correlate your usage report to your billing reports,
you need to convert byte-hours into GB-months.

For example, if you store 100 GB (107,374,182,400 bytes) of STANDARD Amazon S3 storage data in your
bucket for the first 15 days in March, and 100 TB (109,951,162,777,600 bytes) of STANDARD Amazon S3
storage data for the final 16 days in March, you will have used 42,259,901,212,262,400 byte-hours.

First, calculate the total byte-hour usage:

[107,374,182,400 bytes x 15 days x (24 hours/day)]
 + [109,951,162,777,600 bytes x 16 days x (24 hours/day)]
 = 42,259,901,212,262,400 byte-hours

Then convert the byte-hours to GB-Months:

42,259,901,212,262,400 byte-hours/1,073,741,824 bytes per GB/24 hours per day
 /31 days in March
 =52,900 GB-Months

More Info
• AWS Usage Report for Amazon S3 (p. 86)
• AWS Billing Reports for Amazon S3 (p. 84)
• Amazon S3 Pricing
• Amazon S3 FAQ
• Glacier Pricing
• Glacier FAQs

Using Cost Allocation S3 Bucket Tags
To track the storage cost or other criteria for individual projects or groups of projects, label your Amazon
S3 buckets using cost allocation tags. A cost allocation tag is a key-value pair that you associate with an

API Version 2006-03-01
95

https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/faqs/#billing
https://aws.amazon.com/glacier/pricing/
https://aws.amazon.com/glacier/faqs/

Amazon Simple Storage Service Developer Guide
Using Cost Allocation Tags

S3 bucket. After you activate cost allocation tags, AWS uses the tags to organize your resource costs on
your cost allocation report. Cost allocation tags can only be used to label buckets. For information about
tags used for labeling objects, see Object Tagging (p. 110).

The cost allocation report lists the AWS usage for your account by product category and AWS Identity
and Access Management (IAM) user. The report contains the same line items as the detailed billing
report (see Understanding Your AWS Billing and Usage Reports for Amazon S3 (p. 87)) and additional
columns for your tag keys.

AWS provides two types of cost allocation tags, an AWS-generated tag and user-defined tags.
AWS defines, creates, and applies the AWS-generated createdBy tag for you after an Amazon S3
CreateBucket event. You define, create, and apply user-defined tags to your S3 bucket.

You must activate both types of tags separately in the Billing and Cost Management console before they
can appear in your billing reports. For more information about AWS-generated tags, see AWS-Generated
Cost Allocation Tags. For more information about activating tags, see Using Cost Allocation Tags in the
AWS Billing and Cost Management User Guide.

A user-defined cost allocation tag has the following components:

• The tag key. The tag key is the name of the tag. For example, in the tag project/Trinity, project is the
key. The tag key is a case-sensitive string that can contain 1 to 128 Unicode characters.

• The tag value. The tag value is a required string. For example, in the tag project/Trinity, Trinity is the
value. The tag value is a case-sensitive string that can contain from 0 to 256 Unicode characters.

For details on the allowed characters for user-defined tags and other restrictions, see User-Defined Tag
Restrictions in the AWS Billing and Cost Management User Guide.

Each S3 bucket has a tag set. A tag set contains all of the tags that are assigned to that bucket. A tag set
can contain as many as 50 tags, or it can be empty. Keys must be unique within a tag set, but values in
a tag set don't have to be unique. For example, you can have the same value in tag sets named project/
Trinity and cost-center/Trinity.

Within a bucket, if you add a tag that has the same key as an existing tag, the new value overwrites the
old value.

AWS doesn't apply any semantic meaning to your tags. We interpret tags strictly as character strings.

To add, list, edit, or delete tags, you can use the Amazon S3 console, the AWS Command Line Interface
(AWS CLI), or the Amazon S3 API.

For more information about creating tags, see the appropriate topic:

• To create tags in the console, see How Do I View the Properties for an S3 Bucket? in the Amazon Simple
Storage Service Console User Guide.

• To create tags using the Amazon S3 API, see PUT Bucket tagging in the Amazon Simple Storage Service
API Reference.

• To create tags using the AWS CLI, see put-bucket-tagging in the AWS CLI Command Reference.

For more information about user-defined tags, see User-Defined Cost Allocation Tags in the AWS Billing
and Cost Management User Guide.

More Info
• Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide

API Version 2006-03-01
96

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2//aws-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2//aws-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2//cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2//allocation-tag-restrictions.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2//allocation-tag-restrictions.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/view-bucket-properties.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTtagging.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/put-bucket-tagging.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2//custom-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2//cost-alloc-tags.html

Amazon Simple Storage Service Developer Guide
Using Cost Allocation Tags

• Understanding Your AWS Billing and Usage Reports for Amazon S3 (p. 87)
• AWS Billing Reports for Amazon S3 (p. 84)

API Version 2006-03-01
97

Amazon Simple Storage Service Developer Guide

Working with Amazon S3 Objects

Amazon S3 is a simple key, value store designed to store as many objects as you want. You store these
objects in one or more buckets. An object consists of the following:

• Key – The name that you assign to an object. You use the object key to retrieve the object.

For more information, see Object Key and Metadata (p. 99).

• Version ID – Within a bucket, a key and version ID uniquely identify an object.

The version ID is a string that Amazon S3 generates when you add an object to a bucket. For more
information, see Object Versioning (p. 108).

• Value – The content that you are storing.

An object value can be any sequence of bytes. Objects can range in size from zero to 5 TB. For more
information, see Uploading Objects (p. 169).

• Metadata – A set of name-value pairs with which you can store information regarding the object.

You can assign metadata, referred to as user-defined metadata, to your objects in Amazon S3. Amazon
S3 also assigns system-metadata to these objects, which it uses for managing objects. For more
information, see Object Key and Metadata (p. 99).

• Subresources – Amazon S3 uses the subresource mechanism to store object-specific additional
information.

Because subresources are subordinates to objects, they are always associated with some other entity
such as an object or a bucket. For more information, see Object Subresources (p. 108).

• Access Control Information – You can control access to the objects you store in Amazon S3.

Amazon S3 supports both the resource-based access control, such as an access control list (ACL)
and bucket policies, and user-based access control. For more information, see Identity and Access
Management in Amazon S3 (p. 301).

For more information about working with objects, see the following sections. Your Amazon S3 resources
(for example buckets and objects) are private by default. You need to explicitly grant permission for
others to access these resources. For example, you might want to share a video or a photo stored in
your Amazon S3 bucket on your website. That works only if you either make the object public or use a
presigned URL on your website. For more information about sharing objects, see Share an Object with
Others (p. 167).

Topics

• Object Key and Metadata (p. 99)

• Amazon S3 Storage Classes (p. 103)

• Object Subresources (p. 108)

• Object Versioning (p. 108)

• Object Tagging (p. 110)

• Object Lifecycle Management (p. 119)

• Cross-Origin Resource Sharing (CORS) (p. 151)

API Version 2006-03-01
98

Amazon Simple Storage Service Developer Guide
Object Key and Metadata

• Operations on Objects (p. 160)

Object Key and Metadata
Each Amazon S3 object has data, a key, and metadata. Object key (or key name) uniquely identifies the
object in a bucket. Object metadata is a set of name-value pairs. You can set object metadata at the time
you upload it. After you upload the object, you cannot modify object metadata. The only way to modify
object metadata is to make a copy of the object and set the metadata.

Topics

• Object Keys (p. 99)

• Object Metadata (p. 101)

Object Keys
When you create an object, you specify the key name, which uniquely identifies the object in the bucket.
For example, in the Amazon S3 console (see AWS Management Console), when you highlight a bucket, a
list of objects in your bucket appears. These names are the object keys. The name for a key is a sequence
of Unicode characters whose UTF-8 encoding is at most 1024 bytes long.

The Amazon S3 data model is a flat structure: you create a bucket, and the bucket stores objects. There
is no hierarchy of subbuckets or subfolders. However, you can infer logical hierarchy using key name
prefixes and delimiters as the Amazon S3 console does. The Amazon S3 console supports a concept of
folders. Suppose that your bucket (admin-created) has four objects with the following object keys:

Development/Projects.xls

Finance/statement1.pdf

Private/taxdocument.pdf

s3-dg.pdf

The console uses the key name prefixes (Development/, Finance/, and Private/) and delimiter ('/')
to present a folder structure as shown:

The s3-dg.pdf key does not have a prefix, so its object appears directly at the root level of the bucket.
If you open the Development/ folder, you see the Projects.xlsx object in it.

API Version 2006-03-01
99

https://console.aws.amazon.com/s3/home

Amazon Simple Storage Service Developer Guide
Object Keys

Note
Amazon S3 supports buckets and objects, and there is no hierarchy in Amazon S3. However, the
prefixes and delimiters in an object key name enable the Amazon S3 console and the AWS SDKs
to infer hierarchy and introduce the concept of folders.

Object Key Naming Guidelines

You can use any UTF-8 character in an object key name. However, using certain characters in key names
may cause problems with some applications and protocols. The following guidelines help you maximize
compliance with DNS, web-safe characters, XML parsers, and other APIs.

Safe Characters

The following character sets are generally safe for use in key names:

Alphanumeric characters • 0-9
• a-z
• A-Z

Special characters • !
• -
• _
• .
• *
• '
• (
•)

The following are examples of valid object key names:

• 4my-organization

• my.great_photos-2014/jan/myvacation.jpg

• videos/2014/birthday/video1.wmv

API Version 2006-03-01
100

Amazon Simple Storage Service Developer Guide
Object Metadata

Important
If an object key name consists of a single period (.), or two periods (..), you can’t download the
object using the Amazon S3 console. To download an object with a key name of “.” or “..”, you
must use the AWS CLI, AWS SDKs, or REST API.

Characters That Might Require Special Handling

The following characters in a key name might require additional code handling and likely need to be URL
encoded or referenced as HEX. Some of these are non-printable characters and your browser might not
handle them, which also requires special handling:

• Ampersand ("&")

• Dollar ("$")

• ASCII character ranges 00–1F hex (0–31 decimal) and 7F (127 decimal)

• 'At' symbol ("@")

• Equals ("=")

• Semicolon (";")

• Colon (":")

• Plus ("+")

• Space – Significant sequences of spaces may be lost in some uses (especially multiple spaces)

• Comma (",")

• Question mark ("?")

Characters to Avoid

Avoid the following characters in a key name because of significant special handling for consistency
across all applications.

• Backslash ("\")

• Left curly brace ("{")

• Non-printable ASCII characters (128–255 decimal characters)

• Caret ("^")

• Right curly brace ("}")

• Percent character ("%")

• Grave accent / back tick ("`")

• Right square bracket ("]")

• Quotation marks

• 'Greater Than' symbol (">")

• Left square bracket ("[")

• Tilde ("~")

• 'Less Than' symbol ("<")

• 'Pound' character ("#")

• Vertical bar / pipe ("|")

Object Metadata
There are two kinds of metadata: system metadata and user-defined metadata.

API Version 2006-03-01
101

Amazon Simple Storage Service Developer Guide
Object Metadata

System-Defined Object Metadata
For each object stored in a bucket, Amazon S3 maintains a set of system metadata. Amazon S3 processes
this system metadata as needed. For example, Amazon S3 maintains object creation date and size
metadata and uses this information as part of object management.

There are two categories of system metadata:

1. Metadata such as object creation date is system controlled where only Amazon S3 can modify the
value.

2. Other system metadata, such as the storage class configured for the object and whether the object
has server-side encryption enabled, are examples of system metadata whose values you control.
If your bucket is configured as a website, sometimes you might want to redirect a page request to
another page or an external URL. In this case, a webpage is an object in your bucket. Amazon S3 stores
the page redirect value as system metadata whose value you control.

When you create objects, you can configure values of these system metadata items or update the
values when you need to. For more information about storage classes, see Amazon S3 Storage
Classes (p. 103). For more information about server-side encryption, see Protecting Data Using
Encryption (p. 264).

The following table provides a list of system-defined metadata and whether you can update it.

Name Description Can User
Modify the
Value?

Date Current date and time. No

Content-Length Object size in bytes. No

Last-Modified Object creation date or the last modified date, whichever is
the latest.

No

Content-MD5 The base64-encoded 128-bit MD5 digest of the object. No

x-amz-server-side-
encryption

Indicates whether server-side encryption is enabled for the
object, and whether that encryption is from the AWS Key
Management Service (SSE-KMS) or from AWS managed
encryption (SSE-S3). For more information, see Protecting
Data Using Server-Side Encryption (p. 265).

Yes

x-amz-version-id Object version. When you enable versioning on a
bucket, Amazon S3 assigns a version number to objects
added to the bucket. For more information, see Using
Versioning (p. 432).

No

x-amz-delete-marker In a bucket that has versioning enabled, this Boolean marker
indicates whether the object is a delete marker.

No

x-amz-storage-class Storage class used for storing the object. For more
information, see Amazon S3 Storage Classes (p. 103).

Yes

x-amz-website-
redirect-location

Redirects requests for the associated object to another
object in the same bucket or an external URL. For more
information, see (Optional) Configuring a Webpage
Redirect (p. 510).

Yes

API Version 2006-03-01
102

Amazon Simple Storage Service Developer Guide
Storage Classes

Name Description Can User
Modify the
Value?

x-amz-server-side-
encryption-aws-kms-
key-id

If x-amz-server-side-encryption is present and has
the value of aws:kms, this indicates the ID of the AWS Key
Management Service (AWS KMS) master encryption key that
was used for the object.

Yes

x-amz-server-side-
encryption-customer-
algorithm

Indicates whether server-side encryption with customer-
provided encryption keys (SSE-C) is enabled. For more
information, see Protecting Data Using Server-Side
Encryption with Customer-Provided Encryption Keys (SSE-
C) (p. 279).

Yes

User-Defined Object Metadata

When uploading an object, you can also assign metadata to the object. You provide this optional
information as a name-value (key-value) pair when you send a PUT or POST request to create the object.
When you upload objects using the REST API, the optional user-defined metadata names must begin
with "x-amz-meta-" to distinguish them from other HTTP headers. When you retrieve the object using
the REST API, this prefix is returned. When you upload objects using the SOAP API, the prefix is not
required. When you retrieve the object using the SOAP API, the prefix is removed, regardless of which API
you used to upload the object.

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or the
AWS SDKs.

When metadata is retrieved through the REST API, Amazon S3 combines headers that have the same
name (ignoring case) into a comma-delimited list. If some metadata contains unprintable characters, it
is not returned. Instead, the x-amz-missing-meta header is returned with a value of the number of
unprintable metadata entries.

User-defined metadata is a set of key-value pairs. Amazon S3 stores user-defined metadata keys in
lowercase. Each key-value pair must conform to US-ASCII when you are using REST and to UTF-8 when
you are using SOAP or browser-based uploads via POST.

Note
The PUT request header is limited to 8 KB in size. Within the PUT request header, the user-
defined metadata is limited to 2 KB in size. The size of user-defined metadata is measured by
taking the sum of the number of bytes in the UTF-8 encoding of each key and value.

For information about adding metadata to your object after it’s been uploaded, see How Do I Add
Metadata to an S3 Object? in the Amazon Simple Storage Service Console User Guide.

Amazon S3 Storage Classes
Each object in Amazon S3 has a storage class associated with it. For example, if you list the objects in an
S3 bucket, the console shows the storage class for all the objects in the list.

API Version 2006-03-01
103

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-object-metadata.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-object-metadata.html

Amazon Simple Storage Service Developer Guide
Storage Classes for Frequently Accessed Objects

Amazon S3 offers a range of storage classes for the objects that you store. You choose a class depending
on your use case scenario and performance access requirements. All of these storage classes offer high
durability.

Topics

• Storage Classes for Frequently Accessed Objects (p. 104)

• Storage Class That Automatically Optimizes Frequently and Infrequently Accessed Objects (p. 104)

• Storage Classes for Infrequently Accessed Objects (p. 105)

• Storage Classes for Archiving Objects (p. 106)

• Comparing the Amazon S3 Storage Classes (p. 106)

• Setting the Storage Class of an Object (p. 107)

Storage Classes for Frequently Accessed Objects
For performance-sensitive use cases (those that require millisecond access time) and frequently accessed
data, Amazon S3 provides the following storage classes:

• STANDARD—The default storage class. If you don't specify the storage class when you upload an
object, Amazon S3 assigns the STANDARD storage class.

• REDUCED_REDUNDANCY—The Reduced Redundancy Storage (RRS) storage class is designed for
noncritical, reproducible data that can be stored with less redundancy than the STANDARD storage
class.

Important
We recommend that you not use this storage class. The STANDARD storage class is more cost
effective.

For durability, RRS objects have an average annual expected loss of 0.01% of objects. If an RRS object
is lost, when requests are made to that object, Amazon S3 returns a 405 error.

Storage Class That Automatically Optimizes
Frequently and Infrequently Accessed Objects
The INTELLIGENT_TIERING storage class is designed to optimize storage costs by automatically moving
data to the most cost-effective storage access tier, without performance impact or operational overhead.
INTELLIGENT_TIERING delivers automatic cost savings by moving data on a granular object level

API Version 2006-03-01
104

Amazon Simple Storage Service Developer Guide
Storage Classes for Infrequently Accessed Objects

between two access tiers, a frequent access tier and a lower-cost infrequent access tier, when access
patterns change. The INTELLIGENT_TIERING storage class is ideal if you want to optimize storage costs
automatically for long-lived data when access patterns are unknown or unpredictable.

The INTELLIGENT_TIERING storage class stores objects in two access tiers: one tier that is optimized
for frequent access and another lower-cost tier that is optimized for infrequently accessed data. For
a small monthly monitoring and automation fee per object, Amazon S3 monitors access patterns
of the objects in the INTELLIGENT_TIERING storage class and moves objects that have not been
accessed for 30 consecutive days to the infrequent access tier. There are no retrieval fees when using
the INTELLIGENT_TIERING storage class. If an object in the infrequent access tier is accessed, it is
automatically moved back to the frequent access tier. No additional tiering fees apply when objects are
moved between access tiers within the INTELLIGENT_TIERING storage class.

Note
The INTELLIGENT_TIERING storage class is suitable for objects larger than 128 KB that you plan
to store for at least 30 days. If the size of an object is less than 128 KB, it is not eligible for auto-
tiering. Smaller objects can be stored, but they are always charged at the frequent access tier
rates in the INTELLIGENT_TIERING storage class. If you delete an object before the end of the
30-day minimum storage duration period, you are charged for 30 days. For pricing information,
see Amazon S3 Pricing.

Storage Classes for Infrequently Accessed Objects
The STANDARD_IA and ONEZONE_IA storage classes are designed for long-lived and infrequently
accessed data. (IA stands for infrequent access.) STANDARD_IA and ONEZONE_IA objects are available for
millisecond access (similar to the STANDARD storage class). Amazon S3 charges a retrieval fee for these
objects, so they are most suitable for infrequently accessed data. For pricing information, see Amazon S3
Pricing.

For example, you might choose the STANDARD_IA and ONEZONE_IA storage classes:

• For storing backups.

• For older data that is accessed infrequently, but that still requires millisecond access. For example,
when you upload data, you might choose the STANDARD storage class, and use lifecycle configuration
to tell Amazon S3 to transition the objects to the STANDARD_IA or ONEZONE_IA class. For more
information about lifecycle management, see Object Lifecycle Management (p. 119).

Note
The STANDARD_IA and ONEZONE_IA storage classes are suitable for objects larger than 128 KB
that you plan to store for at least 30 days. If an object is less than 128 KB, Amazon S3 charges
you for 128 KB. If you delete an object before the end of the 30-day minimum storage duration
period, you are charged for 30 days. For pricing information, see Amazon S3 Pricing.

These storage classes differ as follows:

• STANDARD_IA—Amazon S3 stores the object data redundantly across multiple geographically
separated Availability Zones (similar to the STANDARD storage class). STANDARD_IA objects are
resilient to the loss of an Availability Zone. This storage class offers greater availability and resiliency
than the ONEZONE_IA class.

• ONEZONE_IA—Amazon S3 stores the object data in only one Availability Zone, which makes it less
expensive than STANDARD_IA. However, the data is not resilient to the physical loss of the Availability
Zone resulting from disasters, such as earth quakes and floods. The ONEZONE_IA storage class is

API Version 2006-03-01
105

https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Storage Classes for Archiving Objects

as durable as STANDARD_IA, but it is less available and less resilient. For a comparison of storage
class durability and availability, see the Durability and Availability table at the end of this section. For
pricing, see Amazon S3 Pricing.

We recommend the following:

• STANDARD_IA—Use for your primary or only copy of data that can't be recreated.
• ONEZONE_IA—Use if you can recreate the data if the Availability Zone fails, and for object replicas

when setting cross-region replication (CRR).

Storage Classes for Archiving Objects
The GLACIER and DEEP_ARCHIVE storage classes are designed for low-cost data archiving. These
storage classes offer the same durability and resiliency as the STANDARD storage class. For a comparison
of storage class durability and availability, see the Durability and Availability table at the end of this
section.

These storage classes differ as follows:

• GLACIER—Use for archives where portions of the data might need to be retrieved in minutes. Data
stored in the GLACIER storage class has a minimum storage duration period of 90 days and can be
accessed in as little as 1-5 minutes using expedited retrieval. If you have deleted, overwritten, or
transitioned to a different storage class an object before the 90-day minimum, you are charged for 90
days. For pricing information, see Amazon S3 Pricing.

• DEEP_ARCHIVE—Use for archiving data that rarely needs to be accessed. Data stored in the

DEEP_ARCHIVE storage class has a minimum storage duration period of 180 days and a default
retrieval time of 12 hours. If you have deleted, overwritten, or transitioned to a different storage class
an object before the 180-day minimum, you are charged for 180 days. For pricing information, see
Amazon S3 Pricing.

DEEP_ARCHIVE is the lowest cost storage option in AWS. Storage costs for DEEP_ARCHIVE are less
expensive than using the GLACIER storage class. You can reduce DEEP_ARCHIVE retrieval costs by
using bulk retrieval, which returns data within 48 hours.

Retrieving Archived Objects
You can set the storage class of an object to GLACIER or DEEP_ARCHIVE in the same ways that you do
for the other storage classes as described in the section Setting the Storage Class of an Object (p. 107).
However, the GLACIER and DEEP_ARCHIVE objects are not available for real-time access. You must
first restore the GLACIER and DEEP_ARCHIVE objects before you can access them (STANDARD, RRS,
STANDARD_IA, ONEZONE_IA, and INTELLIGENT_TIERING objects are available for anytime access). For
more information about retrieving archived objects, see Restoring Archived Objects (p. 248).

Important
When you choose the GLACIER or DEEP_ARCHIVE storage class, your objects remain in Amazon
S3. You cannot access them directly through the separate Amazon S3 Glacier service.

To learn more about the Amazon S3 Glacier service, see the Amazon S3 Glacier Developer Guide.

Comparing the Amazon S3 Storage Classes
The following table compares the storage classes.

API Version 2006-03-01
106

https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
https://docs.aws.amazon.com/amazonglacier/latest/dev/

Amazon Simple Storage Service Developer Guide
Setting the Storage Class of an Object

All of the storage classes except for ONEZONE_IA are designed to be resilient to simultaneous complete
data loss in a single Availability Zone and partial loss in another Availability Zone.

In addition to the performance requirements of your application scenario, consider price. For storage
class pricing, see Amazon S3 Pricing.

Setting the Storage Class of an Object
Amazon S3 APIs support setting (or updating) the storage class of objects as follows:

• When creating a new object, you can specify its storage class. For example, when creating objects
using the PUT Object, POST Object, and Initiate Multipart Upload APIs, you add the x-amz-storage-
class request header to specify a storage class. If you don't add this header, Amazon S3 uses
STANDARD, the default storage class.

• You can also change the storage class of an object that is already stored in Amazon S3 to any other
storage class by making a copy of the object using the PUT Object - Copy API. However, you cannot
use PUT Object - Copy to copy objects that are stored in the GLACIER or DEEP_ARCHIVE storage
classes.

You copy the object in the same bucket using the same key name and specify request headers as
follows:

• Set the x-amz-metadata-directive header to COPY.

• Set the x-amz-storage-class to the storage class that you want to use.

In a versioning-enabled bucket, you cannot change the storage class of a specific version of an object.
When you copy it, Amazon S3 gives it a new version ID.

• You can direct Amazon S3 to change the storage class of objects by adding a lifecycle configuration to
a bucket. For more information, see Object Lifecycle Management (p. 119).

• When setting up a replication configuration, you can set the storage class for replicated
objects to any other storage class. However, you cannot replicate objects that are stored in the
GLACIER or DEEP_ARCHIVE storage classes. For more information, see Replication Configuration
Overview (p. 556).

API Version 2006-03-01
107

https://aws.amazon.com/s3/pricing/
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html

Amazon Simple Storage Service Developer Guide
Subresources

To create and update object storage classes, you can use the Amazon S3 console, AWS SDKs, or the AWS
Command Line Interface (AWS CLI). Each uses the Amazon S3 APIs to send requests to Amazon S3.

Object Subresources
Amazon S3 defines a set of subresources associated with buckets and objects. Subresources are
subordinates to objects; that is, subresources do not exist on their own, they are always associated with
some other entity, such as an object or a bucket.

The following table lists the subresources associated with Amazon S3 objects.

Subresource Description

acl Contains a list of grants identifying the grantees and the permissions granted. When
you create an object, the acl identifies the object owner as having full control over the
object. You can retrieve an object ACL or replace it with an updated list of grants. Any
update to an ACL requires you to replace the existing ACL. For more information about
ACLs, see Managing Access with ACLs (p. 403).

torrent Amazon S3 supports the BitTorrent protocol. Amazon S3 uses the torrent subresource
to return the torrent file associated with the specific object. To retrieve a torrent file,
you specify the torrent subresource in your GET request. Amazon S3 creates a torrent
file and returns it. You can only retrieve the torrent subresource, you cannot create,
update, or delete the torrent subresource. For more information, see Using BitTorrent
with Amazon S3 (p. 636).

Note
Amazon S3 does not support the BitTorrent protocol in AWS Regions launched
after May 30, 2016.

Object Versioning
Use versioning to keep multiple versions of an object in one bucket. For example, you could store my-
image.jpg (version 111111) and my-image.jpg (version 222222) in a single bucket. Versioning
protects you from the consequences of unintended overwrites and deletions. You can also use versioning
to archive objects so you have access to previous versions.

Note
The SOAP API does not support versioning. SOAP support over HTTP is deprecated, but it is still
available over HTTPS. New Amazon S3 features are not supported for SOAP.

To customize your data retention approach and control storage costs, use object versioning with Object
Lifecycle Management (p. 119). For information about creating lifecycle policies using the AWS
Management Console, see How Do I Create a Lifecycle Policy for an S3 Bucket? in the Amazon Simple
Storage Service Console User Guide.

If you have an object expiration lifecycle policy in your non-versioned bucket and you want to maintain
the same permanent delete behavior when you enable versioning, you must add a noncurrent expiration
policy. The noncurrent expiration lifecycle policy will manage the deletes of the noncurrent object
versions in the version-enabled bucket. (A version-enabled bucket maintains one current and zero or
more noncurrent object versions.)

You must explicitly enable versioning on your bucket. By default, versioning is disabled. Regardless
of whether you have enabled versioning, each object in your bucket has a version ID. If you have not
enabled versioning, Amazon S3 sets the value of the version ID to null. If you have enabled versioning,
Amazon S3 assigns a unique version ID value for the object. When you enable versioning on a bucket,

API Version 2006-03-01
108

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-lifecycle.html

Amazon Simple Storage Service Developer Guide
Versioning

objects already stored in the bucket are unchanged. The version IDs (null), contents, and permissions
remain the same.

Enabling and suspending versioning is done at the bucket level. When you enable versioning for a
bucket, all objects added to it will have a unique version ID. Unique version IDs are randomly generated,
Unicode, UTF-8 encoded, URL-ready, opaque strings that are at most 1024 bytes long. An example
version ID is 3/L4kqtJlcpXroDTDmJ+rmSpXd3dIbrHY+MTRCxf3vjVBH40Nr8X8gdRQBpUMLUo. Only
Amazon S3 generates version IDs. They cannot be edited.

Note
For simplicity, we will use much shorter IDs in all our examples.

When you PUT an object in a versioning-enabled bucket, the noncurrent version is not overwritten. The
following figure shows that when a new version of photo.gif is PUT into a bucket that already contains
an object with the same name, the original object (ID = 111111) remains in the bucket, Amazon S3
generates a new version ID (121212), and adds the newer version to the bucket.

This functionality prevents you from accidentally overwriting or deleting objects and affords you the
opportunity to retrieve a previous version of an object.

When you DELETE an object, all versions remain in the bucket and Amazon S3 inserts a delete marker, as
shown in the following figure.

The delete marker becomes the current version of the object. By default, GET requests retrieve the most
recently stored version. Performing a simple GET Object request when the current version is a delete
marker returns a 403 Forbidden error, as shown in the following figure.

API Version 2006-03-01
109

Amazon Simple Storage Service Developer Guide
Object Tagging

You can, however, GET a noncurrent version of an object by specifying its version ID. In the following
figure, we GET a specific object version, 111111. Amazon S3 returns that object version even though it's
not the current version.

You can permanently delete an object by specifying the version you want to delete. Only the owner
of an Amazon S3 bucket can permanently delete a version. The following figure shows how DELETE
versionId permanently deletes an object from a bucket and that Amazon S3 doesn't insert a delete
marker.

You can add additional security by configuring a bucket to enable MFA (multi-factor authentication)
Delete. When you do, the bucket owner must include two forms of authentication in any request
to delete a version or change the versioning state of the bucket. For more information, see MFA
Delete (p. 433).

Important
If you notice a significant increase in the number of HTTP 503-slow down responses received
for Amazon S3 PUT or DELETE object requests to a bucket that has versioning enabled, you
might have one or more objects in the bucket for which there are millions of versions. For more
information, see Troubleshooting Amazon S3 (p. 643).

For more information, see Using Versioning (p. 432).

Object Tagging
Use object tagging to categorize storage. Each tag is a key-value pair. Consider the following tagging
examples:

• Suppose that an object contains protected health information (PHI) data. You might tag the object
using the following key-value pair.

PHI=True

or

API Version 2006-03-01
110

Amazon Simple Storage Service Developer Guide
Object Tagging

Classification=PHI

• Suppose that you store project files in your S3 bucket. You might tag these objects with a key named
Project and a value, as shown following.

Project=Blue

• You can add multiple tags to an object, as shown following.

Project=x
Classification=confidential

You can add tags to new objects when you upload them, or you can add them to existing objects. Note
the following:

• You can associate up to 10 tags with an object. Tags that are associated with an object must have
unique tag keys.

• A tag key can be up to 128 Unicode characters in length, and tag values can be up to 256 Unicode
characters in length.

• The key and values are case sensitive.
• For more information about tag restrictions, see User-Defined Tag Restrictions.

Object key name prefixes also enable you to categorize storage. However, prefix-based categorization is
one-dimensional. Consider the following object key names:

photos/photo1.jpg
project/projectx/document.pdf
project/projecty/document2.pdf

These key names have the prefixes photos/, project/projectx/, and project/projecty/. These
prefixes enable one-dimensional categorization. That is, everything under a prefix is one category. For
example, the prefix project/projectx identifies all documents related to project x.

With tagging, you now have another dimension. If you want photo1 in project x category, you can tag
the object accordingly. In addition to data classification, tagging offers benefits such as the following:

• Object tags enable fine-grained access control of permissions. For example, you could grant an IAM
user permissions to read-only objects with specific tags.

• Object tags enable fine-grained object lifecycle management in which you can specify a tag-based
filter, in addition to a key name prefix, in a lifecycle rule.

• When using Amazon S3 analytics, you can configure filters to group objects together for analysis by
object tags, by key name prefix, or by both prefix and tags.

• You can also customize Amazon CloudWatch metrics to display information by specific tag filters. The
following sections provide details.

Important
It is acceptable to use tags to label objects containing confidential data, such as personally
identifiable information (PII) or protected health information (PHI). However, the tags
themselves shouldn't contain any confidential information.

To add object tag sets to more than one Amazon S3 object with a single request, you can use Amazon S3
batch operations. You provide Amazon S3 batch operations with a list of objects to operate on. Amazon

API Version 2006-03-01
111

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/allocation-tag-restrictions.html

Amazon Simple Storage Service Developer Guide
API Operations Related to Object Tagging

S3 batch operations call the respective API to perform the specified operation. A single Amazon S3 batch
operations job can perform the specified operation on billions of objects containing exabytes of data.

Amazon S3 batch operations track progress, send notifications, and store a detailed completion report
of all actions, providing a fully managed, auditable, serverless experience. You can use Amazon S3
batch operations through the AWS Management Console, AWS CLI, AWS SDKs, or REST API. For more
information, see the section called “The Basics: Jobs” (p. 468).

API Operations Related to Object Tagging
Amazon S3 supports the following API operations that are specifically for object tagging:

Object API Operations

• PUT Object tagging – Replaces tags on an object. You specify tags in the request body. There are two
distinct scenarios of object tag management using this API.

• Object has no tags – Using this API you can add a set of tags to an object (the object has no prior
tags).

• Object has a set of existing tags – To modify the existing tag set, you must first retrieve the existing
tag set, modify it on the client side, and then use this API to replace the tag set.

Note
If you send this request with an empty tag set, Amazon S3 deletes the existing tag set on
the object. If you use this method, you will be charged for a Tier 1 Request (PUT). For more
information, see Amazon S3 Pricing.
The DELETE Object tagging request is preferred because it achieves the same result without
incurring charges.

• GET Object tagging – Returns the tag set associated with an object. Amazon S3 returns object tags in
the response body.

• DELETE Object tagging – Deletes the tag set associated with an object.

Other API Operations That Support Tagging

• PUT Object and Initiate Multipart Upload– You can specify tags when you create objects. You specify
tags using the x-amz-tagging request header.

• GET Object – Instead of returning the tag set, Amazon S3 returns the object tag count in the x-amz-
tag-count header (only if the requester has permissions to read tags) because the header response
size is limited to 8 K bytes. If you want to view the tags, you make another request for the GET Object
tagging API operation.

• POST Object – You can specify tags in your POST request.

As long as the tags in your request don't exceed the 8 K byte HTTP request header size limit, you can
use the PUT Object API to create objects with tags. If the tags you specify exceed the header size
limit, you can use this POST method in which you include the tags in the body.

API Version 2006-03-01
112

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTtagging.html
https://d0.awsstatic.com/whitepapers/aws_pricing_overview.pdf
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETEtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETEtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html

Amazon Simple Storage Service Developer Guide
Object Tagging and Additional Information

PUT Object - Copy – You can specify the x-amz-tagging-directive in your request to direct
Amazon S3 to either copy (default behavior) the tags or replace tags by a new set of tags provided in
the request.

Note the following:

• Tagging follows the eventual consistency model. That is, soon after adding tags to an object, if you try
to retrieve the tags, you might get old tags, if any, on the objects. However, a subsequent call will likely
provide the updated tags.

Object Tagging and Additional Information
This section explains how object tagging relates to other configurations.

Object Tagging and Lifecycle Management
In bucket lifecycle configuration, you can specify a filter to select a subset of objects to which the rule
applies. You can specify a filter based on the key name prefixes, object tags, or both.

Suppose that you store photos (raw and the finished format) in your Amazon S3 bucket. You might tag
these objects as shown following.

phototype=raw
or
phototype=finished

You might consider archiving the raw photos to Glacier sometime after they are created. You can
configure a lifecycle rule with a filter that identifies the subset of objects with the key name prefix
(photos/) that have a specific tag (phototype=raw).

For more information, see Object Lifecycle Management (p. 119).

Object Tagging and Replication
If you configured Replication on your bucket, Amazon S3 replicates tags, provided you grant Amazon S3
permission to read the tags. For more information, see Overview of Setting Up Replication (p. 555).

Object Tagging and Access Control Policies
You can also use permissions policies (bucket and user policies) to manage permissions related to object
tagging. For policy actions see the following topics:

• Permissions for Object Operations (p. 345)
• Permissions Related to Bucket Operations (p. 346)

Object tags enable fine-grained access control for managing permissions. You can grant conditional
permissions based on object tags. Amazon S3 supports the following condition keys that you can use to
grant conditional permissions based on object tags:

• s3:ExistingObjectTag/<tag-key> – Use this condition key to verify that an existing object tag
has the specific tag key and value.

API Version 2006-03-01
113

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html

Amazon Simple Storage Service Developer Guide
Object Tagging and Additional Information

Note
When granting permissions for the PUT Object and DELETE Object operations, this
condition key is not supported. That is, you cannot create a policy to grant or deny a user
permissions to delete or overwrite an object based on its existing tags.

• s3:RequestObjectTagKeys – Use this condition key to restrict the tag keys that you want to allow

on objects. This is useful when adding tags to objects using the PutObjectTagging and PutObject, and
POST object requests.

• s3:RequestObjectTag/<tag-key> – Use this condition key to restrict the tag keys and values that

you want to allow on objects. This is useful when adding tags to objects using the PutObjectTagging
and PutObject, and POST Bucket requests.

For a complete list of Amazon S3 service-specific condition keys, see Available Condition Keys (p. 351).
The following permissions policies illustrate how object tagging enables fine grained access permissions
management.

Example 1: Allow a user to read only the Objects that have a specific tag

The following permissions policy grants a user permission to read objects, but the condition limits the
read permission to only objects that have the following specific tag key and value.

security : public

Note that the policy uses the Amazon S3 condition key, s3:ExistingObjectTag/<tag-key> to
specify the key and value.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::examplebucket/*"
],
 "Condition": {
 "StringEquals": {
 "s3:ExistingObjectTag/security": "public"
 }
 }
 }
]
}

Example 2: Allow a user to add object tags with restrictions on the allowed tag keys

The following permissions policy grants a user permissions to perform the s3:PutObjectTagging
action, which allows user to add tags to an existing object. The condition limits the tag keys that the user
is allowed to use. The condition uses the s3:RequestObjectTagKeys condition key to specify the set
of tag keys.

{

API Version 2006-03-01
114

Amazon Simple Storage Service Developer Guide
Object Tagging and Additional Information

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObjectTagging"
],
 "Resource": [
 "arn:aws:s3:::examplebucket/*"
],
 "Condition": {
 "ForAllValues:StringLike": {
 "s3:RequestObjectTagKeys": [
 "Owner",
 "CreationDate"
]
 }
 }
 }
]
}

The policy ensures that the tag set, if specified in the request, has the specified keys. A user might send
an empty tag set in PutObjectTagging, which is allowed by this policy (an empty tag set in the request
removes any existing tags on the object). If you want to prevent a user from removing the tag set, you
can add another condition to ensure that the user provides at least one value. The ForAnyValue in the
condition ensures at least one of the specified values must be present in the request.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObjectTagging"
],
 "Resource": [
 "arn:aws:s3:::examplebucket/*"
],
 "Condition": {
 "ForAllValues:StringLike": {
 "s3:RequestObjectTagKeys": [
 "Owner",
 "CreationDate"
]
 },
 "ForAnyValue:StringLike": {
 "s3:RequestObjectTagKeys": [
 "Owner",
 "CreationDate"
]
 }
 }
 }
]
}

For more information, see Creating a Condition That Tests Multiple Key Values (Set Operations) in the
IAM User Guide.

API Version 2006-03-01
115

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html

Amazon Simple Storage Service Developer Guide
Managing Object Tags

Example 3: Allow a user to add object tags that include a specific tag key and value

The following user policy grants a user permissions to perform the s3:PutObjectTagging action,
which allows user to add tags on an existing object. The condition requires the user to include a specific
tag (Project) with value set to X.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObjectTagging"
],
 "Resource": [
 "arn:aws:s3:::examplebucket/*"
],
 "Condition": {
 "StringEquals": {
 "s3:RequestObjectTag/Project": "X"
 }
 }
 }
]
}

Related Topics

Managing Object Tags (p. 116)

Managing Object Tags
This section explains how you can add object tags programmatically using the AWS SDK for Java or the
Amazon S3 console.

Topics

• Managing Object Tags Using the Console (p. 116)

• Managing Tags Using the AWS SDK for Java (p. 116)

• Managing Tags Using the AWS SDK for .NET (p. 117)

Managing Object Tags Using the Console

You can use the Amazon S3 console to add tags to new objects when you upload them or you can add
them to existing objects. For instructions on how to add tags to objects using the Amazon S3 console,
see Adding Object Tags in the Amazon Simple Storage Service Console User Guide.

Managing Tags Using the AWS SDK for Java

The following example shows how to use the AWS SDK for Java to set tags for a new object and
retrieve or replace tags for an existing object. For more information about object tagging, see Object
Tagging (p. 110). For instructions on creating and testing a working sample, see Testing the Amazon S3
Java Code Examples (p. 677).

import com.amazonaws.AmazonServiceException;

API Version 2006-03-01
116

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-object-tags.html

Amazon Simple Storage Service Developer Guide
Managing Object Tags

import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.io.File;
import java.util.ArrayList;
import java.util.List;

public class ManagingObjectTags {

 public static void main(String[] args) {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String keyName = "*** Object key ***";
 String filePath = "*** File path ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 // Create an object, add two new tags, and upload the object to Amazon S3.
 PutObjectRequest putRequest = new PutObjectRequest(bucketName, keyName, new
 File(filePath));
 List<Tag> tags = new ArrayList<Tag>();
 tags.add(new Tag("Tag 1", "This is tag 1"));
 tags.add(new Tag("Tag 2", "This is tag 2"));
 putRequest.setTagging(new ObjectTagging(tags));
 PutObjectResult putResult = s3Client.putObject(putRequest);

 // Retrieve the object's tags.
 GetObjectTaggingRequest getTaggingRequest = new
 GetObjectTaggingRequest(bucketName, keyName);
 GetObjectTaggingResult getTagsResult =
 s3Client.getObjectTagging(getTaggingRequest);

 // Replace the object's tags with two new tags.
 List<Tag> newTags = new ArrayList<Tag>();
 newTags.add(new Tag("Tag 3", "This is tag 3"));
 newTags.add(new Tag("Tag 4", "This is tag 4"));
 s3Client.setObjectTagging(new SetObjectTaggingRequest(bucketName, keyName, new
 ObjectTagging(newTags)));
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Managing Tags Using the AWS SDK for .NET
The following example shows how to use the AWS SDK for .NET to set the tags for a new object and
retrieve or replace the tags for an existing object. For more information about object tagging, see Object
Tagging (p. 110).

API Version 2006-03-01
117

Amazon Simple Storage Service Developer Guide
Managing Object Tags

For instructions on how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 678).

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 public class ObjectTagsTest
 {
 private const string bucketName = "*** bucket name ***";
 private const string keyName = "*** key name for the new object ***";
 private const string filePath = @"*** file path ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 client;

 public static void Main()
 {
 client = new AmazonS3Client(bucketRegion);
 PutObjectWithTagsTestAsync().Wait();
 }

 static async Task PutObjectWithTagsTestAsync()
 {
 try
 {
 // 1. Put an object with tags.
 var putRequest = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = keyName,
 FilePath = filePath,
 TagSet = new List<Tag>{
 new Tag { Key = "Keyx1", Value = "Value1"},
 new Tag { Key = "Keyx2", Value = "Value2" }
 }
 };

 PutObjectResponse response = await client.PutObjectAsync(putRequest);
 // 2. Retrieve the object's tags.
 GetObjectTaggingRequest getTagsRequest = new GetObjectTaggingRequest
 {
 BucketName = bucketName,
 Key = keyName
 };

 GetObjectTaggingResponse objectTags = await
 client.GetObjectTaggingAsync(getTagsRequest);
 for (int i = 0; i < objectTags.Tagging.Count; i++)
 Console.WriteLine("Key: {0}, Value: {1}", objectTags.Tagging[i].Key,
 objectTags.Tagging[0].Value);

 // 3. Replace the tagset.

 Tagging newTagSet = new Tagging();
 newTagSet.TagSet = new List<Tag>{
 new Tag { Key = "Key3", Value = "Value3"},
 new Tag { Key = "Key4", Value = "Value4" }
 };

API Version 2006-03-01
118

Amazon Simple Storage Service Developer Guide
Lifecycle Management

 PutObjectTaggingRequest putObjTagsRequest = new PutObjectTaggingRequest()
 {
 BucketName = bucketName,
 Key = keyName,
 Tagging = newTagSet
 };
 PutObjectTaggingResponse response2 = await
 client.PutObjectTaggingAsync(putObjTagsRequest);

 // 4. Retrieve the object's tags.
 GetObjectTaggingRequest getTagsRequest2 = new GetObjectTaggingRequest();
 getTagsRequest2.BucketName = bucketName;
 getTagsRequest2.Key = keyName;
 GetObjectTaggingResponse objectTags2 = await
 client.GetObjectTaggingAsync(getTagsRequest2);
 for (int i = 0; i < objectTags2.Tagging.Count; i++)
 Console.WriteLine("Key: {0}, Value: {1}", objectTags2.Tagging[i].Key,
 objectTags2.Tagging[0].Value);

 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine(
 "Error encountered ***. Message:'{0}' when writing an object"
 , e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine(
 "Encountered an error. Message:'{0}' when writing an object"
 , e.Message);
 }
 }
 }
}

Object Lifecycle Management
To manage your objects so that they are stored cost effectively throughout their lifecycle, configure their
lifecycle. A lifecycle configuration is a set of rules that define actions that Amazon S3 applies to a group
of objects. There are two types of actions:

• Transition actions—Define when objects transition to another storage class. For example, you might
choose to transition objects to the STANDARD_IA storage class 30 days after you created them, or
archive objects to the GLACIER storage class one year after creating them.

There are costs associated with the lifecycle transition requests. For pricing information, see Amazon
S3 Pricing.

• Expiration actions—Define when objects expire. Amazon S3 deletes expired objects on your behalf.

The lifecycle expiration costs depend on when you choose to expire objects. For more information, see
Configuring Object Expiration (p. 126).

API Version 2006-03-01
119

https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-class-intro.html
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
When Should I Use Lifecycle Configuration?

For more information about lifecycle rules, see Lifecycle Configuration Elements (p. 127).

When Should I Use Lifecycle Configuration?
Define lifecycle configuration rules for objects that have a well-defined lifecycle. For example:

• If you upload periodic logs to a bucket, your application might need them for a week or a month. After
that, you might want to delete them.

• Some documents are frequently accessed for a limited period of time. After that, they are infrequently
accessed. At some point, you might not need real-time access to them, but your organization or
regulations might require you to archive them for a specific period. After that, you can delete them.

• You might upload some types of data to Amazon S3 primarily for archival purposes. For example, you
might archive digital media, financial and healthcare records, raw genomics sequence data, long-term
database backups, and data that must be retained for regulatory compliance.

With lifecycle configuration rules, you can tell Amazon S3 to transition objects to less expensive storage
classes, or archive or delete them.

How Do I Configure a Lifecycle?
A lifecycle configuration, an XML file, comprises a set of rules with predefined actions that you want
Amazon S3 to perform on objects during their lifetime.

Amazon S3 provides a set of API operations for managing lifecycle configuration on a bucket. Amazon
S3 stores the configuration as a lifecycle subresource that is attached to your bucket. For details, see the
following:

PUT Bucket lifecycle

GET Bucket lifecycle

DELETE Bucket lifecycle

You can also configure the lifecycle by using the Amazon S3 console or programmatically by using
the AWS SDK wrapper libraries. If you need to, you can also make the REST API calls directly. For more
information, see Setting Lifecycle Configuration on a Bucket (p. 143).

For more information, see the following topics:

• Additional Considerations for Lifecycle Configuration (p. 120)
• Lifecycle Configuration Elements (p. 127)
• Examples of Lifecycle Configuration (p. 133)
• Setting Lifecycle Configuration on a Bucket (p. 143)

Additional Considerations for Lifecycle Configuration
When configuring the lifecycle of objects, you need to understand the following guidelines for
transitioning objects, setting expiration dates, and other object configurations.

Topics
• Transitioning Objects Using Amazon S3 Lifecycle (p. 121)
• Configuring Object Expiration (p. 126)
• Lifecycle and Other Bucket Configurations (p. 126)

API Version 2006-03-01
120

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETElifecycle.html

Amazon Simple Storage Service Developer Guide
Additional Considerations

Transitioning Objects Using Amazon S3 Lifecycle
You can add rules in a lifecycle configuration to tell Amazon S3 to transition objects to another Amazon
S3 storage class. For example:

• When you know that objects are infrequently accessed, you might transition them to the
STANDARD_IA storage class.

• You might want to archive objects that you don't need to access in real time to the GLACIER storage
class.

The following sections describe supported transitions, related constraints, and transitioning to the
GLACIER storage class.

Supported Transitions and Related Constraints

In a lifecycle configuration, you can define rules to transition objects from one storage class to another
to save on storage costs. When you don't know the access patterns of your objects, or your access
patterns are changing over time, you can transition the objects to the INTELLIGENT_TIERING storage
class for automatic cost savings. For information about storage classes, see Amazon S3 Storage
Classes (p. 103).

Amazon S3 supports a waterfall model for transitioning between storage classes, as shown in the
following diagram.

Amazon S3 supports the following lifecycle transitions between storage classes using a lifecycle
configuration:

API Version 2006-03-01
121

https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-class-intro.html

Amazon Simple Storage Service Developer Guide
Additional Considerations

• You can transition from the STANDARD storage class to any other storage class.
• You can transition from any storage class to the GLACIER or DEEP_ARCHIVE storage classes.
• You can transition from the STANDARD_IA storage class to the INTELLIGENT_TIERING or ONEZONE_IA

storage classes.
• You can transition from the INTELLIGENT_TIERING storage class to the ONEZONE_IA storage class.
• You can transition from the GLACIER storage class to the DEEP_ARCHIVE storage class.

The following lifecycle transitions are not supported:

• You can't transition from any storage class to the STANDARD storage class.
• You can't transition from any storage class to the REDUCED_REDUNDANCY storage class.
• You can't transition from the INTELLIGENT_TIERING storage class to the STANDARD_IA storage class.
• You can't transition from the ONEZONE_IA storage class to the STANDARD_IA or

INTELLIGENT_TIERING storage classes.
• You can transition from the GLACIER storage class to the DEEP_ARCHIVE storage class only.
• You can't transition from the DEEP_ARCHIVE storage class to any other storage class.

The lifecycle storage class transitions have the following constraints:

• From the STANDARD or STANDARD_IA storage class to INTELLIGENT_TIERING. The following
constraints apply:
• For larger objects, there is a cost benefit for transitioning to INTELLIGENT_TIERING. Amazon S3

does not transition objects that are smaller than 128 KB to the INTELLIGENT_TIERING storage class
because it's not cost effective.

• From the STANDARD storage classes to STANDARD_IA or ONEZONE_IA. The following constraints

apply:

• For larger objects, there is a cost benefit for transitioning to STANDARD_IA or ONEZONE_IA. Amazon

S3 does not transition objects that are smaller than 128 KB to the STANDARD_IA or ONEZONE_IA
storage classes because it's not cost effective.

• Objects must be stored at least 30 days in the current storage class before you can transition them

to STANDARD_IA or ONEZONE_IA. For example, you cannot create a lifecycle rule to transition
objects to the STANDARD_IA storage class one day after you create them.

Amazon S3 doesn't transition objects within the first 30 days because newer objects are often
accessed more frequently or deleted sooner than is suitable for STANDARD_IA or ONEZONE_IA
storage.

• If you are transitioning noncurrent objects (in versioned buckets), you can transition only objects

that are at least 30 days noncurrent to STANDARD_IA or ONEZONE_IA storage.

• From the STANDARD_IA storage class to ONEZONE_IA. The following constraints apply:

• Objects must be stored at least 30 days in the STANDARD_IA storage class before you can transition
them to the ONEZONE_IA class.

API Version 2006-03-01
122

Amazon Simple Storage Service Developer Guide
Additional Considerations

You can combine these lifecycle actions to manage an object's complete lifecycle. For example, suppose
that the objects you create have a well-defined lifecycle. Initially, the objects are frequently accessed for
a period of 30 days. Then, objects are infrequently accessed for up to 90 days. After that, the objects are
no longer needed, so you might choose to archive or delete them.

In this scenario, you can create a lifecycle rule in which you specify the initial transition action to
INTELLIGENT_TIERING, STANDARD_IA, or ONEZONE_IA storage, another transition action to GLACIER
storage for archiving, and an expiration action. As you move the objects from one storage class to
another, you save on storage cost. For more information about cost considerations, see Amazon S3
Pricing.

Important
You can't specify a single lifecycle rule for both INTELLIGENT_TIERING (or STANDARD_IA or
ONEZONE_IA) and GLACIER or DEEP_ARCHIVE transitions when the GLACIER or DEEP_ARCHIVE
transition occurs less than 30 days after the INTELLIGENT_TIERING, STANDARD_IA, or
ONEZONE_IA transition. That's because there is a minimum 30-day storage charge associated
with the INTELLIGENT_TIERING, STANDARD_IA, and ONEZONE_IA storage classes.
The same 30-day minimum applies when you specify a transition from STANDARD_IA storage
to ONEZONE_IA or INTELLIGENT_TIERING storage. You can specify two rules to accomplish this,
but you pay minimum storage charges. For more information about cost considerations, see
Amazon S3 Pricing.

Transitioning to the GLACIER and DEEP ARCHIVE Storage Classes (Object
Archival)

Using lifecycle configuration, you can transition objects to the GLACIER or DEEP_ARCHIVE storage
classes for archiving. When you choose the GLACIER or DEEP_ARCHIVE storage class, your objects remain
in Amazon S3. You cannot access them directly through the separate Amazon S3 Glacier service.

Before you archive objects, review the following sections for relevant considerations.

General Considerations

The following are the general considerations for you to consider before you archive objects:

• Encrypted objects remain encrypted throughout the storage class transition process.

• Objects that are stored in the GLACIER or DEEP_ARCHIVE storage classes are not available in real time.

Archived objects are Amazon S3 objects, but before you can access an archived object, you must first
restore a temporary copy of it. The restored object copy is available only for the duration you specify
in the restore request. After that, Amazon S3 deletes the temporary copy, and the object remains
archived in Amazon S3 Glacier.

You can restore an object by using the Amazon S3 console or programmatically by using the AWS
SDKs wrapper libraries or the Amazon S3 REST API in your code. For more information, see Restoring
Archived Objects (p. 248).

• Objects that are stored in the GLACIER storage class can only be transitioned to the DEEP_ARCHIVE

storage class.

API Version 2006-03-01
123

https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Additional Considerations

You can use a lifecycle configuration rule to convert the storage class of an object from GLACIER to the
DEEP_ARCHIVE storage class only. If you want to change the storage class of an object that is stored
in GLACIER to a storage class other than DEEP_ARCHIVE, you must use the restore operation to make
a temporary copy of the object first. Then use the copy operation to overwrite the object specifying
STANDARD, INTELLIGENT_TIERING, STANDARD_IA, ONEZONE_IA, or REDUCED_REDUNDANCY as the
storage class.

• The transition of objects to the DEEP_ARCHIVE storage class can go only one way.

You cannot use a lifecycle configuration rule to convert the storage class of an object from
DEEP_ARCHIVE to any other storage class. If you want to change the storage class of an archived
object to another storage class, you must use the restore operation to make a temporary copy
of the object first. Then use the copy operation to overwrite the object specifying STANDARD,
INTELLIGENT_TIERING, STANDARD_IA, ONEZONE_IA, GLACIER, or REDUCED_REDUNDANCY as the
storage class.

• The objects that are stored in the GLACIER and DEEP_ARCHIVE storage classes are visible and available
only through Amazon S3. They are not available through the separate Amazon S3 Glacier service.

These are Amazon S3 objects, and you can access them only by using the Amazon S3 console or the
Amazon S3 API. You cannot access the archived objects through the separate Amazon S3 Glacier
console or the Amazon S3 Glacier API.

Cost Considerations

If you are planning to archive infrequently accessed data for a period of months or years, the GLACIER
and DEEP_ARCHIVE storage classes can reduce your storage costs. However, to ensure that the GLACIER
or DEEP_ARCHIVE storage class is appropriate for you, consider the following:

• Storage overhead charges – When you transition objects to the GLACIER or DEEP_ARCHIVE storage
class, a fixed amount of storage is added to each object to accommodate metadata for managing the
object.

• For each object archived to GLACIER or DEEP_ARCHIVE, Amazon S3 uses 8 KB of storage for the
name of the object and other metadata. Amazon S3 stores this metadata so that you can get a real-
time list of your archived objects by using the Amazon S3 API. For more information, see Get Bucket
(List Objects). You are charged Amazon S3 STANDARD rates for this additional storage.

• For each object that is archived to GLACIER or DEEP_ARCHIVE, Amazon S3 adds 32 KB of storage for
index and related metadata. This extra data is necessary to identify and restore your object. You are
charged GLACIER or DEEP_ARCHIVE rates for this additional storage.

If you are archiving small objects, consider these storage charges. Also consider aggregating many
small objects into a smaller number of large objects to reduce overhead costs.

API Version 2006-03-01
124

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html

Amazon Simple Storage Service Developer Guide
Additional Considerations

• Number of days you plan to keep objects archived—GLACIER and DEEP_ARCHIVE are long-term
archival solutions. The minimal storage duration period is 90 days for the GLACIER storage class and
180 days for DEEP_ARCHIVE. Deleting data that is archived to Amazon S3 Glacier is free if the objects
you delete are archived for more than the minimal storage duration period. If you delete or overwrite
an archived object within the minimal duration period, Amazon S3 charges a prorated early deletion
fee.

• Amazon S3 GLACIER and DEEP_ARCHIVE transition request charges— Each object that you
transition to the GLACIER or DEEP_ARCHIVE storage class constitutes one transition request. There is
a cost for each such request. If you plan to transition a large number of objects, consider the request
costs. If you are archiving small objects, consider aggregating many small objects into a smaller
number of large objects to reduce transition request costs.

• Amazon S3 GLACIER and DEEP_ARCHIVE data restore charges—GLACIER and DEEP_ARCHIVE are
designed for long-term archival of data that you access infrequently. For information about data
restoration charges, see How much does it cost to retrieve data from Amazon S3 Glacier? in the
Amazon S3 FAQ. For information about how to restore data from Amazon S3 Glacier, see Restoring
Archived Objects (p. 248).

When you archive objects to Amazon S3 Glacier by using object lifecycle management, Amazon S3
transitions these objects asynchronously. There might be a delay between the transition date in the
lifecycle configuration rule and the date of the physical transition. You are charged Amazon S3 Glacier
prices based on the transition date specified in the rule.

The Amazon S3 product detail page provides pricing information and example calculations for archiving
Amazon S3 objects. For more information, see the following topics:

• How is my storage charge calculated for Amazon S3 objects archived to Amazon S3 Glacier?

• How am I charged for deleting objects from Amazon S3 Glacier that are less than 3 months old?

• How much does it cost to retrieve data from Amazon S3 Glacier?

• Amazon S3 Pricing for storage costs for the different storage classes.

Restoring Archived Objects

Archived objects are not accessible in real time. You must first initiate a restore request and then
wait until a temporary copy of the object is available for the duration that you specify in the request.
After you receive a temporary copy of the restored object, the object's storage class remains GLACIER
or DEEP_ARCHIVE. (A HEAD Object or GET Object API operation request will return GLACIER or
DEEP_ARCHIVE as the storage class.)

Note
When you restore an archive, you are paying for both the archive (GLACIER or DEEP_ARCHIVE
rate) and a copy that you restored temporarily (REDUCED_REDUNDANCY storage rate). For
information about pricing, see Amazon S3 Pricing.

You can restore an object copy programmatically or by using the Amazon S3 console. Amazon S3
processes only one restore request at a time per object. For more information, see Restoring Archived
Objects (p. 248).

API Version 2006-03-01
125

https://aws.amazon.com/s3/faqs/#How_am_I_charged_for_deleting_objects_from_Amazon_Glacier_that_are_less_than_3_months_old
https://aws.amazon.com/s3/faqs/#How_is_my_storage_charge_calculated_for_Amazon_S3_objects_archived_to_Amazon_Glacier
https://aws.amazon.com/s3/faqs/#How_am_I_charged_for_deleting_objects_from_Amazon_Glacier_that_are_less_than_3_months_old
https://aws.amazon.com/s3/faqs/#How_am_I_charged_for_deleting_objects_from_Amazon_Glacier_that_are_less_than_3_months_old
https://aws.amazon.com/s3/pricing/
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Additional Considerations

Configuring Object Expiration
When an object reaches the end of its lifetime, Amazon S3 queues it for removal and removes it
asynchronously. There may be a delay between the expiration date and the date at which Amazon S3
removes an object. You are not charged for storage time associated with an object that has expired.

To find when an object is scheduled to expire, use the HEAD Object or the GET Object API operations.
These API operations return response headers that provide this information.

If you create a lifecycle expiration rule that causes objects that have been in INTELLIGENT_TIERING,
STANDARD_IA, or ONEZONE_IA storage for less than 30 days to expire, you are charged for 30 days. If
you create a lifecycle expiration rule that causes objects that have been in GLACIER storage for less than
90 days to expire, you are charged for 90 days. If you create a lifecycle expiration rule that causes objects
that have been in DEEP_ARCHIVE storage for less than 180 days to expire, you are charged for 180 days.
For more information, see Amazon S3 Pricing.

Lifecycle and Other Bucket Configurations
In addition to lifecycle configurations, you can associate other configurations with your bucket. This
section explains how lifecycle configuration relates to other bucket configurations.

Lifecycle and Versioning

You can add lifecycle configurations to unversioned buckets and versioning-enabled buckets. For more
information, see Object Versioning (p. 108).

A versioning-enabled bucket maintains one current object version, and zero or more noncurrent object
versions. You can define separate lifecycle rules for current and noncurrent object versions.

For more information, see Lifecycle Configuration Elements (p. 127). For information about versioning,
see Object Versioning (p. 108).

Lifecycle Configuration on MFA-enabled Buckets

Lifecycle configuration on MFA-enabled buckets is not supported.

Lifecycle and Logging

Amazon S3 lifecycle actions are not captured by CloudTrail object level logging since CloudTrail captures
API requests made to external Amazon S3 endpoints whereas Amazon S3 lifecycle actions are performed
using internal Amazon S3 endpoints. Amazon S3 server access logs can be enabled in an S3 bucket to
capture Amazon S3 lifecycle related actions such as object transition to another storage class and object
expiration resulting in permanent deletion or logical deletion. For more information, see Server Access
Logging (p. 647)

If you have logging enabled on your bucket, Amazon S3 server access logs report the results of the
following operations:

Operation log Decription

S3.EXPIRE.OBJECT Amazon S3 permanently deletes the object due to
the lifecycle expiration action.

S3.CREATE.DELETEMARKER Amazon S3 logically deletes the current version
and adds a delete marker in a versioning enabled
bucket.

API Version 2006-03-01
126

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Lifecycle Configuration Elements

Operation log Decription

S3.TRANSITION_SIA.OBJECT Amazon S3 transitions the object to the
STANDARD_IA storage class.

S3.TRANSITION_ZIA.OBJECT Amazon S3 transitions the object to the
ONEZONE_IA storage class.

S3.TRANSITION_INT.OBJECT Amazon S3 transitions the object to the
Intelligent-Tiering storage class.

S3.TRANSITION.OBJECT Amazon S3 initiates the transition of object to the
GLACIER storage class.

S3.TRANSITION_GDA.OBJECT Amazon S3 initiates the transition of object to the
GLACIER DEEP_ARCHIVE storage class.

S3.DELETE.UPLOAD Amazon S3 aborts incomplete multipart upload.

Note
Amazon S3 server access log records are generally delivered on a best effort basis and cannot be
used for complete accounting of all Amazon S3 requests.

More Info

• Lifecycle Configuration Elements (p. 127)
• Transitioning to the GLACIER and DEEP ARCHIVE Storage Classes (Object Archival) (p. 123)
• Setting Lifecycle Configuration on a Bucket (p. 143)

Lifecycle Configuration Elements
Topics

• ID Element (p. 128)
• Status Element (p. 128)
• Filter Element (p. 128)
• Elements to Describe Lifecycle Actions (p. 130)

You specify a lifecycle configuration as XML, consisting of one or more lifecycle rules.

<LifecycleConfiguration>
 <Rule>
 ...
 </Rule>
 <Rule>
 ...
 </Rule>
</LifecycleConfiguration>

Each rule consists of the following:

• Rule metadata that include a rule ID, and status indicating whether the rule is enabled or disabled. If a
rule is disabled, Amazon S3 doesn't perform any actions specified in the rule.

• Filter identifying objects to which the rule applies. You can specify a filter by using an object key prefix,
one or more object tags, or both.

API Version 2006-03-01
127

Amazon Simple Storage Service Developer Guide
Lifecycle Configuration Elements

• One or more transition or expiration actions with a date or a time period in the object's lifetime when
you want Amazon S3 to perform the specified action.

The following sections describe the XML elements in a lifecycle configuration. For example lifecycle
configurations, see Examples of Lifecycle Configuration (p. 133).

ID Element
A lifecycle configuration can have up to 1,000 rules. The <ID> element uniquely identifies a rule. ID
length is limited to 255 characters.

Status Element
The <Status> element value can be either Enabled or Disabled. If a rule is disabled, Amazon S3 doesn't
perform any of the actions defined in the rule.

Filter Element
A lifecycle rule can apply to all or a subset of objects in a bucket based on the <Filter> element that you
specify in the lifecycle rule.

You can filter objects by key prefix, object tags, or a combination of both (in which case Amazon S3 uses
a logical AND to combine the filters). Consider the following examples:

• Specifying a filter using key prefixes – This example shows a lifecycle rule that applies to a subset
of objects based on the key name prefix (logs/). For example, the lifecycle rule applies to objects
logs/mylog.txt, logs/temp1.txt, and logs/test.txt. The rule does not apply to the object
example.jpg.

<LifecycleConfiguration>
 <Rule>
 <Filter>
 <Prefix>logs/</Prefix>
 </Filter>
 transition/expiration actions.
 ...
 </Rule>
 ...
</LifecycleConfiguration>

If you want to apply a lifecycle action to a subset of objects based on different key name prefixes,
specify separate rules. In each rule, specify a prefix-based filter. For example, to describe a lifecycle
action for objects with key prefixes projectA/ and projectB/, you specify two rules as shown
following:

<LifecycleConfiguration>
 <Rule>
 <Filter>
 <Prefix>projectA/</Prefix>
 </Filter>
 transition/expiration actions.
 ...
 </Rule>

 <Rule>
 <Filter>
 <Prefix>projectB/</Prefix>
 </Filter>
 transition/expiration actions.

API Version 2006-03-01
128

Amazon Simple Storage Service Developer Guide
Lifecycle Configuration Elements

 ...
 </Rule>
</LifecycleConfiguration>

For more information about object keys, see Object Keys (p. 99).

• Specifying a filter based on object tags – In the following example, the lifecycle rule specifies a filter
based on a tag (key) and value (value). The rule then applies only to a subset of objects with the
specific tag.

<LifecycleConfiguration>
 <Rule>
 <Filter>
 <Tag>
 <Key>key</Key>
 <Value>value</Value>
 </Tag>
 </Filter>
 transition/expiration actions.
 ...
 </Rule>
</LifecycleConfiguration>

You can specify a filter based on multiple tags. You must wrap the tags in the <AND> element shown
in the following example. The rule directs Amazon S3 to perform lifecycle actions on objects with two
tags (with the specific tag key and value).

<LifecycleConfiguration>
 <Rule>
 <Filter>
 <And>
 <Tag>
 <Key>key1</Key>
 <Value>value1</Value>
 </Tag>
 <Tag>
 <Key>key2</Key>
 <Value>value2</Value>
 </Tag>
 ...
 </And>
 </Filter>
 transition/expiration actions.
 </Rule>
</Lifecycle>

The lifecycle rule applies to objects that have both of the tags specified. Amazon S3 performs a logical
AND. Note the following:

• Each tag must match both key and value exactly.

• The rule applies to a subset of objects that has tags specified in the rule. If an object has additional
tags specified, it doesn't matter..

Note
When you specify multiple tags in a filter, each tag key must be unique.

• Specifying a filter based on both prefix and one or more tags – In a lifecycle rule, you can specify
a filter based on both the key prefix and one or more tags. Again, you must wrap all of these in the
<And> element as shown following:

<LifecycleConfiguration>
 <Rule>

API Version 2006-03-01
129

Amazon Simple Storage Service Developer Guide
Lifecycle Configuration Elements

 <Filter>
 <And>
 <Prefix>key-prefix</Prefix>
 <Tag>
 <Key>key1</Key>
 <Value>value1</Value>
 </Tag>
 <Tag>
 <Key>key2</Key>
 <Value>value2</Value>
 </Tag>
 ...
 </And>
 </Filter>
 <Status>Enabled</Status>
 transition/expiration actions.
 </Rule>
</LifecycleConfiguration>

Amazon S3 combines these filters using a logical AND. That is, the rule applies to subset of objects
with a specific key prefix and specific tags. A filter can have only one prefix, and zero or more tags.

• You can specify an empty filter, in which case the rule applies to all objects in the bucket.

<LifecycleConfiguration>
 <Rule>
 <Filter>
 </Filter>
 <Status>Enabled</Status>
 transition/expiration actions.
 </Rule>
</LifecycleConfiguration>

Elements to Describe Lifecycle Actions
You can direct Amazon S3 to perform specific actions in an object's lifetime by specifying one or more of
the following predefined actions in a lifecycle rule. The effect of these actions depends on the versioning
state of your bucket.

• Transition action element – You specify the Transition action to transition objects from one storage
class to another. For more information about transitioning objects, see Supported Transitions and
Related Constraints (p. 121). When a specified date or time period in the object's lifetime is reached,
Amazon S3 performs the transition.

For a versioned bucket (versioning-enabled or versioning-suspended bucket), the Transition
action applies to the current object version. To manage noncurrent versions, Amazon S3 defines the
NoncurrentVersionTransition action (described below).

• Expiration action element – The Expiration action expires objects identified in the rule and applies
to eligible objects in any of the Amazon S3 storage classes. For more information about storage
classes, see Amazon S3 Storage Classes (p. 103). Amazon S3 makes all expired objects unavailable.
Whether the objects are permanently removed depends on the versioning state of the bucket.

Important
Object expiration lifecycle polices do not remove incomplete multipart uploads. To remove
incomplete multipart uploads you must use the AbortIncompleteMultipartUpload lifecycle
configuration action that is described later in this section.

• Non-versioned bucket – The Expiration action results in Amazon S3 permanently removing the
object.

API Version 2006-03-01
130

Amazon Simple Storage Service Developer Guide
Lifecycle Configuration Elements

• Versioned bucket – For a versioned bucket (that is, versioning-enabled or versioning-suspended),
there are several considerations that guide how Amazon S3 handles the expiration action. For
more information, see Using Versioning (p. 432). Regardless of the versioning state, the following
applies:

• The Expiration action applies only to the current version (it has no impact on noncurrent object
versions).

• Amazon S3 doesn't take any action if there are one or more object versions and the delete marker
is the current version.

• If the current object version is the only object version and it is also a delete marker (also referred
as an expired object delete marker, where all object versions are deleted and you only have a
delete marker remaining), Amazon S3 removes the expired object delete marker. You can also use
the expiration action to direct Amazon S3 to remove any expired object delete markers. For an
example, see Example 7: Removing Expired Object Delete Markers (p. 141).

Also consider the following when setting up Amazon S3 to manage expiration:

• Versioning-enabled bucket

If the current object version is not a delete marker, Amazon S3 adds a delete marker with a unique
version ID. This makes the current version noncurrent, and the delete marker the current version.

• Versioning-suspended bucket

In a versioning-suspended bucket, the expiration action causes Amazon S3 to create a delete
marker with null as the version ID. This delete marker replaces any object version with a null
version ID in the version hierarchy, which effectively deletes the object.

In addition, Amazon S3 provides the following actions that you can use to manage noncurrent object
versions in a versioned bucket (that is, versioning-enabled and versioning-suspended buckets).

• NoncurrentVersionTransition action element – Use this action to specify how long (from the time
the objects became noncurrent) you want the objects to remain in the current storage class before
Amazon S3 transitions them to the specified storage class. For more information about transitioning
objects, see Supported Transitions and Related Constraints (p. 121).

• NoncurrentVersionExpiration action element – Use this action to specify how long (from the time
the objects became noncurrent) you want to retain noncurrent object versions before Amazon S3
permanently removes them. The deleted object can't be recovered.

This delayed removal of noncurrent objects can be helpful when you need to correct any accidental
deletes or overwrites. For example, you can configure an expiration rule to delete noncurrent versions
five days after they become noncurrent. For example, suppose that on 1/1/2014 10:30 AM UTC, you
create an object called photo.gif (version ID 111111). On 1/2/2014 11:30 AM UTC, you accidentally
delete photo.gif (version ID 111111), which creates a delete marker with a new version ID (such as
version ID 4857693). You now have five days to recover the original version of photo.gif (version ID
111111) before the deletion is permanent. On 1/8/2014 00:00 UTC, the lifecycle rule for expiration
executes and permanently deletes photo.gif (version ID 111111), five days after it became a
noncurrent version.

Important
Object expiration lifecycle policies do not remove incomplete multipart uploads. To remove
incomplete multipart uploads, you must use the AbortIncompleteMultipartUpload lifecycle
configuration action that is described later in this section.

In addition to the transition and expiration actions, you can use the following lifecycle configuration
action to direct Amazon S3 to abort incomplete multipart uploads.

API Version 2006-03-01
131

Amazon Simple Storage Service Developer Guide
Lifecycle Configuration Elements

• AbortIncompleteMultipartUpload action element – Use this element to set a maximum time (in days)
that you want to allow multipart uploads to remain in progress. If the applicable multipart uploads
(determined by the key name prefix specified in the lifecycle rule) are not successfully completed
within the predefined time period, Amazon S3 aborts the incomplete multipart uploads. For more
information, see Aborting Incomplete Multipart Uploads Using a Bucket Lifecycle Policy (p. 177).

Note
You cannot specify this lifecycle action in a rule that specifies a filter based on object tags.

• ExpiredObjectDeleteMarker action element – In a versioning-enabled bucket, a delete marker with
zero noncurrent versions is referred to as the expired object delete marker. You can use this lifecycle
action to direct S3 to remove the expired object delete markers. For an example, see Example 7:
Removing Expired Object Delete Markers (p. 141).

Note
You cannot specify this lifecycle action in a rule that specifies a filter based on object tags.

How Amazon S3 Calculates How Long an Object Has Been Noncurrent

In a versioning-enabled bucket, you can have multiple versions of an object, there is always one current
version, and zero or more noncurrent versions. Each time you upload an object, the current version is
retained as the noncurrent version and the newly added version, the successor, becomes the current
version. To determine the number of days an object is noncurrent, Amazon S3 looks at when its
successor was created. Amazon S3 uses the number of days since its successor was created as the number
of days an object is noncurrent.

Restoring Previous Versions of an Object When Using Lifecycle Configurations
As explained in detail in the topic Restoring Previous Versions (p. 449), you can use either of
the following two methods to retrieve previous versions of an object:

1. By copying a noncurrent version of the object into the same bucket. The copied object
becomes the current version of that object, and all object versions are preserved.

2. By permanently deleting the current version of the object. When you delete the current
object version, you, in effect, turn the noncurrent version into the current version of that
object.

When using lifecycle configuration rules with versioning-enabled buckets, we recommend as a
best practice that you use the first method.
Because of Amazon S3's eventual consistency semantics, a current version that you permanently
deleted may not disappear until the changes propagate (Amazon S3 may be unaware of this
deletion). In the meantime, the lifecycle rule that you configured to expire noncurrent objects
may permanently remove noncurrent objects, including the one you want to restore. So, copying
the old version, as recommended in the first method, is the safer alternative.

Lifecycle Rules: Based on an Object's Age

You can specify a time period, in number of days from the creation (or modification) of the objects, when
Amazon S3 can take the action.

When you specify the number of days in the Transition and Expiration actions in a lifecycle
configuration, note the following:

• It is the number of days since object creation when the action will occur.

• Amazon S3 calculates the time by adding the number of days specified in the rule to the object
creation time and rounding the resulting time to the next day midnight UTC. For example, if an object
was created at 1/15/2014 10:30 AM UTC and you specify 3 days in a transition rule, then the transition
date of the object would be calculated as 1/19/2014 00:00 UTC.

API Version 2006-03-01
132

Amazon Simple Storage Service Developer Guide
Examples of Lifecycle Configuration

Note
Amazon S3 maintains only the last modified date for each object. For example, the Amazon S3
console shows the Last Modified date in the object Properties pane. When you initially create
a new object, this date reflects the date the object is created. If you replace the object, the date
changes accordingly. So when we use the term creation date, it is synonymous with the term last
modified date.

When specifying the number of days in the NoncurrentVersionTransition and
NoncurrentVersionExpiration actions in a lifecycle configuration, note the following:

• It is the number of days from when the version of the object becomes noncurrent (that is, when the
object is overwritten or deleted), that Amazon S3 will perform the action on the specified object or
objects.

• Amazon S3 calculates the time by adding the number of days specified in the rule to the time when
the new successor version of the object is created and rounding the resulting time to the next day
midnight UTC. For example, in your bucket, suppose that you have a current version of an object
that was created at 1/1/2014 10:30 AM UTC. If the new version of the object that replaces the
current version is created at 1/15/2014 10:30 AM UTC, and you specify 3 days in a transition rule, the
transition date of the object is calculated as 1/19/2014 00:00 UTC.

Lifecycle Rules: Based on a Specific Date

When specifying an action in a lifecycle rule, you can specify a date when you want Amazon S3 to take
the action. When the specific date arrives, S3 applies the action to all qualified objects (based on the
filter criteria).

If you specify a lifecycle action with a date that is in the past, all qualified objects become immediately
eligible for that lifecycle action.

Important
The date-based action is not a one-time action. S3 continues to apply the date-based action
even after the date has passed, as long as the rule status is Enabled.
For example, suppose that you specify a date-based Expiration action to delete all objects
(assume no filter specified in the rule). On the specified date, S3 expires all the objects in
the bucket. S3 also continues to expire any new objects you create in the bucket. To stop the
lifecycle action, you must remove the action from the lifecycle configuration, disable the rule, or
delete the rule from the lifecycle configuration.

The date value must conform to the ISO 8601 format. The time is always midnight UTC.

Note
You can't create the date-based lifecycle rules using the Amazon S3 console, but you can view,
disable, or delete such rules.

Examples of Lifecycle Configuration
This section provides examples of lifecycle configuration. Each example shows how you can specify the
XML in each of the example scenarios.

Topics

• Example 1: Specifying a Filter (p. 134)

• Example 2: Disabling a Lifecycle Rule (p. 135)

• Example 3: Tiering Down Storage Class over an Object's Lifetime (p. 136)

• Example 4: Specifying Multiple Rules (p. 137)

• Example 5: Overlapping Filters, Conflicting Lifecycle Actions, and What Amazon S3 Does (p. 137)

API Version 2006-03-01
133

Amazon Simple Storage Service Developer Guide
Examples of Lifecycle Configuration

• Example 6: Specifying a Lifecycle Rule for a Versioning-Enabled Bucket (p. 140)
• Example 7: Removing Expired Object Delete Markers (p. 141)
• Example 8: Lifecycle Configuration to Abort Multipart Uploads (p. 142)

Example 1: Specifying a Filter
Each lifecycle rule includes a filter that you can use to identify a subset of objects in your bucket to which
the lifecycle rule applies. The following lifecycle configurations show examples of how you can specify a
filter.

• In this lifecycle configuration rule, the filter specifies a key prefix (tax/). Therefore, the rule applies to
objects with key name prefix tax/, such as tax/doc1.txt and tax/doc2.txt

The rule specifies two actions that direct Amazon S3 to do the following:
• Transition objects to the GLACIER storage class 365 days (one year) after creation.
• Delete objects (the Expiration action) 3650 days (10 years) after creation.

<LifecycleConfiguration>
 <Rule>
 <ID>Transition and Expiration Rule</ID>
 <Filter>
 <Prefix>tax/</Prefix>
 </Filter>
 <Status>Enabled</Status>
 <Transition>
 <Days>365</Days>
 <StorageClass>GLACIER</StorageClass>
 </Transition>
 <Expiration>
 <Days>3650</Days>
 </Expiration>
 </Rule>
</LifecycleConfiguration>

Instead of specifying object age in terms of days after creation, you can specify a date for each action.
However, you can't use both Date and Days in the same rule.

• If you want the lifecycle rule to apply to all objects in the bucket, specify an empty prefix. In the
following configuration, the rule specifies a Transition action directing Amazon S3 to transition
objects to the GLACIER storage class 0 days after creation in which case objects are eligible for archival
to Amazon S3 Glacier at midnight UTC following creation.

<LifecycleConfiguration>
 <Rule>
 <ID>Archive all object same-day upon creation</ID>
 <Filter>
 <Prefix></Prefix>
 </Filter>
 <Status>Enabled</Status>
 <Transition>
 <Days>0</Days>
 <StorageClass>GLACIER</StorageClass>
 </Transition>
 </Rule>
</LifecycleConfiguration>

• You can specify zero or one key name prefix and zero or more object tags in a filter. The following
example code applies the lifecycle rule to a subset of objects with the tax/ key prefix and to objects
that have two tags with specific key and value. Note that when you specify more than one filter, you

API Version 2006-03-01
134

Amazon Simple Storage Service Developer Guide
Examples of Lifecycle Configuration

must include the AND as shown (Amazon S3 applies a logical AND to combine the specified filter
conditions).

...
<Filter>
 <And>
 <Prefix>tax/</Prefix>
 <Tag>
 <Key>key1</Key>
 <Value>value1</Value>
 </Tag>
 <Tag>
 <Key>key2</Key>
 <Value>value2</Value>
 </Tag>
 </And>
</Filter>
...

• You can filter objects based only on tags. For example, the following lifecycle rule applies to objects
that have the two specified tags (it does not specify any prefix):

...
<Filter>
 <And>
 <Tag>
 <Key>key1</Key>
 <Value>value1</Value>
 </Tag>
 <Tag>
 <Key>key2</Key>
 <Value>value2</Value>
 </Tag>
 </And>
</Filter>
...

Important
When you have multiple rules in a lifecycle configuration, an object can become eligible for
multiple lifecycle actions. The general rules that Amazon S3 follows in such cases are:

• Permanent deletion takes precedence over transition.

• Transition takes precedence over creation of delete markers.

• When an object is eligible for both a GLACIER and STANDARD_IA (or ONEZONE_IA) transition,
Amazon S3 chooses the GLACIER transition.

For examples, see Example 5: Overlapping Filters, Conflicting Lifecycle Actions, and What
Amazon S3 Does (p. 137)

Example 2: Disabling a Lifecycle Rule

You can temporarily disable a lifecycle rule. The following lifecycle configuration specifies two rules:

• Rule 1 directs Amazon S3 to transition objects with the logs/ prefix to the GLACIER storage class
soon after creation.

• Rule 2 directs Amazon S3 to transition objects with the documents/ prefix to the GLACIER storage
class soon after creation.

API Version 2006-03-01
135

Amazon Simple Storage Service Developer Guide
Examples of Lifecycle Configuration

In the policy Rule 1 is enabled and Rule 2 is disable. Amazon S3 will not take any action on disabled
rules.

<LifecycleConfiguration>
 <Rule>
 <ID>Rule1</ID>
 <Filter>
 <Prefix>logs/</Prefix>
 </Filter>
 <Status>Enabled</Status>
 <Transition>
 <Days>0</Days>
 <StorageClass>GLACIER</StorageClass>
 </Transition>
 </Rule>
 <Rule>
 <ID>Rule2</ID>
 <Prefix>documents/</Prefix>
 <Status>Disabled</Status>
 <Transition>
 <Days>0</Days>
 <StorageClass>GLACIER</StorageClass>
 </Transition>
 </Rule>
</LifecycleConfiguration>

Example 3: Tiering Down Storage Class over an Object's Lifetime
In this example, you leverage lifecycle configuration to tier down the storage class of objects over their
lifetime. Tiering down can help reduce storage costs. For more information about pricing, see Amazon S3
Pricing.

The following lifecycle configuration specifies a rule that applies to objects with key name prefix logs/.
The rule specifies the following actions:

• Two transition actions:
• Transition objects to the STANDARD_IA storage class 30 days after creation.
• Transition objects to the GLACIER storage class 90 days after creation.

• One expiration action that directs Amazon S3 to delete objects a year after creation.

<LifecycleConfiguration>
 <Rule>
 <ID>example-id</ID>
 <Filter>
 <Prefix>logs/</Prefix>
 </Filter>
 <Status>Enabled</Status>
 <Transition>
 <Days>30</Days>
 <StorageClass>STANDARD_IA</StorageClass>
 </Transition>
 <Transition>
 <Days>90</Days>
 <StorageClass>GLACIER</StorageClass>
 </Transition>
 <Expiration>
 <Days>365</Days>
 </Expiration>
 </Rule>
</LifecycleConfiguration>

API Version 2006-03-01
136

https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Examples of Lifecycle Configuration

Note
You can use one rule to describe all lifecycle actions if all actions apply to the same set of
objects (identified by the filter). Otherwise, you can add multiple rules with each specifying a
different filter.

Example 4: Specifying Multiple Rules
You can specify multiple rules if you want different lifecycle actions of different objects. The following
lifecycle configuration has two rules:

• Rule 1 applies to objects with the key name prefix classA/. It directs Amazon S3 to transition objects
to the GLACIER storage class one year after creation and expire these objects 10 years after creation.

• Rule 2 applies to objects with key name prefix classB/. It directs Amazon S3 to transition objects to
the STANDARD_IA storage class 90 days after creation and delete them one year after creation.

<LifecycleConfiguration>
 <Rule>
 <ID>ClassADocRule</ID>
 <Filter>
 <Prefix>classA/</Prefix>
 </Filter>
 <Status>Enabled</Status>
 <Transition>
 <Days>365</Days>
 <StorageClass>GLACIER</StorageClass>
 </Transition>
 <Expiration>
 <Days>3650</Days>
 </Expiration>
 </Rule>
 <Rule>
 <ID>ClassBDocRule</ID>
 <Filter>
 <Prefix>classB/</Prefix>
 </Filter>
 <Status>Enabled</Status>
 <Transition>
 <Days>90</Days>
 <StorageClass>STANDARD_IA</StorageClass>
 </Transition>
 <Expiration>
 <Days>365</Days>
 </Expiration>
 </Rule>
</LifecycleConfiguration>

Example 5: Overlapping Filters, Conflicting Lifecycle Actions,
and What Amazon S3 Does
You might specify a lifecycle configuration in which you specify overlapping prefixes, or actions.

Generally, lifecycle will optimize for cost. For example, if two expiration polices overlap, the shorter
expiration policy will be honored so that data is not stored for longer than expected.

Likewise, if two transition policies overlap, lifecycle will transition your objects to the lower cost storage
class. In both cases, lifecycle attempts to choose the path that is least expensive for you. An exception to
this general rule is with the INTELLIGENT_TIERING storage class. INTELLIGENT_TIERING will be favored
by lifecycle over any storage class, aside from GLACIER and DEEP_ARCHIVE storage classes.

API Version 2006-03-01
137

Amazon Simple Storage Service Developer Guide
Examples of Lifecycle Configuration

The following examples show how Amazon S3 chooses to resolve potential conflicts.

Example 1: Overlapping Prefixes (No Conflict)

The following example configuration has two rules that specify overlapping prefixes as follows:

• First rule specifies an empty filter, indicating all objects in the bucket.
• Second rule specifies a key name prefix logs/, indicating only a subset of objects.

Rule 1 requests Amazon S3 to delete all objects one year after creation, and Rule 2 requests Amazon S3
to transition a subset of objects to the STANDARD_IA storage class 30 days after creation.

<LifecycleConfiguration>
 <Rule>
 <ID>Rule 1</ID>
 <Filter>
 </Filter>
 <Status>Enabled</Status>
 <Expiration>
 <Days>365</Days>
 </Expiration>
 </Rule>
 <Rule>
 <ID>Rule 2</ID>
 <Filter>
 <Prefix>logs/</Prefix>
 </Filter>
 <Status>Enabled</Status>
 <Transition>
 <StorageClass>STANDARD_IA<StorageClass>
 <Days>30</Days>
 </Transition>
 </Rule>
</LifecycleConfiguration>

Example 2: Conflicting Lifecycle Actions

In this example configuration, there are two rules that direct Amazon S3 to perform two different actions
on the same set of objects at the same time in object's lifetime:

• Both rules specify the same key name prefix, so both rules apply to the same set of objects.
• Both rules specify the same 365 days after object creation when the rules apply.
• One rule directs Amazon S3 to transition objects to the STANDARD_IA storage class and another rule

wants Amazon S3 to expire the objects at the same time.

<LifecycleConfiguration>
 <Rule>
 <ID>Rule 1</ID>
 <Filter>
 <Prefix>logs/</Prefix>
 </Filter>
 <Status>Enabled</Status>
 <Expiration>
 <Days>365</Days>
 </Expiration>
 </Rule>
 <Rule>
 <ID>Rule 2</ID>
 <Filter>

API Version 2006-03-01
138

Amazon Simple Storage Service Developer Guide
Examples of Lifecycle Configuration

 <Prefix>logs/</Prefix>
 </Filter>
 <Status>Enabled</Status>
 <Transition>
 <StorageClass>STANDARD_IA<StorageClass>
 <Days>365</Days>
 </Transition>
 </Rule>
</LifecycleConfiguration>

In this case, because you want objects to expire (removed), there is no point in changing the storage
class, and Amazon S3 simply chooses the expiration action on these objects.

Example 3: Overlapping Prefixes Resulting in Conflicting Lifecycle Actions

In this example, the configuration has two rules, which specify overlapping prefixes as follows:

• Rule 1 specifies an empty prefix (indicating all objects).

• Rule 2 specifies a key name prefix (logs/) that identifies a subset of all objects.

For the subset of objects with the logs/ key name prefix, lifecycle actions in both rules apply. One rule
directing Amazon S3 to transition objects 10 days after creation and another rule directing Amazon S3 to
transition objects 365 days after creation.

<LifecycleConfiguration>
 <Rule>
 <ID>Rule 1</ID>
 <Filter>
 <Prefix></Prefix>
 </Filter>
 <Status>Enabled</Status>
 <Transition>
 <StorageClass>STANDARD_IA<StorageClass>
 <Days>10</Days>
 </Transition>
 </Rule>
 <Rule>
 <ID>Rule 2</ID>
 <Filter>
 <Prefix>logs/</Prefix>
 </Filter>
 <Status>Enabled</Status>
 <Transition>
 <StorageClass>STANDARD_IA<StorageClass>
 <Days>365</Days>
 </Transition>
 </Rule>
</LifecycleConfiguration>

In this case, Amazon S3 chooses to transition them 10 days after creation.

Example 4: Tag-based Filtering and Resulting Conflicting Lifecycle Actions

Suppose that you have the following lifecycle policy that has two rules, each specifying a tag filter:

• Rule 1 specifies a tag-based filter (tag1/value1). This rule directs Amazon S3 to transition objects to
the GLACIER storage class 365 days after creation.

• Rule 2 specifies a tag-based filter (tag2/value2). This rule directs Amazon S3 to expire objects 14
days after creation.

API Version 2006-03-01
139

Amazon Simple Storage Service Developer Guide
Examples of Lifecycle Configuration

The lifecycle configuration is shown following:

<LifecycleConfiguration>
 <Rule>
 <ID>Rule 1</ID>
 <Filter>
 <Tag>
 <Key>tag1</Key>
 <Value>value1</Value>
 </Tag>
 </Filter>
 <Status>Enabled</Status>
 <Transition>
 <StorageClass>GLACIER<StorageClass>
 <Days>365</Days>
 </Transition>
 </Rule>
 <Rule>
 <ID>Rule 2</ID>
 <Filter>
 <Tag>
 <Key>tag2</Key>
 <Value>value1</Value>
 </Tag>
 </Filter>
 <Status>Enabled</Status>
 <Expiration>
 <Days>14</Days>
 </Expiration>
 </Rule>
</LifecycleConfiguration>

The policy is fine, but if there is an object with both tags, then S3 has to decide what to do. That is, both
rules apply to an object and in effect you are directing Amazon S3 to perform conflicting actions. In
this case, Amazon S3 expires the object 14 days after creation. The object is removed, and therefore the
transition action does not come into play.

Example 6: Specifying a Lifecycle Rule for a Versioning-Enabled
Bucket
Suppose that you have a versioning-enabled bucket, which means that for each object you have a current
version and zero or more noncurrent versions. You want to maintain one year's worth of history and then
delete the noncurrent versions. For more information about versioning, see Object Versioning (p. 108).

Also, you want to save storage costs by moving noncurrent versions to GLACIER 30 days after they
become noncurrent (assuming cold data for which you don't need real-time access). In addition, you also
expect frequency of access of the current versions to diminish 90 days after creation so you might choose
to move these objects to the STANDARD_IA storage class.

<LifecycleConfiguration>
 <Rule>
 <ID>sample-rule</ID>
 <Filter>
 <Prefix></Prefix>
 </Filter>
 <Status>Enabled</Status>
 <Transition>
 <Days>90</Days>
 <StorageClass>STANDARD_IA</StorageClass>
 </Transition>
 <NoncurrentVersionTransition>

API Version 2006-03-01
140

Amazon Simple Storage Service Developer Guide
Examples of Lifecycle Configuration

 <NoncurrentDays>30</NoncurrentDays>
 <StorageClass>GLACIER</StorageClass>
 </NoncurrentVersionTransition>
 <NoncurrentVersionExpiration>
 <NoncurrentDays>365</NoncurrentDays>
 </NoncurrentVersionExpiration>
 </Rule>
</LifecycleConfiguration>

Example 7: Removing Expired Object Delete Markers
A versioning-enabled bucket has one current version and zero or more noncurrent versions for each
object. When you delete an object, note the following:

• If you don't specify a version ID in your delete request, Amazon S3 adds a delete marker instead of
deleting the object. The current object version becomes noncurrent, and then the delete marker
becomes the current version.

• If you specify a version ID in your delete request, Amazon S3 deletes the object version permanently (a
delete marker is not created).

• A delete marker with zero noncurrent versions is referred to as the expired object delete marker.

This example shows a scenario that can create expired object delete markers in your bucket, and how you
can use lifecycle configuration to direct Amazon S3 to remove the expired object delete markers.

Suppose that you write a lifecycle policy that specifies the NoncurrentVersionExpiration action to
remove the noncurrent versions 30 days after they become noncurrent as shown following:

<LifecycleConfiguration>
 <Rule>
 ...
 <NoncurrentVersionExpiration>
 <NoncurrentDays>30</NoncurrentDays>
 </NoncurrentVersionExpiration>
 </Rule>
</LifecycleConfiguration>

The NoncurrentVersionExpiration action does not apply to the current object versions. It only
removes noncurrent versions.

For current object versions, you have the following options to manage their lifetime depending on
whether or not the current object versions follow a well-defined lifecycle:

• Current object versions follow a well-defined lifecycle.

In this case you can use lifecycle policy with the Expiration action to direct Amazon S3 to remove
current versions as shown in the following example:

<LifecycleConfiguration>
 <Rule>
 ...
 <Expiration>
 <Days>60</Days>
 </Expiration>
 <NoncurrentVersionExpiration>
 <NoncurrentDays>30</NoncurrentDays>
 </NoncurrentVersionExpiration>
 </Rule>
</LifecycleConfiguration>

API Version 2006-03-01
141

Amazon Simple Storage Service Developer Guide
Examples of Lifecycle Configuration

Amazon S3 removes current versions 60 days after they are created by adding a delete marker for
each of the current object versions. This makes the current version noncurrent and the delete marker
becomes the current version. For more information, see Using Versioning (p. 432).

The NoncurrentVersionExpiration action in the same lifecycle configuration removes noncurrent
objects 30 days after they become noncurrent. Thus, all object versions are removed and you have
expired object delete markers, but Amazon S3 detects and removes the expired object delete markers
for you.

• Current object versions don't have a well-defined lifecycle.

In this case you might remove the objects manually when you don't need them, creating
a delete marker with one or more noncurrent versions. If lifecycle configuration with
NoncurrentVersionExpiration action removes all the noncurrent versions, you now have expired
object delete markers.

Specifically for this scenario, Amazon S3 lifecycle configuration provides an Expiration action where
you can request Amazon S3 to remove the expired object delete markers:

<LifecycleConfiguration>
 <Rule>
 <ID>Rule 1</ID>
 <Filter>
 <Prefix>logs/</Prefix>
 </Filter>
 <Status>Enabled</Status>
 <Expiration>
 <ExpiredObjectDeleteMarker>true</ExpiredObjectDeleteMarker>
 </Expiration>
 <NoncurrentVersionExpiration>
 <NoncurrentDays>30</NoncurrentDays>
 </NoncurrentVersionExpiration>
 </Rule>
</LifecycleConfiguration>

By setting the ExpiredObjectDeleteMarker element to true in the Expiration action, you direct
Amazon S3 to remove expired object delete markers.

Note
When specifying the ExpiredObjectDeleteMarker lifecycle action, the rule cannot specify a
tag-based filter.

Example 8: Lifecycle Configuration to Abort Multipart Uploads
You can use the multipart upload API to upload large objects in parts. For more information about
multipart uploads, see Multipart Upload Overview (p. 175).

Using lifecycle configuration, you can direct Amazon S3 to abort incomplete multipart uploads
(identified by the key name prefix specified in the rule) if they don't complete within a specified number
of days after initiation. When Amazon S3 aborts a multipart upload, it deletes all parts associated with
the multipart upload. This ensures that you don't have incomplete multipart uploads with parts that are
stored in Amazon S3 and, therefore, you don't have to pay any storage costs for these parts.

Note
When specifying the AbortIncompleteMultipartUpload lifecycle action, the rule cannot
specify a tag-based filter.

The following is an example lifecycle configuration that specifies a rule with the
AbortIncompleteMultipartUpload action. This action requests Amazon S3 to abort incomplete
multipart uploads seven days after initiation.

API Version 2006-03-01
142

Amazon Simple Storage Service Developer Guide
Setting Lifecycle Configuration

<LifecycleConfiguration>
 <Rule>
 <ID>sample-rule</ID>
 <Filter>
 <Prefix>SomeKeyPrefix/</Prefix>
 </Filter>
 <Status>rule-status</Status>
 <AbortIncompleteMultipartUpload>
 <DaysAfterInitiation>7</DaysAfterInitiation>
 </AbortIncompleteMultipartUpload>
 </Rule>
</LifecycleConfiguration>

Setting Lifecycle Configuration on a Bucket
Topics

• Manage an Object's Lifecycle Using the Amazon S3 Console (p. 143)
• Set Lifecycle Configurations Using the AWS CLI (p. 144)
• Managing Object Lifecycles Using the AWS SDK for Java (p. 146)
• Manage an Object's Lifecycle Using the AWS SDK for .NET (p. 148)
• Manage an Object's Lifecycle Using the AWS SDK for Ruby (p. 151)
• Manage an Object's Lifecycle Using the REST API (p. 151)

This section explains how you can set lifecycle configuration on a bucket programmatically using AWS
SDKs, or by using the Amazon S3 console, or the AWS CLI. Note the following:

• When you add a lifecycle configuration to a bucket, there is usually some lag before a new or updated
lifecycle configuration is fully propagated to all the Amazon S3 systems. Expect a delay of a few
minutes before the lifecycle configuration fully takes effect. This delay can also occur when you delete
a lifecycle configuration.

• When you disable or delete a lifecycle rule, after a small delay Amazon S3 stops scheduling new
objects for deletion or transition. Any objects that were already scheduled will be unscheduled and
they won't be deleted or transitioned.

• When you add a lifecycle configuration to a bucket, the configuration rules apply to both existing
objects and objects that you add later. For example, if you add a lifecycle configuration rule today with
an expiration action that causes objects with a specific prefix to expire 30 days after creation, Amazon
S3 will queue for removal any existing objects that are more than 30 days old.

• There may be a lag between when the lifecycle configuration rules are satisfied and when the action
triggered by satisfying the rule is taken. However, changes in billing happen as soon as the lifecycle
configuration rule is satisfied even if the action is not yet taken. One example is you are not charged
for storage after the object expiration time even if the object is not deleted immediately. Another
example is you are charged Amazon S3 Glacier storage rates as soon as the object transition time
elapses, even if the object is not immediately transitioned to the GLACIER storage class. Lifecycle
transitions to the INTELLIGENT_TIERING storage class are the exception and changes in billing do not
happen until the object has transitioned into the INTELLIGENT_TIERING storage class.

For information about lifecycle configuration, see Object Lifecycle Management (p. 119).

Manage an Object's Lifecycle Using the Amazon S3 Console
You can specify lifecycle rules on a bucket using the Amazon S3 console.

For instructions on how to setup lifecycle rules using the AWS Management Console, see How Do I
Create a Lifecycle Policy for an S3 Bucket? in the Amazon Simple Storage Service Console User Guide.

API Version 2006-03-01
143

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-lifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-lifecycle.html

Amazon Simple Storage Service Developer Guide
Setting Lifecycle Configuration

Set Lifecycle Configurations Using the AWS CLI
You can use the following AWS CLI commands to manage lifecycle configurations:

• put-bucket-lifecycle-configuration
• get-bucket-lifecycle-configuration
• delete-bucket-lifecycle

For instructions to set up the AWS CLI, see Setting Up the AWS CLI (p. 675).

Note that the Amazon S3 lifecycle configuration is an XML file. But when using CLI, you cannot specify
the XML, you must specify JSON instead. The following are examples XML lifecycle configurations and
equivalent JSON that you can specify in AWS CLI command:

• Consider the following example lifecycle configuration:

<LifecycleConfiguration>
 <Rule>
 <ID>ExampleRule</ID>
 <Filter>
 <Prefix>documents/</Prefix>
 </Filter>
 <Status>Enabled</Status>
 <Transition>
 <Days>365</Days>
 <StorageClass>GLACIER</StorageClass>
 </Transition>
 <Expiration>
 <Days>3650</Days>
 </Expiration>
 </Rule>
</LifecycleConfiguration>

The equivalent JSON is shown:

{
 "Rules": [
 {
 "Filter": {
 "Prefix": "documents/"
 },
 "Status": "Enabled",
 "Transitions": [
 {
 "Days": 365,
 "StorageClass": "GLACIER"
 }
],
 "Expiration": {
 "Days": 3650
 },
 "ID": "ExampleRule"
 }
]
}

• Consider the following example lifecycle configuration:

<LifecycleConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Rule>

API Version 2006-03-01
144

Amazon Simple Storage Service Developer Guide
Setting Lifecycle Configuration

 <ID>id-1</ID>
 <Expiration>
 <Days>1</Days>
 </Expiration>
 <Filter>
 <And>
 <Prefix>myprefix</Prefix>
 <Tag>
 <Key>mytagkey1</Key>
 <Value>mytagvalue1</Value>
 </Tag>
 <Tag>
 <Key>mytagkey2</Key>
 <Value>mytagvalue2</Value>
 </Tag>
 </And>
 </Filter>
 <Status>Enabled</Status>
 </Rule>
</LifecycleConfiguration>

The equivalent JSON is shown:

{
 "Rules": [
 {
 "ID": "id-1",
 "Filter": {
 "And": {
 "Prefix": "myprefix",
 "Tags": [
 {
 "Value": "mytagvalue1",
 "Key": "mytagkey1"
 },
 {
 "Value": "mytagvalue2",
 "Key": "mytagkey2"
 }
]
 }
 },
 "Status": "Enabled",
 "Expiration": {
 "Days": 1
 }
 }
]
}

You can test the put-bucket-lifecycle-configuration as follows:

1. Save the JSON lifecycle configuration in a file (lifecycle.json).

2. Run the following AWS CLI command to set the lifecycle configuration on your bucket:

$ aws s3api put-bucket-lifecycle-configuration \
--bucket bucketname \
--lifecycle-configuration file://lifecycle.json

3. To verify, retrieve the lifecycle configuration using the get-bucket-lifecycle-configuration
AWS CLI command as follows:

API Version 2006-03-01
145

Amazon Simple Storage Service Developer Guide
Setting Lifecycle Configuration

$ aws s3api get-bucket-lifecycle-configuration \
--bucket bucketname

4. To delete the lifecycle configuration use the delete-bucket-lifecycle AWS CLI command as
follows:

aws s3api delete-bucket-lifecycle \
--bucket bucketname

Managing Object Lifecycles Using the AWS SDK for Java
You can use the AWS SDK for Java to manage the lifecycle configuration of a bucket. For more
information about managing lifecycle configuration, see Object Lifecycle Management (p. 119).

Note
When you add a lifecycle configuration to a bucket, Amazon S3 replaces the bucket's current
lifecycle configuration, if there is one. To update a configuration, you retrieve it, make the
desired changes, and then add the revised lifecycle configuration to the bucket.

Example

The following example shows how to use the AWS SDK for Java to add, update, and delete the lifecycle
configuration of a bucket. The example does the following:

• Adds a lifecycle configuration to a bucket.

• Retrieves the lifecycle configuration and updates it by adding another rule.

• Adds the modified lifecycle configuration to the bucket. Amazon S3 replaces the existing
configuration.

• Retrieves the configuration again and verifies that it has the right number of rules by the printing
number of rules.

• Deletes the lifecycle configuration and verifies that it has been deleted by attempting to retrieve it
again.

For instructions on creating and testing a working sample, see Testing the Amazon S3 Java Code
Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketLifecycleConfiguration;
import com.amazonaws.services.s3.model.BucketLifecycleConfiguration.Transition;
import com.amazonaws.services.s3.model.StorageClass;
import com.amazonaws.services.s3.model.Tag;
import com.amazonaws.services.s3.model.lifecycle.LifecycleAndOperator;
import com.amazonaws.services.s3.model.lifecycle.LifecycleFilter;
import com.amazonaws.services.s3.model.lifecycle.LifecyclePrefixPredicate;
import com.amazonaws.services.s3.model.lifecycle.LifecycleTagPredicate;

import java.io.IOException;
import java.util.Arrays;

API Version 2006-03-01
146

Amazon Simple Storage Service Developer Guide
Setting Lifecycle Configuration

public class LifecycleConfiguration {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";

 // Create a rule to archive objects with the "glacierobjects/" prefix to Glacier
 immediately.
 BucketLifecycleConfiguration.Rule rule1 = new BucketLifecycleConfiguration.Rule()
 .withId("Archive immediately rule")
 .withFilter(new LifecycleFilter(new
 LifecyclePrefixPredicate("glacierobjects/")))
 .addTransition(new
 Transition().withDays(0).withStorageClass(StorageClass.Glacier))
 .withStatus(BucketLifecycleConfiguration.ENABLED);

 // Create a rule to transition objects to the Standard-Infrequent Access storage
 class
 // after 30 days, then to Glacier after 365 days. Amazon S3 will delete the objects
 after 3650 days.
 // The rule applies to all objects with the tag "archive" set to "true".
 BucketLifecycleConfiguration.Rule rule2 = new BucketLifecycleConfiguration.Rule()
 .withId("Archive and then delete rule")
 .withFilter(new LifecycleFilter(new LifecycleTagPredicate(new
 Tag("archive", "true"))))
 .addTransition(new
 Transition().withDays(30).withStorageClass(StorageClass.StandardInfrequentAccess))
 .addTransition(new
 Transition().withDays(365).withStorageClass(StorageClass.Glacier))
 .withExpirationInDays(3650)
 .withStatus(BucketLifecycleConfiguration.ENABLED);

 // Add the rules to a new BucketLifecycleConfiguration.
 BucketLifecycleConfiguration configuration = new BucketLifecycleConfiguration()
 .withRules(Arrays.asList(rule1, rule2));

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 // Save the configuration.
 s3Client.setBucketLifecycleConfiguration(bucketName, configuration);

 // Retrieve the configuration.
 configuration = s3Client.getBucketLifecycleConfiguration(bucketName);

 // Add a new rule with both a prefix predicate and a tag predicate.
 configuration.getRules().add(new
 BucketLifecycleConfiguration.Rule().withId("NewRule")
 .withFilter(new LifecycleFilter(new LifecycleAndOperator(
 Arrays.asList(new LifecyclePrefixPredicate("YearlyDocuments/"),
 new LifecycleTagPredicate(new Tag("expire_after",
 "ten_years"))))))
 .withExpirationInDays(3650)
 .withStatus(BucketLifecycleConfiguration.ENABLED));

 // Save the configuration.
 s3Client.setBucketLifecycleConfiguration(bucketName, configuration);

 // Retrieve the configuration.
 configuration = s3Client.getBucketLifecycleConfiguration(bucketName);

 // Verify that the configuration now has three rules.
 configuration = s3Client.getBucketLifecycleConfiguration(bucketName);

API Version 2006-03-01
147

Amazon Simple Storage Service Developer Guide
Setting Lifecycle Configuration

 System.out.println("Expected # of rules = 3; found: " +
 configuration.getRules().size());

 // Delete the configuration.
 s3Client.deleteBucketLifecycleConfiguration(bucketName);

 // Verify that the configuration has been deleted by attempting to retrieve it.
 configuration = s3Client.getBucketLifecycleConfiguration(bucketName);
 String s = (configuration == null) ? "No configuration found." : "Configuration
 found.";
 System.out.println(s);
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Manage an Object's Lifecycle Using the AWS SDK for .NET

You can use the AWS SDK for .NET to manage the lifecycle configuration on a bucket. For more
information about managing lifecycle configuration, see Object Lifecycle Management (p. 119).

Note
When you add a lifecycle configuration, Amazon S3 replaces the existing lifecycle configuration
on the specified bucket. To update a configuration, you must first retrieve the lifecycle
configuration, make the changes, and then add the revised lifecycle configuration to the bucket.

Example .NET Code Example

The following example shows how to use the AWS SDK for .NET to add, update, and delete a bucket's
lifecycle configuration. The code example does the following:

• Adds a lifecycle configuration to a bucket.

• Retrieves the lifecycle configuration and updates it by adding another rule.

• Adds the modified lifecycle configuration to the bucket. Amazon S3 replaces the existing lifecycle
configuration.

• Retrieves the configuration again and verifies it by printing the number of rules in the configuration.

• Deletes the lifecycle configuration.and verifies the deletion

For instructions on how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 678).

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{

API Version 2006-03-01
148

Amazon Simple Storage Service Developer Guide
Setting Lifecycle Configuration

 class LifecycleTest
 {
 private const string bucketName = "*** bucket name ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 client;
 public static void Main()
 {
 client = new AmazonS3Client(bucketRegion);
 AddUpdateDeleteLifecycleConfigAsync().Wait();
 }

 private static async Task AddUpdateDeleteLifecycleConfigAsync()
 {
 try
 {
 var lifeCycleConfiguration = new LifecycleConfiguration()
 {
 Rules = new List<LifecycleRule>
 {
 new LifecycleRule
 {
 Id = "Archive immediately rule",
 Filter = new LifecycleFilter()
 {
 LifecycleFilterPredicate = new
 LifecyclePrefixPredicate()
 {
 Prefix = "glacierobjects/"
 }
 },
 Status = LifecycleRuleStatus.Enabled,
 Transitions = new List<LifecycleTransition>
 {
 new LifecycleTransition
 {
 Days = 0,
 StorageClass = S3StorageClass.Glacier
 }
 },
 },
 new LifecycleRule
 {
 Id = "Archive and then delete rule",
 Filter = new LifecycleFilter()
 {
 LifecycleFilterPredicate = new
 LifecyclePrefixPredicate()
 {
 Prefix = "projectdocs/"
 }
 },
 Status = LifecycleRuleStatus.Enabled,
 Transitions = new List<LifecycleTransition>
 {
 new LifecycleTransition
 {
 Days = 30,
 StorageClass =
 S3StorageClass.StandardInfrequentAccess
 },
 new LifecycleTransition
 {
 Days = 365,
 StorageClass = S3StorageClass.Glacier
 }

API Version 2006-03-01
149

Amazon Simple Storage Service Developer Guide
Setting Lifecycle Configuration

 },
 Expiration = new LifecycleRuleExpiration()
 {
 Days = 3650
 }
 }
 }
 };

 // Add the configuration to the bucket.
 await AddExampleLifecycleConfigAsync(client, lifeCycleConfiguration);

 // Retrieve an existing configuration.
 lifeCycleConfiguration = await RetrieveLifecycleConfigAsync(client);

 // Add a new rule.
 lifeCycleConfiguration.Rules.Add(new LifecycleRule
 {
 Id = "NewRule",
 Filter = new LifecycleFilter()
 {
 LifecycleFilterPredicate = new LifecyclePrefixPredicate()
 {
 Prefix = "YearlyDocuments/"
 }
 },
 Expiration = new LifecycleRuleExpiration()
 {
 Days = 3650
 }
 });

 // Add the configuration to the bucket.
 await AddExampleLifecycleConfigAsync(client, lifeCycleConfiguration);

 // Verify that there are now three rules.
 lifeCycleConfiguration = await RetrieveLifecycleConfigAsync(client);
 Console.WriteLine("Expected # of rulest=3; found:{0}",
 lifeCycleConfiguration.Rules.Count);

 // Delete the configuration.
 await RemoveLifecycleConfigAsync(client);

 // Retrieve a nonexistent configuration.
 lifeCycleConfiguration = await RetrieveLifecycleConfigAsync(client);

 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Error encountered ***. Message:'{0}' when writing an
 object", e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown encountered on server. Message:'{0}' when
 writing an object", e.Message);
 }
 }

 static async Task AddExampleLifecycleConfigAsync(IAmazonS3 client,
 LifecycleConfiguration configuration)
 {

 PutLifecycleConfigurationRequest request = new PutLifecycleConfigurationRequest
 {
 BucketName = bucketName,

API Version 2006-03-01
150

Amazon Simple Storage Service Developer Guide
Cross-Origin Resource Sharing (CORS)

 Configuration = configuration
 };
 var response = await client.PutLifecycleConfigurationAsync(request);
 }

 static async Task<LifecycleConfiguration> RetrieveLifecycleConfigAsync(IAmazonS3
 client)
 {
 GetLifecycleConfigurationRequest request = new GetLifecycleConfigurationRequest
 {
 BucketName = bucketName
 };
 var response = await client.GetLifecycleConfigurationAsync(request);
 var configuration = response.Configuration;
 return configuration;
 }

 static async Task RemoveLifecycleConfigAsync(IAmazonS3 client)
 {
 DeleteLifecycleConfigurationRequest request = new
 DeleteLifecycleConfigurationRequest
 {
 BucketName = bucketName
 };
 await client.DeleteLifecycleConfigurationAsync(request);
 }
 }
}

Manage an Object's Lifecycle Using the AWS SDK for Ruby
You can use the AWS SDK for Ruby to manage lifecycle configuration on a bucket by using the class
AWS::S3::BucketLifecycleConfiguration. For more information about using the AWS SDK for Ruby
with Amazon S3, see Using the AWS SDK for Ruby - Version 3 (p. 679). For more information about
managing lifecycle configuration, see Object Lifecycle Management (p. 119).

Manage an Object's Lifecycle Using the REST API
You can use the AWS Management Console to set the lifecycle configuration on your bucket. If your
application requires it, you can also send REST requests directly. The following sections in the Amazon
Simple Storage Service API Reference describe the REST API related to the lifecycle configuration.

• PUT Bucket lifecycle

• GET Bucket lifecycle

• DELETE Bucket lifecycle

Cross-Origin Resource Sharing (CORS)
Cross-origin resource sharing (CORS) defines a way for client web applications that are loaded in one
domain to interact with resources in a different domain. With CORS support, you can build rich client-
side web applications with Amazon S3 and selectively allow cross-origin access to your Amazon S3
resources.

This section provides an overview of CORS. The subtopics describe how you can enable CORS using the
Amazon S3 console, or programmatically by using the Amazon S3 REST API and the AWS SDKs.

Topics

API Version 2006-03-01
151

https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/S3/BucketLifecycle.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/S3/BucketLifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETElifecycle.html

Amazon Simple Storage Service Developer Guide
Cross-Origin Resource Sharing: Use-case Scenarios

• Cross-Origin Resource Sharing: Use-case Scenarios (p. 152)

• How Do I Configure CORS on My Bucket? (p. 152)

• How Does Amazon S3 Evaluate the CORS Configuration on a Bucket? (p. 154)

• Enabling Cross-Origin Resource Sharing (CORS) (p. 154)

• Troubleshooting CORS Issues (p. 160)

Cross-Origin Resource Sharing: Use-case Scenarios
The following are example scenarios for using CORS:

• Scenario 1: Suppose that you are hosting a website in an Amazon S3 bucket named website
as described in Hosting a Static Website on Amazon S3 (p. 503). Your users load the website
endpoint http://website.s3-website-us-east-1.amazonaws.com. Now you want to use
JavaScript on the webpages that are stored in this bucket to be able to make authenticated GET
and PUT requests against the same bucket by using the Amazon S3 API endpoint for the bucket,
website.s3.amazonaws.com. A browser would normally block JavaScript from allowing those
requests, but with CORS you can configure your bucket to explicitly enable cross-origin requests from
website.s3-website-us-east-1.amazonaws.com.

• Scenario 2: Suppose that you want to host a web font from your S3 bucket. Again, browsers require a
CORS check (also called a preflight check) for loading web fonts. You would configure the bucket that
is hosting the web font to allow any origin to make these requests.

How Do I Configure CORS on My Bucket?
To configure your bucket to allow cross-origin requests, you create a CORS configuration, which is
an XML document with rules that identify the origins that you will allow to access your bucket, the
operations (HTTP methods) that will support for each origin, and other operation-specific information.

You can add up to 100 rules to the configuration. You add the XML document as the cors subresource
to the bucket either programmatically or by using the Amazon S3 console. For more information, see
Enabling Cross-Origin Resource Sharing (CORS) (p. 154).

Instead of accessing a website by using an Amazon S3 website endpoint, you can use your own domain,
such as example1.com to serve your content. For information about using your own domain, see
Example: Setting up a Static Website Using a Custom Domain (p. 519). The following example cors
configuration has three rules, which are specified as CORSRule elements:

• The first rule allows cross-origin PUT, POST, and DELETE requests from the http://
www.example1.com origin. The rule also allows all headers in a preflight OPTIONS request through
the Access-Control-Request-Headers header. In response to preflight OPTIONS requests,
Amazon S3 returns requested headers.

• The second rule allows the same cross-origin requests as the first rule, but the rule applies to another
origin, http://www.example2.com.

• The third rule allows cross-origin GET requests from all origins. The * wildcard character refers to all
origins.

<CORSConfiguration>
 <CORSRule>
 <AllowedOrigin>http://www.example1.com</AllowedOrigin>

 <AllowedMethod>PUT</AllowedMethod>
 <AllowedMethod>POST</AllowedMethod>

API Version 2006-03-01
152

Amazon Simple Storage Service Developer Guide
How Do I Configure CORS on My Bucket?

 <AllowedMethod>DELETE</AllowedMethod>

 <AllowedHeader>*</AllowedHeader>
 </CORSRule>
 <CORSRule>
 <AllowedOrigin>http://www.example2.com</AllowedOrigin>

 <AllowedMethod>PUT</AllowedMethod>
 <AllowedMethod>POST</AllowedMethod>
 <AllowedMethod>DELETE</AllowedMethod>

 <AllowedHeader>*</AllowedHeader>
 </CORSRule>
 <CORSRule>
 <AllowedOrigin>*</AllowedOrigin>
 <AllowedMethod>GET</AllowedMethod>
 </CORSRule>
</CORSConfiguration>

The CORS configuration also allows optional configuration parameters, as shown in the following CORS
configuration. In this example, the CORS configuration allows cross-origin PUT, POST, and DELETE
requests from the http://www.example.com origin.

<CORSConfiguration>
 <CORSRule>
 <AllowedOrigin>http://www.example.com</AllowedOrigin>
 <AllowedMethod>PUT</AllowedMethod>
 <AllowedMethod>POST</AllowedMethod>
 <AllowedMethod>DELETE</AllowedMethod>
 <AllowedHeader>*</AllowedHeader>
 <MaxAgeSeconds>3000</MaxAgeSeconds>
 <ExposeHeader>x-amz-server-side-encryption</
ExposeHeader>
 <ExposeHeader>x-amz-request-id</
ExposeHeader>
 <ExposeHeader>x-amz-id-2</ExposeHeader>
 </CORSRule>
</CORSConfiguration>

The CORSRule element in the preceding configuration includes the following optional elements:

• MaxAgeSeconds—Specifies the amount of time in seconds (in this example, 3000) that the browser
caches an Amazon S3 response to a preflight OPTIONS request for the specified resource. By caching
the response, the browser does not have to send preflight requests to Amazon S3 if the original
request will be repeated.

• ExposeHeader—Identifies the response headers (in this example, x-amz-server-side-
encryption, x-amz-request-id, and x-amz-id-2) that customers are able to access from their
applications (for example, from a JavaScript XMLHttpRequest object).

AllowedMethod Element
In the CORS configuration, you can specify the following values for the AllowedMethod element.

• GET
• PUT
• POST
• DELETE
• HEAD

API Version 2006-03-01
153

Amazon Simple Storage Service Developer Guide
How Does Amazon S3 Evaluate the
CORS Configuration on a Bucket?

AllowedOrigin Element
In the AllowedOrigin element, you specify the origins that you want to allow cross-domain requests
from, for example, http://www.example.com. The origin string can contain only one * wildcard
character, such as http://*.example.com. You can optionally specify * as the origin to enable all the
origins to send cross-origin requests. You can also specify https to enable only secure origins.

AllowedHeader Element
The AllowedHeader element specifies which headers are allowed in a preflight request through the
Access-Control-Request-Headers header. Each header name in the Access-Control-Request-
Headers header must match a corresponding entry in the rule. Amazon S3 will send only the allowed
headers in a response that were requested. For a sample list of headers that can be used in requests to
Amazon S3, go to Common Request Headers in the Amazon Simple Storage Service API Reference guide.

Each AllowedHeader string in the rule can contain at most one * wildcard character. For example,
<AllowedHeader>x-amz-*</AllowedHeader> will enable all Amazon-specific headers.

ExposeHeader Element
Each ExposeHeader element identifies a header in the response that you want customers to be able
to access from their applications (for example, from a JavaScript XMLHttpRequest object). For a list of
common Amazon S3 response headers, go to Common Response Headers in the Amazon Simple Storage
Service API Reference guide.

MaxAgeSeconds Element
The MaxAgeSeconds element specifies the time in seconds that your browser can cache the response for
a preflight request as identified by the resource, the HTTP method, and the origin.

How Does Amazon S3 Evaluate the CORS
Configuration on a Bucket?
When Amazon S3 receives a preflight request from a browser, it evaluates the CORS configuration for the
bucket and uses the first CORSRule rule that matches the incoming browser request to enable a cross-
origin request. For a rule to match, the following conditions must be met:

• The request's Origin header must match an AllowedOrigin element.
• The request method (for example, GET or PUT) or the Access-Control-Request-Method header in

case the of a preflight OPTIONS request must be one of the AllowedMethod elements.
• Every header listed in the request's Access-Control-Request-Headers header on the preflight

request must match an AllowedHeader element.

Note
The ACLs and policies continue to apply when you enable CORS on the bucket.

Enabling Cross-Origin Resource Sharing (CORS)
Enable cross-origin resource sharing by setting a CORS configuration on your bucket using the AWS
Management Console, the REST API, or the AWS SDKs.

Topics
• Enabling Cross-Origin Resource Sharing (CORS) Using the AWS Management Console (p. 155)

API Version 2006-03-01
154

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTCommonRequestHeaders.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTCommonResponseHeaders.html

Amazon Simple Storage Service Developer Guide
Enabling CORS

• Enabling Cross-Origin Resource Sharing (CORS) Using the AWS SDK for Java (p. 155)
• Enabling Cross-Origin Resource Sharing (CORS) Using the AWS SDK for .NET (p. 157)
• Enabling Cross-Origin Resource Sharing (CORS) Using the REST API (p. 160)

Enabling Cross-Origin Resource Sharing (CORS) Using the AWS
Management Console
You can use the AWS Management Console to set a CORS configuration on your bucket. For instructions,
see How Do I Allow Cross-Domain Resource Sharing with CORS? in the Amazon Simple Storage Service
Console User Guide.

Enabling Cross-Origin Resource Sharing (CORS) Using the AWS
SDK for Java
You can use the AWS SDK for Java to manage cross-origin resource sharing (CORS) for a bucket. For more
information about CORS, see Cross-Origin Resource Sharing (CORS) (p. 151).

Example

The following example:

• Creates a CORS configuration and sets the configuration on a bucket
• Retrieves the configuration and modifies it by adding a rule
• Adds the modified configuration to the bucket
• Deletes the configuration

For instructions on how to create and test a working sample, see Testing the Amazon S3 Java Code
Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketCrossOriginConfiguration;
import com.amazonaws.services.s3.model.CORSRule;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class CORS {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";

 // Create two CORS rules.
 List<CORSRule.AllowedMethods> rule1AM = new ArrayList<CORSRule.AllowedMethods>();
 rule1AM.add(CORSRule.AllowedMethods.PUT);
 rule1AM.add(CORSRule.AllowedMethods.POST);
 rule1AM.add(CORSRule.AllowedMethods.DELETE);
 CORSRule rule1 = new CORSRule().withId("CORSRule1").withAllowedMethods(rule1AM)

API Version 2006-03-01
155

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-cors-configuration.html

Amazon Simple Storage Service Developer Guide
Enabling CORS

 .withAllowedOrigins(Arrays.asList("http://*.example.com"));

 List<CORSRule.AllowedMethods> rule2AM = new ArrayList<CORSRule.AllowedMethods>();
 rule2AM.add(CORSRule.AllowedMethods.GET);
 CORSRule rule2 = new CORSRule().withId("CORSRule2").withAllowedMethods(rule2AM)
 .withAllowedOrigins(Arrays.asList("*")).withMaxAgeSeconds(3000)
 .withExposedHeaders(Arrays.asList("x-amz-server-side-encryption"));

 List<CORSRule> rules = new ArrayList<CORSRule>();
 rules.add(rule1);
 rules.add(rule2);

 // Add the rules to a new CORS configuration.
 BucketCrossOriginConfiguration configuration = new
 BucketCrossOriginConfiguration();
 configuration.setRules(rules);

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 // Add the configuration to the bucket.
 s3Client.setBucketCrossOriginConfiguration(bucketName, configuration);

 // Retrieve and display the configuration.
 configuration = s3Client.getBucketCrossOriginConfiguration(bucketName);
 printCORSConfiguration(configuration);

 // Add another new rule.
 List<CORSRule.AllowedMethods> rule3AM = new
 ArrayList<CORSRule.AllowedMethods>();
 rule3AM.add(CORSRule.AllowedMethods.HEAD);
 CORSRule rule3 = new CORSRule().withId("CORSRule3").withAllowedMethods(rule3AM)
 .withAllowedOrigins(Arrays.asList("http://www.example.com"));

 rules = configuration.getRules();
 rules.add(rule3);
 configuration.setRules(rules);
 s3Client.setBucketCrossOriginConfiguration(bucketName, configuration);

 // Verify that the new rule was added by checking the number of rules in the
 configuration.
 configuration = s3Client.getBucketCrossOriginConfiguration(bucketName);
 System.out.println("Expected # of rules = 3, found " +
 configuration.getRules().size());

 // Delete the configuration.
 s3Client.deleteBucketCrossOriginConfiguration(bucketName);
 System.out.println("Removed CORS configuration.");

 // Retrieve and display the configuration to verify that it was
 // successfully deleted.
 configuration = s3Client.getBucketCrossOriginConfiguration(bucketName);
 printCORSConfiguration(configuration);
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }

API Version 2006-03-01
156

Amazon Simple Storage Service Developer Guide
Enabling CORS

 private static void printCORSConfiguration(BucketCrossOriginConfiguration
 configuration) {
 if (configuration == null) {
 System.out.println("Configuration is null.");
 } else {
 System.out.println("Configuration has " + configuration.getRules().size() + "
 rules\n");

 for (CORSRule rule : configuration.getRules()) {
 System.out.println("Rule ID: " + rule.getId());
 System.out.println("MaxAgeSeconds: " + rule.getMaxAgeSeconds());
 System.out.println("AllowedMethod: " + rule.getAllowedMethods());
 System.out.println("AllowedOrigins: " + rule.getAllowedOrigins());
 System.out.println("AllowedHeaders: " + rule.getAllowedHeaders());
 System.out.println("ExposeHeader: " + rule.getExposedHeaders());
 System.out.println();
 }
 }
 }
}

Enabling Cross-Origin Resource Sharing (CORS) Using the AWS
SDK for .NET
To manage cross-origin resource sharing (CORS) for a bucket, you can use the AWS SDK for .NET. For
more information about CORS, see Cross-Origin Resource Sharing (CORS) (p. 151).

Example

The following C# code:

• Creates a CORS configuration and sets the configuration on a bucket
• Retrieves the configuration and modifies it by adding a rule
• Adds the modified configuration to the bucket
• Deletes the configuration

For information about creating and testing a working sample, see Running the Amazon S3 .NET Code
Examples (p. 678).

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class CORSTest
 {
 private const string bucketName = "*** bucket name ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 s3Client;

 public static void Main()
 {
 s3Client = new AmazonS3Client(bucketRegion);

API Version 2006-03-01
157

Amazon Simple Storage Service Developer Guide
Enabling CORS

 CORSConfigTestAsync().Wait();
 }
 private static async Task CORSConfigTestAsync()
 {
 try
 {
 // Create a new configuration request and add two rules
 CORSConfiguration configuration = new CORSConfiguration
 {
 Rules = new System.Collections.Generic.List<CORSRule>
 {
 new CORSRule
 {
 Id = "CORSRule1",
 AllowedMethods = new List<string> {"PUT", "POST", "DELETE"},
 AllowedOrigins = new List<string> {"http://*.example.com"}
 },
 new CORSRule
 {
 Id = "CORSRule2",
 AllowedMethods = new List<string> {"GET"},
 AllowedOrigins = new List<string> {"*"},
 MaxAgeSeconds = 3000,
 ExposeHeaders = new List<string> {"x-amz-server-side-
encryption"}
 }
 }
 };

 // Add the configuration to the bucket.
 await PutCORSConfigurationAsync(configuration);

 // Retrieve an existing configuration.
 configuration = await RetrieveCORSConfigurationAsync();

 // Add a new rule.
 configuration.Rules.Add(new CORSRule
 {
 Id = "CORSRule3",
 AllowedMethods = new List<string> { "HEAD" },
 AllowedOrigins = new List<string> { "http://www.example.com" }
 });

 // Add the configuration to the bucket.
 await PutCORSConfigurationAsync(configuration);

 // Verify that there are now three rules.
 configuration = await RetrieveCORSConfigurationAsync();
 Console.WriteLine();
 Console.WriteLine("Expected # of rulest=3; found:{0}",
 configuration.Rules.Count);
 Console.WriteLine();
 Console.WriteLine("Pause before configuration delete. To continue, click
 Enter...");
 Console.ReadKey();

 // Delete the configuration.
 await DeleteCORSConfigurationAsync();

 // Retrieve a nonexistent configuration.
 configuration = await RetrieveCORSConfigurationAsync();
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Error encountered on server. Message:'{0}' when writing
 an object", e.Message);

API Version 2006-03-01
158

Amazon Simple Storage Service Developer Guide
Enabling CORS

 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown encountered on server. Message:'{0}' when
 writing an object", e.Message);
 }
 }

 static async Task PutCORSConfigurationAsync(CORSConfiguration configuration)
 {

 PutCORSConfigurationRequest request = new PutCORSConfigurationRequest
 {
 BucketName = bucketName,
 Configuration = configuration
 };

 var response = await s3Client.PutCORSConfigurationAsync(request);
 }

 static async Task<CORSConfiguration> RetrieveCORSConfigurationAsync()
 {
 GetCORSConfigurationRequest request = new GetCORSConfigurationRequest
 {
 BucketName = bucketName

 };
 var response = await s3Client.GetCORSConfigurationAsync(request);
 var configuration = response.Configuration;
 PrintCORSRules(configuration);
 return configuration;
 }

 static async Task DeleteCORSConfigurationAsync()
 {
 DeleteCORSConfigurationRequest request = new DeleteCORSConfigurationRequest
 {
 BucketName = bucketName
 };
 await s3Client.DeleteCORSConfigurationAsync(request);
 }

 static void PrintCORSRules(CORSConfiguration configuration)
 {
 Console.WriteLine();

 if (configuration == null)
 {
 Console.WriteLine("\nConfiguration is null");
 return;
 }

 Console.WriteLine("Configuration has {0} rules:", configuration.Rules.Count);
 foreach (CORSRule rule in configuration.Rules)
 {
 Console.WriteLine("Rule ID: {0}", rule.Id);
 Console.WriteLine("MaxAgeSeconds: {0}", rule.MaxAgeSeconds);
 Console.WriteLine("AllowedMethod: {0}", string.Join(", ",
 rule.AllowedMethods.ToArray()));
 Console.WriteLine("AllowedOrigins: {0}", string.Join(", ",
 rule.AllowedOrigins.ToArray()));
 Console.WriteLine("AllowedHeaders: {0}", string.Join(", ",
 rule.AllowedHeaders.ToArray()));
 Console.WriteLine("ExposeHeader: {0}", string.Join(", ",
 rule.ExposeHeaders.ToArray()));
 }

API Version 2006-03-01
159

Amazon Simple Storage Service Developer Guide
Troubleshooting CORS

 }
 }
}

Enabling Cross-Origin Resource Sharing (CORS) Using the REST
API
To set a CORS configuration on your bucket, you can use the AWS Management Console. If your
application requires it, you can also send REST requests directly. The following sections in the Amazon
Simple Storage Service API Reference describe the REST API actions related to the CORS configuration:

• PUT Bucket cors

• GET Bucket cors

• DELETE Bucket cors

• OPTIONS object

Troubleshooting CORS Issues
If you encounter unexpected behavior while accessing buckets set with the CORS configuration, try the
following steps to troubleshoot:

1. Verify that the CORS configuration is set on the bucket.

For instructions, see Editing Bucket Permissions in the Amazon Simple Storage Service Console User
Guide. If the CORS configuration is set, the console displays an Edit CORS Configuration link in the
Permissions section of the Properties bucket.

2. Capture the complete request and response using a tool of your choice. For each request Amazon S3
receives, there must be a CORS rule that matches the data in your request, as follows:

a. Verify that the request has the Origin header.

If the header is missing, Amazon S3 doesn't treat the request as a cross-origin request, and doesn't
send CORS response headers in the response.

b. Verify that the Origin header in your request matches at least one of the AllowedOrigin elements
in the specified CORSRule.

The scheme, the host, and the port values in the Origin request header must match the
AllowedOrigin elements in the CORSRule. For example, if you set the CORSRule to
allow the origin http://www.example.com, then both https://www.example.com and
http://www.example.com:80 origins in your request don't match the allowed origin in your
configuration.

c. Verify that the method in your request (or in a preflight request, the method specified in the
Access-Control-Request-Method) is one of the AllowedMethod elements in the same
CORSRule.

d. For a preflight request, if the request includes an Access-Control-Request-Headers header,
verify that the CORSRule includes the AllowedHeader entries for each value in the Access-
Control-Request-Headers header.

Operations on Objects
Amazon S3 enables you to store, retrieve, and delete objects. You can retrieve an entire object or a
portion of an object. If you have enabled versioning on your bucket, you can retrieve a specific version

API Version 2006-03-01
160

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTcors.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETcors.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEcors.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTOPTIONSobject.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/EditingBucketPermissions.html

Amazon Simple Storage Service Developer Guide
Getting Objects

of the object. You can also retrieve a subresource associated with your object and update it where
applicable. You can make a copy of your existing object. Depending on the object size, the following
upload and copy related considerations apply:

• Uploading objects—You can upload objects of up to 5 GB in size in a single operation. For objects
greater than 5 GB you must use the multipart upload API.

Using the multipart upload API you can upload objects up to 5 TB each. For more information, see
Uploading Objects Using Multipart Upload API (p. 175).

• Copying objects—The copy operation creates a copy of an object that is already stored in Amazon S3.

You can create a copy of your object up to 5 GB in size in a single atomic operation. However, for
copying an object greater than 5 GB, you must use the multipart upload API. For more information, see
Copying Objects (p. 210).

You can use the REST API (see Making Requests Using the REST API (p. 44)) to work with objects or use
one of the following AWS SDK libraries:

• AWS SDK for Java
• AWS SDK for .NET
• AWS SDK for PHP

These libraries provide a high-level abstraction that makes working with objects easy. However, if your
application requires, you can use the REST API directly.

Getting Objects
Topics

• Related Resources (p. 162)
• Get an Object Using the AWS SDK for Java (p. 162)
• Get an Object Using the AWS SDK for .NET (p. 164)
• Get an Object Using the AWS SDK for PHP (p. 166)
• Get an Object Using the REST API (p. 167)
• Share an Object with Others (p. 167)

You can retrieve objects directly from Amazon S3. You have the following options when retrieving an
object:

• Retrieve an entire object—A single GET operation can return you the entire object stored in Amazon
S3.

• Retrieve object in parts—Using the Range HTTP header in a GET request, you can retrieve a specific
range of bytes in an object stored in Amazon S3.

You resume fetching other parts of the object whenever your application is ready. This resumable
download is useful when you need only portions of your object data. It is also useful where network
connectivity is poor and you need to react to failures.

Note
Amazon S3 doesn't support retrieving multiple ranges of data per GET request.

When you retrieve an object, its metadata is returned in the response headers. There are times when you
want to override certain response header values returned in a GET response. For example, you might
override the Content-Disposition response header value in your GET request. The REST GET Object

API Version 2006-03-01
161

https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/sdk-for-php/

Amazon Simple Storage Service Developer Guide
Getting Objects

API (see GET Object) allows you to specify query string parameters in your GET request to override these
values.

The AWS SDKs for Java, .NET, and PHP also provide necessary objects you can use to specify values for
these response headers in your GET request.

When retrieving objects that are stored encrypted using server-side encryption you will need to provide
appropriate request headers. For more information, see Protecting Data Using Encryption (p. 264).

Related Resources
• Using the AWS SDKs, CLI, and Explorers (p. 669)

Get an Object Using the AWS SDK for Java
When you download an object through the AWS SDK for Java, Amazon S3 returns all of the object's
metadata and an input stream from which to read the object's contents.

To retrieve an object, you do the following:

• Execute the AmazonS3Client.getObject() method, providing the bucket name and object key in
the request.

• Execute one of the S3Object instance methods to process the input stream.

Note
Your network connection remains open until you read all of the data or close the input stream.
We recommend that you read the content of the stream as quickly as possible.

The following are some variations you might use:

• Instead of reading the entire object, you can read only a portion of the object data by specifying the
byte range that you want in the request.

• You can optionally override the response header values (see Getting Objects (p. 161)) by using a
ResponseHeaderOverrides object and setting the corresponding request property. For example,
you can use this feature to indicate that the object should be downloaded into a file with a different
file name than the object key name.

The following example retrieves an object from an Amazon S3 bucket three ways: first, as a complete
object, then as a range of bytes from the object, then as a complete object with overridden response
header values. For more information about getting objects from Amazon S3, see GET Object.
For instructions on creating and testing a working sample, see Testing the Amazon S3 Java Code
Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.GetObjectRequest;
import com.amazonaws.services.s3.model.ResponseHeaderOverrides;
import com.amazonaws.services.s3.model.S3Object;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;

API Version 2006-03-01
162

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html

Amazon Simple Storage Service Developer Guide
Getting Objects

import java.io.InputStreamReader;

public class GetObject {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String key = "*** Object key ***";

 S3Object fullObject = null, objectPortion = null, headerOverrideObject = null;
 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(clientRegion)
 .withCredentials(new ProfileCredentialsProvider())
 .build();

 // Get an object and print its contents.
 System.out.println("Downloading an object");
 fullObject = s3Client.getObject(new GetObjectRequest(bucketName, key));
 System.out.println("Content-Type: " +
 fullObject.getObjectMetadata().getContentType());
 System.out.println("Content: ");
 displayTextInputStream(fullObject.getObjectContent());

 // Get a range of bytes from an object and print the bytes.
 GetObjectRequest rangeObjectRequest = new GetObjectRequest(bucketName, key)
 .withRange(0, 9);
 objectPortion = s3Client.getObject(rangeObjectRequest);
 System.out.println("Printing bytes retrieved.");
 displayTextInputStream(objectPortion.getObjectContent());

 // Get an entire object, overriding the specified response headers, and print
 the object's content.
 ResponseHeaderOverrides headerOverrides = new ResponseHeaderOverrides()
 .withCacheControl("No-cache")
 .withContentDisposition("attachment; filename=example.txt");
 GetObjectRequest getObjectRequestHeaderOverride = new
 GetObjectRequest(bucketName, key)
 .withResponseHeaders(headerOverrides);
 headerOverrideObject = s3Client.getObject(getObjectRequestHeaderOverride);
 displayTextInputStream(headerOverrideObject.getObjectContent());
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 } finally {
 // To ensure that the network connection doesn't remain open, close any open
 input streams.
 if (fullObject != null) {
 fullObject.close();
 }
 if (objectPortion != null) {
 objectPortion.close();
 }
 if (headerOverrideObject != null) {
 headerOverrideObject.close();
 }
 }
 }

 private static void displayTextInputStream(InputStream input) throws IOException {
 // Read the text input stream one line at a time and display each line.

API Version 2006-03-01
163

Amazon Simple Storage Service Developer Guide
Getting Objects

 BufferedReader reader = new BufferedReader(new InputStreamReader(input));
 String line = null;
 while ((line = reader.readLine()) != null) {
 System.out.println(line);
 }
 System.out.println();
 }
}

Get an Object Using the AWS SDK for .NET
When you download an object, you get all of the object's metadata and a stream from which to read the
contents. You should read the content of the stream as quickly as possible because the data is streamed
directly from Amazon S3 and your network connection will remain open until you read all the data or
close the input stream. You do the following to get an object:

• Execute the getObject method by providing bucket name and object key in the request.
• Execute one of the GetObjectResponse methods to process the stream.

The following are some variations you might use:

• Instead of reading the entire object, you can read only the portion of the object data by specifying the
byte range in the request, as shown in the following C# example:

Example

GetObjectRequest request = new GetObjectRequest
{
 BucketName = bucketName,
 Key = keyName,
 ByteRange = new ByteRange(0, 10)
};

• When retrieving an object, you can optionally override the response header values (see Getting
Objects (p. 161)) by using the ResponseHeaderOverrides object and setting the corresponding
request property. The following C# code example shows how to do this. For example, you can use this
feature to indicate that the object should be downloaded into a file with a different filename that the
object key name.

Example

GetObjectRequest request = new GetObjectRequest
{
 BucketName = bucketName,
 Key = keyName
};

ResponseHeaderOverrides responseHeaders = new ResponseHeaderOverrides();
responseHeaders.CacheControl = "No-cache";
responseHeaders.ContentDisposition = "attachment; filename=testing.txt";

request.ResponseHeaderOverrides = responseHeaders;

Example

The following C# code example retrieves an object from an Amazon S3 bucket. From the response,
the example reads the object data using the GetObjectResponse.ResponseStream property.

API Version 2006-03-01
164

Amazon Simple Storage Service Developer Guide
Getting Objects

The example also shows how you can use the GetObjectResponse.Metadata collection to read
object metadata. If the object you retrieve has the x-amz-meta-title metadata, the code prints the
metadata value.

For instructions on how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 678).

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.IO;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class GetObjectTest
 {
 private const string bucketName = "*** bucket name ***";
 private const string keyName = "*** object key ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 client;

 public static void Main()
 {
 client = new AmazonS3Client(bucketRegion);
 ReadObjectDataAsync().Wait();
 }

 static async Task ReadObjectDataAsync()
 {
 string responseBody = "";
 try
 {
 GetObjectRequest request = new GetObjectRequest
 {
 BucketName = bucketName,
 Key = keyName
 };
 using (GetObjectResponse response = await client.GetObjectAsync(request))
 using (Stream responseStream = response.ResponseStream)
 using (StreamReader reader = new StreamReader(responseStream))
 {
 string title = response.Metadata["x-amz-meta-title"]; // Assume you
 have "title" as medata added to the object.
 string contentType = response.Headers["Content-Type"];
 Console.WriteLine("Object metadata, Title: {0}", title);
 Console.WriteLine("Content type: {0}", contentType);

 responseBody = reader.ReadToEnd(); // Now you process the response
 body.
 }
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Error encountered ***. Message:'{0}' when writing an
 object", e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown encountered on server. Message:'{0}' when
 writing an object", e.Message);
 }
 }

API Version 2006-03-01
165

Amazon Simple Storage Service Developer Guide
Getting Objects

 }
}

Get an Object Using the AWS SDK for PHP

This topic explains how to use a class from the AWS SDK for PHP to retrieve an Amazon S3 object. You
can retrieve an entire object or a byte range from the object. We assume that you are already following
the instructions for Using the AWS SDK for PHP and Running PHP Examples (p. 678) and have the AWS
SDK for PHP properly installed.

When retrieving an object, you can optionally override the response header values by
adding the response keys, ResponseContentType, ResponseContentLanguage,
ResponseContentDisposition, ResponseCacheControl, and ResponseExpires, to the
getObject() method, as shown in the following PHP code example:

Example

$result = $s3->getObject([
 'Bucket' => $bucket,
 'Key' => $keyname,
 'ResponseContentType' => 'text/plain',
 'ResponseContentLanguage' => 'en-US',
 'ResponseContentDisposition' => 'attachment; filename=testing.txt',
 'ResponseCacheControl' => 'No-cache',
 'ResponseExpires' => gmdate(DATE_RFC2822, time() + 3600),
]);

For more information about retrieving objects, see Getting Objects (p. 161).

The following PHP example retrieves an object and displays the content of the object in the browser. The
example shows how to use the getObject() method. For information about running the PHP examples
in this guide, see Running PHP Examples (p. 679).

 require 'vendor/autoload.php';

use Aws\S3\S3Client;
use Aws\S3\Exception\S3Exception;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';

$s3 = new S3Client([
 'version' => 'latest',
 'region' => 'us-east-1'
]);

try {
 // Get the object.
 $result = $s3->getObject([
 'Bucket' => $bucket,
 'Key' => $keyname
]);

 // Display the object in the browser.
 header("Content-Type: {$result['ContentType']}");
 echo $result['Body'];
} catch (S3Exception $e) {
 echo $e->getMessage() . PHP_EOL;
}

API Version 2006-03-01
166

Amazon Simple Storage Service Developer Guide
Getting Objects

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class
• AWS SDK for PHP Documentation

Get an Object Using the REST API
You can use the AWS SDK to retrieve object keys from a bucket. However, if your application requires
it, you can send REST requests directly. You can send a GET request to retrieve object keys. For more
information about the request and response format, go to Get Object.

Share an Object with Others
Topics

• Generate a Presigned Object URL using AWS Explorer for Visual Studio (p. 167)
• Generate a presigned Object URL Using the AWS SDK for Java (p. 167)
• Generate a Presigned Object URL Using AWS SDK for .NET (p. 168)

• Generate a Presigned Object URL Using AWS CLI

All objects by default are private. Only the object owner has permission to access these objects. However,
the object owner can optionally share objects with others by creating a presigned URL, using their own
security credentials, to grant time-limited permission to download the objects.

When you create a presigned URL for your object, you must provide your security credentials, specify a
bucket name, an object key, specify the HTTP method (GET to download the object) and expiration date
and time. The presigned URLs are valid only for the specified duration.

Anyone who receives the presigned URL can then access the object. For example, if you have a video
in your bucket and both the bucket and the object are private, you can share the video with others by
generating a presigned URL.

Note
Anyone with valid security credentials can create a presigned URL. However, in order to
successfully access an object, the presigned URL must be created by someone who has
permission to perform the operation that the presigned URL is based upon.

You can generate presigned URL programmatically using the AWS SDK for Java and .NET.

Generate a Presigned Object URL using AWS Explorer for Visual Studio

If you are using Visual Studio, you can generate a presigned URL for an object without writing any
code by using AWS Explorer for Visual Studio. Anyone with this URL can download the object. For more
information, go to Using Amazon S3 from AWS Explorer.

For instructions about how to install the AWS Explorer, see Using the AWS SDKs, CLI, and
Explorers (p. 669).

Generate a presigned Object URL Using the AWS SDK for Java

Example

The following example generates a presigned URL that you can give to others so that they can retrieve
an object from an S3 bucket. For more information, see Share an Object with Others (p. 167).

For instructions on creating and testing a working sample, see Testing the Amazon S3 Java Code
Examples (p. 677).

API Version 2006-03-01
167

https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.S3.S3Client.html
http://aws.amazon.com/documentation/sdk-for-php/
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/cli/latest/reference/s3/presign.html
https://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/using-s3.html

Amazon Simple Storage Service Developer Guide
Getting Objects

import com.amazonaws.AmazonServiceException;
import com.amazonaws.HttpMethod;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.GeneratePresignedUrlRequest;

import java.io.IOException;
import java.net.URL;

public class GeneratePresignedURL {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String objectKey = "*** Object key ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(clientRegion)
 .withCredentials(new ProfileCredentialsProvider())
 .build();

 // Set the presigned URL to expire after one hour.
 java.util.Date expiration = new java.util.Date();
 long expTimeMillis = expiration.getTime();
 expTimeMillis += 1000 * 60 * 60;
 expiration.setTime(expTimeMillis);

 // Generate the presigned URL.
 System.out.println("Generating pre-signed URL.");
 GeneratePresignedUrlRequest generatePresignedUrlRequest =
 new GeneratePresignedUrlRequest(bucketName, objectKey)
 .withMethod(HttpMethod.GET)
 .withExpiration(expiration);
 URL url = s3Client.generatePresignedUrl(generatePresignedUrlRequest);

 System.out.println("Pre-Signed URL: " + url.toString());
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Generate a Presigned Object URL Using AWS SDK for .NET

Example

The following example generates a presigned URL that you can give to others so that they can retrieve
an object. For more information, see Share an Object with Others (p. 167).

For instructions about how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 678).

API Version 2006-03-01
168

Amazon Simple Storage Service Developer Guide
Uploading Objects

using Amazon.S3;
using Amazon.S3.Model;
using System;

namespace Amazon.DocSamples.S3
{
 class GenPresignedURLTest
 {
 private const string bucketName = "*** bucket name ***";
 private const string objectKey = "*** object key ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 s3Client;

 public static void Main()
 {
 s3Client = new AmazonS3Client(bucketRegion);
 string urlString = GeneratePreSignedURL();
 }
 static string GeneratePreSignedURL()
 {
 string urlString = "";
 try
 {
 GetPreSignedUrlRequest request1 = new GetPreSignedUrlRequest
 {
 BucketName = bucketName,
 Key = objectKey,
 Expires = DateTime.Now.AddMinutes(5)
 };
 urlString = s3Client.GetPreSignedURL(request1);
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Error encountered on server. Message:'{0}' when writing
 an object", e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown encountered on server. Message:'{0}' when
 writing an object", e.Message);
 }
 return urlString;
 }
 }
}

Uploading Objects
Depending on the size of the data you are uploading, Amazon S3 offers the following options:

• Upload objects in a single operation—With a single PUT operation, you can upload objects up to 5
GB in size.

For more information, see Uploading Objects in a Single Operation (p. 170).
• Upload objects in parts—Using the multipart upload API, you can upload large objects, up to 5 TB.

The multipart upload API is designed to improve the upload experience for larger objects. You can
upload objects in parts. These object parts can be uploaded independently, in any order, and in
parallel. You can use a multipart upload for objects from 5 MB to 5 TB in size. For more information,
see Uploading Objects Using Multipart Upload API (p. 175).

API Version 2006-03-01
169

Amazon Simple Storage Service Developer Guide
Uploading Objects

We recommend that you use multipart uploading in the following ways:

• If you're uploading large objects over a stable high-bandwidth network, use multipart uploading to
maximize the use of your available bandwidth by uploading object parts in parallel for multi-threaded
performance.

• If you're uploading over a spotty network, use multipart uploading to increase resiliency to network
errors by avoiding upload restarts. When using multipart uploading, you need to retry uploading only
parts that are interrupted during the upload. You don't need to restart uploading your object from the
beginning.

For more information about multipart uploads, see Multipart Upload Overview (p. 175).

Topics
• Uploading Objects in a Single Operation (p. 170)
• Uploading Objects Using Multipart Upload API (p. 175)
• Uploading Objects Using Presigned URLs (p. 206)

When uploading an object, you can optionally request that Amazon S3 encrypt it before saving
it to disk, and decrypt it when you download it. For more information, see Protecting Data Using
Encryption (p. 264).

Related Topics

Using the AWS SDKs, CLI, and Explorers (p. 669)

Uploading Objects in a Single Operation
Topics

• Upload an Object Using the AWS SDK for Java (p. 170)
• Upload an Object Using the AWS SDK for .NET (p. 171)
• Upload an Object Using the AWS SDK for PHP (p. 173)
• Upload an Object Using the AWS SDK for Ruby (p. 173)
• Upload an Object Using the REST API (p. 174)

You can use the AWS SDK to upload objects. The SDK provides wrapper libraries for you to upload data
easily. However, if your application requires it, you can use the REST API directly in your application.

Upload an Object Using the AWS SDK for Java

Example

The following example creates two objects. The first object has a text string as data, and the second
object is a file. The example creates the first object by specifying the bucket name, object key, and
text data directly in a call to AmazonS3Client.putObject(). The example creates the second
object by using a PutObjectRequest that specifies the bucket name, object key, and file path. The
PutObjectRequest also specifies the ContentType header and title metadata.

For instructions on creating and testing a working sample, see Testing the Amazon S3 Java Code
Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.regions.Regions;

API Version 2006-03-01
170

Amazon Simple Storage Service Developer Guide
Uploading Objects

import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.ObjectMetadata;
import com.amazonaws.services.s3.model.PutObjectRequest;

import java.io.File;
import java.io.IOException;

public class UploadObject {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String stringObjKeyName = "*** String object key name ***";
 String fileObjKeyName = "*** File object key name ***";
 String fileName = "*** Path to file to upload ***";

 try {
 //This code expects that you have AWS credentials set up per:
 // https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-
credentials.html
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(clientRegion)
 .build();

 // Upload a text string as a new object.
 s3Client.putObject(bucketName, stringObjKeyName, "Uploaded String Object");

 // Upload a file as a new object with ContentType and title specified.
 PutObjectRequest request = new PutObjectRequest(bucketName, fileObjKeyName, new
 File(fileName));
 ObjectMetadata metadata = new ObjectMetadata();
 metadata.setContentType("plain/text");
 metadata.addUserMetadata("x-amz-meta-title", "someTitle");
 request.setMetadata(metadata);
 s3Client.putObject(request);
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Upload an Object Using the AWS SDK for .NET

Example

The following C# code example creates two objects with two PutObjectRequest requests:

• The first PutObjectRequest request saves a text string as sample object data. It also specifies the
bucket and object key names.

• The second PutObjectRequest request uploads a file by specifing the file name. This request also
specifies the ContentType header and optional object metadata (a title).

For instructions on how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 678).

API Version 2006-03-01
171

Amazon Simple Storage Service Developer Guide
Uploading Objects

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class UploadObjectTest
 {
 private const string bucketName = "*** bucket name ***";
 // For simplicity the example creates two objects from the same file.
 // You specify key names for these objects.
 private const string keyName1 = "*** key name for first object created ***";
 private const string keyName2 = "*** key name for second object created ***";
 private const string filePath = @"*** file path ***";
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.EUWest1;

 private static IAmazonS3 client;

 public static void Main()
 {
 client = new AmazonS3Client(bucketRegion);
 WritingAnObjectAsync().Wait();
 }

 static async Task WritingAnObjectAsync()
 {
 try
 {
 // 1. Put object-specify only key name for the new object.
 var putRequest1 = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = keyName1,
 ContentBody = "sample text"
 };

 PutObjectResponse response1 = await client.PutObjectAsync(putRequest1);

 // 2. Put the object-set ContentType and add metadata.
 var putRequest2 = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = keyName2,
 FilePath = filePath,
 ContentType = "text/plain"
 };
 putRequest2.Metadata.Add("x-amz-meta-title", "someTitle");
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine(
 "Error encountered ***. Message:'{0}' when writing an object"
 , e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine(
 "Unknown encountered on server. Message:'{0}' when writing an object"
 , e.Message);
 }
 }
 }

API Version 2006-03-01
172

Amazon Simple Storage Service Developer Guide
Uploading Objects

}

Upload an Object Using the AWS SDK for PHP

This topic guides you through using classes from the AWS SDK for PHP to upload an object of up to 5 GB
in size. For larger files you must use multipart upload API. For more information, see Uploading Objects
Using Multipart Upload API (p. 175).

This topic assumes that you are already following the instructions for Using the AWS SDK for PHP and
Running PHP Examples (p. 678) and have the AWS SDK for PHP properly installed.

Example of Creating an Object in an Amazon S3 bucket by Uploading Data

The following PHP example creates an object in a specified bucket by uploading data using the
putObject() method. For information about running the PHP examples in this guide, go to Running
PHP Examples (p. 679).

 require 'vendor/autoload.php';

use Aws\S3\S3Client;
use Aws\S3\Exception\S3Exception;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';

$s3 = new S3Client([
 'version' => 'latest',
 'region' => 'us-east-1'
]);

try {
 // Upload data.
 $result = $s3->putObject([
 'Bucket' => $bucket,
 'Key' => $keyname,
 'Body' => 'Hello, world!',
 'ACL' => 'public-read'
]);

 // Print the URL to the object.
 echo $result['ObjectURL'] . PHP_EOL;
} catch (S3Exception $e) {
 echo $e->getMessage() . PHP_EOL;
}

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class
• AWS SDK for PHP Documentation

Upload an Object Using the AWS SDK for Ruby

The AWS SDK for Ruby - Version 3 has two ways of uploading an object to Amazon S3. The first uses a
managed file uploader, which makes it easy to upload files of any size from disk. To use the managed file
uploader method:

1. Create an instance of the Aws::S3::Resource class.
2. Reference the target object by bucket name and key. Objects live in a bucket and have unique keys

that identify each object.

API Version 2006-03-01
173

https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.S3.S3Client.html
http://aws.amazon.com/documentation/sdk-for-php/

Amazon Simple Storage Service Developer Guide
Uploading Objects

3. Call#upload_file on the object.

Example

require 'aws-sdk-s3'

s3 = Aws::S3::Resource.new(region:'us-west-2')
obj = s3.bucket('bucket-name').object('key')
obj.upload_file('/path/to/source/file')

The second way that AWS SDK for Ruby - Version 3 can upload an object uses the #put method of
Aws::S3::Object. This is useful if the object is a string or an I/O object that is not a file on disk. To use
this method:

1. Create an instance of the Aws::S3::Resource class.
2. Reference the target object by bucket name and key.
3. Call#put, passing in the string or I/O object.

Example

require 'aws-sdk-s3'

s3 = Aws::S3::Resource.new(region:'us-west-2')
obj = s3.bucket('bucket-name').object('key')

I/O object
File.open('/path/to/source.file', 'rb') do |file|
 obj.put(body: file)
end

Upload an Object Using the REST API

You can use AWS SDK to upload an object. However, if your application requires it, you can send REST
requests directly. You can send a PUT request to upload data in a single operation. For more information,
see PUT Object.

API Version 2006-03-01
174

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

Amazon Simple Storage Service Developer Guide
Uploading Objects

Uploading Objects Using Multipart Upload API
Topics

• Multipart Upload Overview (p. 175)
• Using the AWS Java SDK for Multipart Upload (High-Level API) (p. 182)
• Using the AWS Java SDK for a Multipart Upload (Low-Level API) (p. 186)
• Using the AWS SDK for .NET for Multipart Upload (High-Level API) (p. 191)
• Using the AWS SDK for .NET for Multipart Upload (Low-Level API) (p. 197)
• Using the AWS PHP SDK for Multipart Upload (p. 201)
• Using the AWS PHP SDK for Multipart Upload (Low-Level API) (p. 203)
• Using the AWS SDK for Ruby for Multipart Upload (p. 205)
• Using the REST API for Multipart Upload (p. 206)

Multipart upload allows you to upload a single object as a set of parts. Each part is a contiguous portion
of the object's data. You can upload these object parts independently and in any order. If transmission
of any part fails, you can retransmit that part without affecting other parts. After all parts of your object
are uploaded, Amazon S3 assembles these parts and creates the object. In general, when your object size
reaches 100 MB, you should consider using multipart uploads instead of uploading the object in a single
operation.

Using multipart upload provides the following advantages:

• Improved throughput - You can upload parts in parallel to improve throughput.
• Quick recovery from any network issues - Smaller part size minimizes the impact of restarting a failed

upload due to a network error.
• Pause and resume object uploads - You can upload object parts over time. Once you initiate a

multipart upload there is no expiry; you must explicitly complete or abort the multipart upload.
• Begin an upload before you know the final object size - You can upload an object as you are creating it.

For more information, see Multipart Upload Overview (p. 175).

Multipart Upload Overview

Topics
• Concurrent Multipart Upload Operations (p. 176)
• Multipart Upload and Pricing (p. 177)
• Aborting Incomplete Multipart Uploads Using a Bucket Lifecycle Policy (p. 177)
• Amazon S3 Multipart Upload Limits (p. 178)
• API Support for Multipart Upload (p. 179)
• Multipart Upload API and Permissions (p. 179)

The Multipart upload API enables you to upload large objects in parts. You can use this API to upload
new large objects or make a copy of an existing object (see Operations on Objects (p. 160)).

Multipart uploading is a three-step process: You initiate the upload, you upload the object parts, and
after you have uploaded all the parts, you complete the multipart upload. Upon receiving the complete
multipart upload request, Amazon S3 constructs the object from the uploaded parts, and you can then
access the object just as you would any other object in your bucket.

You can list all of your in-progress multipart uploads or get a list of the parts that you have uploaded for
a specific multipart upload. Each of these operations is explained in this section.

API Version 2006-03-01
175

Amazon Simple Storage Service Developer Guide
Uploading Objects

Multipart Upload Initiation

When you send a request to initiate a multipart upload, Amazon S3 returns a response with an upload
ID, which is a unique identifier for your multipart upload. You must include this upload ID whenever you
upload parts, list the parts, complete an upload, or abort an upload. If you want to provide any metadata
describing the object being uploaded, you must provide it in the request to initiate multipart upload.

Parts Upload

When uploading a part, in addition to the upload ID, you must specify a part number. You can choose
any part number between 1 and 10,000. A part number uniquely identifies a part and its position in the
object you are uploading. The part number that you choose doesn’t need to be in a consecutive sequence
(for example, it can be 1, 5, and 14). If you upload a new part using the same part number as a previously
uploaded part, the previously uploaded part is overwritten. Whenever you upload a part, Amazon S3
returns an ETag header in its response. For each part upload, you must record the part number and
the ETag value. You need to include these values in the subsequent request to complete the multipart
upload.

Note
After you initiate a multipart upload and upload one or more parts, you must either complete or
abort the multipart upload in order to stop getting charged for storage of the uploaded parts.
Only after you either complete or abort a multipart upload will Amazon S3 free up the parts
storage and stop charging you for the parts storage.

Multipart Upload Completion (or Abort)

When you complete a multipart upload, Amazon S3 creates an object by concatenating the parts in
ascending order based on the part number. If any object metadata was provided in the initiate multipart
upload request, Amazon S3 associates that metadata with the object. After a successful complete
request, the parts no longer exist. Your complete multipart upload request must include the upload ID
and a list of both part numbers and corresponding ETag values. Amazon S3 response includes an ETag
that uniquely identifies the combined object data. This ETag will not necessarily be an MD5 hash of
the object data. You can optionally abort the multipart upload. After aborting a multipart upload, you
cannot upload any part using that upload ID again. All storage that any parts from the aborted multipart
upload consumed is then freed. If any part uploads were in-progress, they can still succeed or fail even
after you aborted. To free all storage consumed by all parts, you must abort a multipart upload only
after all part uploads have completed.

Multipart Upload Listings

You can list the parts of a specific multipart upload or all in-progress multipart uploads. The list parts
operation returns the parts information that you have uploaded for a specific multipart upload. For each
list parts request, Amazon S3 returns the parts information for the specified multipart upload, up to a
maximum of 1,000 parts. If there are more than 1,000 parts in the multipart upload, you must send a
series of list part requests to retrieve all the parts. Note that the returned list of parts doesn't include
parts that haven't completed uploading. Using the list multipart uploads operation, you can obtain a list
of multipart uploads in progress. An in-progress multipart upload is an upload that you have initiated,
but have not yet completed or aborted. Each request returns at most 1000 multipart uploads. If there
are more than 1,000 multipart uploads in progress, you need to send additional requests to retrieve the
remaining multipart uploads. Only use the returned listing for verification. You should not use the result
of this listing when sending a complete multipart upload request. Instead, maintain your own list of the
part numbers you specified when uploading parts and the corresponding ETag values that Amazon S3
returns.

Concurrent Multipart Upload Operations

In a distributed development environment, it is possible for your application to initiate several updates
on the same object at the same time. Your application might initiate several multipart uploads using
the same object key. For each of these uploads, your application can then upload parts and send a
complete upload request to Amazon S3 to create the object. When the buckets have versioning enabled,

API Version 2006-03-01
176

Amazon Simple Storage Service Developer Guide
Uploading Objects

completing a multipart upload always creates a new version. For buckets that do not have versioning
enabled, it is possible that some other request received between the time when a multipart upload is
initiated and when it is completed might take precedence.

Note
It is possible for some other request received between the time you initiated a multipart upload
and completed it to take precedence. For example, if another operation deletes a key after you
initiate a multipart upload with that key, but before you complete it, the complete multipart
upload response might indicate a successful object creation without you ever seeing the object.

Multipart Upload and Pricing

Once you initiate a multipart upload, Amazon S3 retains all the parts until you either complete or
abort the upload. Throughout its lifetime, you are billed for all storage, bandwidth, and requests for
this multipart upload and its associated parts. If you abort the multipart upload, Amazon S3 deletes
upload artifacts and any parts that you have uploaded, and you are no longer billed for them. For more
information about pricing, see Amazon S3 Pricing.

Aborting Incomplete Multipart Uploads Using a Bucket Lifecycle Policy

After you initiate a multipart upload, you begin uploading parts. Amazon S3 stores these parts, but it
creates the object from the parts only after you upload all of them and send a successful request
to complete the multipart upload (you should verify that your request to complete multipart upload is
successful). Upon receiving the complete multipart upload request, Amazon S3 assembles the parts and
creates an object.

If you don't send the complete multipart upload request successfully, Amazon S3 will not assemble the
parts and will not create any object. Therefore, the parts remain in Amazon S3 and you pay for the parts
that are stored in Amazon S3. As a best practice, we recommend you configure a lifecycle rule (using the
AbortIncompleteMultipartUpload action) to minimize your storage costs.

Amazon S3 supports a bucket lifecycle rule that you can use to direct Amazon S3 to abort multipart
uploads that don't complete within a specified number of days after being initiated. When a multipart
upload is not completed within the time frame, it becomes eligible for an abort operation and Amazon
S3 aborts the multipart upload (and deletes the parts associated with the multipart upload).

The following is an example lifecycle configuration that specifies a rule with the
AbortIncompleteMultipartUpload action.

<LifecycleConfiguration>
 <Rule>
 <ID>sample-rule</ID>
 <Prefix></Prefix>
 <Status>Enabled</Status>
 <AbortIncompleteMultipartUpload>
 <DaysAfterInitiation>7</DaysAfterInitiation>
 </AbortIncompleteMultipartUpload>
 </Rule>
</LifecycleConfiguration>

In the example, the rule does not specify a value for the Prefix element (object key name prefix)
and therefore it applies to all objects in the bucket for which you initiated multipart uploads. Any
multipart uploads that were initiated and did not complete within seven days become eligible for an
abort operation (the action has no effect on completed multipart uploads).

For more information about the bucket lifecycle configuration, see Object Lifecycle
Management (p. 119).

Note
If the multipart upload is completed within the number of days specified in the rule, the
AbortIncompleteMultipartUpload lifecycle action does not apply (that is, Amazon S3 will

API Version 2006-03-01
177

https://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Uploading Objects

not take any action). Also, this action does not apply to objects, no objects are deleted by this
lifecycle action.

The following put-bucket-lifecycle CLI command adds the lifecycle configuration for the specified
bucket.

$ aws s3api put-bucket-lifecycle \
 --bucket bucketname \
 --lifecycle-configuration filename-containing-lifecycle-configuration

To test the CLI command, do the following:

1. Set up the AWS CLI. For instructions, see Setting Up the AWS CLI (p. 675).

2. Save the following example lifecycle configuration in a file (lifecycle.json). The example
configuration specifies empty prefix and therefore it applies to all objects in the bucket. You can
specify a prefix to restrict the policy to a subset of objects.

{
 "Rules": [
 {
 "ID": "Test Rule",
 "Status": "Enabled",
 "Prefix": "",
 "AbortIncompleteMultipartUpload": {
 "DaysAfterInitiation": 7
 }
 }
]
}

3. Run the following CLI command to set lifecycle configuration on your bucket.

aws s3api put-bucket-lifecycle \
--bucket bucketname \
--lifecycle-configuration file://lifecycle.json

4. To verify, retrieve the lifecycle configuration using the get-bucket-lifecycle CLI command.

aws s3api get-bucket-lifecycle \
--bucket bucketname

5. To delete the lifecycle configuration use the delete-bucket-lifecycle CLI command.

aws s3api delete-bucket-lifecycle \
--bucket bucketname

Amazon S3 Multipart Upload Limits

The following table provides multipart upload core specifications. For more information, see Multipart
Upload Overview (p. 175).

Item Specification

Maximum object size 5 TB

Maximum number of parts per upload 10,000

API Version 2006-03-01
178

Amazon Simple Storage Service Developer Guide
Uploading Objects

Item Specification

Part numbers 1 to 10,000 (inclusive)

Part size 5 MB to 5 GB, last part can be < 5 MB

Maximum number of parts returned
for a list parts request

1000

Maximum number of multipart
uploads returned in a list multipart
uploads request

1000

API Support for Multipart Upload

You can use an AWS SDK to upload an object in parts. The following AWS SDK libraries support multipart
upload:

• AWS SDK for Java
• AWS SDK for .NET
• AWS SDK for PHP

These libraries provide a high-level abstraction that makes uploading multipart objects easy. However,
if your application requires, you can use the REST API directly. The following sections in the Amazon
Simple Storage Service API Reference describe the REST API for multipart upload.

• Initiate Multipart Upload
• Upload Part
• Upload Part (Copy)
• Complete Multipart Upload
• Abort Multipart Upload
• List Parts
• List Multipart Uploads

Multipart Upload API and Permissions

An individual must have the necessary permissions to use the multipart upload operations. You can use
ACLs, the bucket policy, or the user policy to grant individuals permissions to perform these operations.
The following table lists the required permissions for various multipart upload operations when using
ACLs, bucket policy, or the user policy.

Action Required Permissions

Initiate
Multipart
Upload

You must be allowed to perform the s3:PutObject action on an object to initiate
multipart upload.

The bucket owner can allow other principals to perform the s3:PutObject action.

Initiator Container element that identifies who initiated the multipart upload. If the initiator is
an AWS account, this element provides the same information as the Owner element.
If the initiator is an IAM User, this element provides the user ARN and display name.

Upload Part You must be allowed to perform the s3:PutObject action on an object to upload a
part.

API Version 2006-03-01
179

https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/sdk-for-php/
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPart.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPartCopy.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadComplete.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadAbort.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListParts.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListMPUpload.html

Amazon Simple Storage Service Developer Guide
Uploading Objects

Action Required Permissions

Only the initiator of a multipart upload can upload parts. The bucket owner must
allow the initiator to perform the s3:PutObject action on an object in order for the
initiator to upload a part for that object.

Upload Part
(Copy)

You must be allowed to perform the s3:PutObject action on an object to upload a
part. Because you are uploading a part from an existing object, you must be allowed
s3:GetObject on the source object.

Only the initiator of a multipart upload can upload parts. For the initiator to upload
a part for an object, the owner of the bucket must allow the initiator to perform the
s3:PutObject action on the object.

Complete
Multipart
Upload

You must be allowed to perform the s3:PutObject action on an object to complete
a multipart upload.

Only the initiator of a multipart upload can complete that multipart upload. The
bucket owner must allow the initiator to perform the s3:PutObject action on an
object in order for the initiator to complete a multipart upload for that object.

Abort
Multipart
Upload

You must be allowed to perform the s3:AbortMultipartUpload action to abort a
multipart upload.

By default, the bucket owner and the initiator of the multipart upload are allowed
to perform this action. If the initiator is an IAM user, that user's AWS account is also
allowed to abort that multipart upload.

In addition to these defaults, the bucket owner can allow other principals to perform
the s3:AbortMultipartUpload action on an object. The bucket owner can deny
any principal the ability to perform the s3:AbortMultipartUpload action.

List Parts You must be allowed to perform the s3:ListMultipartUploadParts action to
list parts in a multipart upload.

By default, the bucket owner has permission to list parts for any multipart upload to
the bucket. The initiator of the multipart upload has the permission to list parts of
the specific multipart upload. If the multipart upload initiator is an IAM user, the AWS
account controlling that IAM user also has permission to list parts of that upload.

In addition to these defaults, the bucket owner can allow other principals to perform
the s3:ListMultipartUploadParts action on an object. The bucket owner can
also deny any principal the ability to perform the s3:ListMultipartUploadParts
action.

List Multipart
Uploads

You must be allowed to perform the s3:ListBucketMultipartUploads action on
a bucket to list multipart uploads in progress to that bucket.

In addition to the default, the bucket owner can allow other principals to perform the
s3:ListBucketMultipartUploads action on the bucket.

API Version 2006-03-01
180

Amazon Simple Storage Service Developer Guide
Uploading Objects

Action Required Permissions

KMS Encrypt
and Decrypt
related
permissions

To perform a multipart upload with encryption using an AWS KMS key, the requester
must have permission to the kms:Encrypt, kms:Decrypt, kms:ReEncrypt*,
kms:GenerateDataKey*, and kms:DescribeKey actions on the key. These
permissions are required because Amazon S3 must decrypt and read data from the
encrypted file parts before it completes the multipart upload.

If your IAM user or role is in the same AWS account as the AWS KMS key, then you
must have these permissions on the key policy. If your IAM user or role belongs to a
different account than the key, then you must have the permissions on both the key
policy and your IAM user or role.
>

For information on the relationship between ACL permissions and permissions in access policies, see
Mapping of ACL Permissions and Access Policy Permissions (p. 406). For information on IAM users, go
to Working with Users and Groups.

API Version 2006-03-01
181

https://docs.aws.amazon.com/IAM/latest/UserGuide/

Amazon Simple Storage Service Developer Guide
Uploading Objects

Using the AWS Java SDK for Multipart Upload (High-Level API)

Topics
• Upload a File (p. 182)
• Abort Multipart Uploads (p. 183)
• Track Multipart Upload Progress (p. 184)

The AWS SDK for Java exposes a high-level API, called TransferManager, that simplifies multipart
uploads (see Uploading Objects Using Multipart Upload API (p. 175)). You can upload data from a file
or a stream. You can also set advanced options, such as the part size you want to use for the multipart
upload, or the number of concurrent threads you want to use when uploading the parts. You can also
set optional object properties, the storage class, or the ACL. You use the PutObjectRequest and the
TransferManagerConfiguration classes to set these advanced options.

When possible, TransferManager attempts to use multiple threads to upload multiple parts of a single
upload at once. When dealing with large content sizes and high bandwidth, this can increase throughput
significantly.

In addition to file-upload functionality, the TransferManager class enables you to abort an in-progress
multipart upload. An upload is considered to be in progress after you initiate it and until you complete or
abort it. The TransferManager aborts all in-progress multipart uploads on a specified bucket that were
initiated before a specified date and time.

For more information about multipart uploads, including additional functionality offered by the low-
level API methods, see Uploading Objects Using Multipart Upload API (p. 175).

Upload a File

Example

The following example shows how to upload an object using the high-level multipart-upload Java API
(the TransferManager class). For instructions on creating and testing a working sample, see Testing
the Amazon S3 Java Code Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;
import com.amazonaws.services.s3.transfer.Upload;

import java.io.File;

public class HighLevelMultipartUpload {

 public static void main(String[] args) throws Exception {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String keyName = "*** Object key ***";
 String filePath = "*** Path for file to upload ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(clientRegion)
 .withCredentials(new ProfileCredentialsProvider())
 .build();

API Version 2006-03-01
182

Amazon Simple Storage Service Developer Guide
Uploading Objects

 TransferManager tm = TransferManagerBuilder.standard()
 .withS3Client(s3Client)
 .build();

 // TransferManager processes all transfers asynchronously,
 // so this call returns immediately.
 Upload upload = tm.upload(bucketName, keyName, new File(filePath));
 System.out.println("Object upload started");

 // Optionally, wait for the upload to finish before continuing.
 upload.waitForCompletion();
 System.out.println("Object upload complete");
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Abort Multipart Uploads

Example

The following example uses the high-level Java API (the TransferManager class) to abort all in-
progress multipart uploads that were initiated on a specific bucket over a week ago. For instructions on
creating and testing a working sample, see Testing the Amazon S3 Java Code Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;

import java.util.Date;

public class HighLevelAbortMultipartUpload {

 public static void main(String[] args) {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(clientRegion)
 .withCredentials(new ProfileCredentialsProvider())
 .build();
 TransferManager tm = TransferManagerBuilder.standard()
 .withS3Client(s3Client)
 .build();

 // sevenDays is the duration of seven days in milliseconds.
 long sevenDays = 1000 * 60 * 60 * 24 * 7;
 Date oneWeekAgo = new Date(System.currentTimeMillis() - sevenDays);
 tm.abortMultipartUploads(bucketName, oneWeekAgo);

API Version 2006-03-01
183

Amazon Simple Storage Service Developer Guide
Uploading Objects

 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client couldn't
 // parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Track Multipart Upload Progress

The high-level Java multipart upload API provides a listen interface, ProgressListener, to track
progress when uploading an object to Amazon S3. Progress events periodically notify the listener that
bytes have been transferred.

The following example demonstrates how to subscribe to a ProgressEvent event and write a handler:

Example

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.event.ProgressEvent;
import com.amazonaws.event.ProgressListener;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.PutObjectRequest;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;
import com.amazonaws.services.s3.transfer.Upload;

import java.io.File;

public class HighLevelTrackMultipartUpload {

 public static void main(String[] args) throws Exception {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String keyName = "*** Object key ***";
 String filePath = "*** Path to file to upload ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(clientRegion)
 .withCredentials(new ProfileCredentialsProvider())
 .build();
 TransferManager tm = TransferManagerBuilder.standard()
 .withS3Client(s3Client)
 .build();
 PutObjectRequest request = new PutObjectRequest(bucketName, keyName, new
 File(filePath));

 // To receive notifications when bytes are transferred, add a
 // ProgressListener to your request.
 request.setGeneralProgressListener(new ProgressListener() {
 public void progressChanged(ProgressEvent progressEvent) {
 System.out.println("Transferred bytes: " +
 progressEvent.getBytesTransferred());

API Version 2006-03-01
184

Amazon Simple Storage Service Developer Guide
Uploading Objects

 }
 });
 // TransferManager processes all transfers asynchronously,
 // so this call returns immediately.
 Upload upload = tm.upload(request);

 // Optionally, you can wait for the upload to finish before continuing.
 upload.waitForCompletion();
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

API Version 2006-03-01
185

Amazon Simple Storage Service Developer Guide
Uploading Objects

Using the AWS Java SDK for a Multipart Upload (Low-Level API)

Topics
• Upload a File (p. 186)
• List Multipart Uploads (p. 188)
• Abort a Multipart Upload (p. 188)

The AWS SDK for Java exposes a low-level API that closely resembles the Amazon S3 REST API for
multipart uploads (see Uploading Objects Using Multipart Upload API (p. 175). Use the low-level API
when you need to pause and resume multipart uploads, vary part sizes during the upload, or do not
know the size of the upload data in advance. When you don't have these requirements, use the high-level
API (see Using the AWS Java SDK for Multipart Upload (High-Level API) (p. 182)).

Upload a File

The following example shows how to use the low-level Java classes to upload a file. It performs the
following steps:

• Initiates a multipart upload using the AmazonS3Client.initiateMultipartUpload() method,
and passes in an InitiateMultipartUploadRequest object.

• Saves the upload ID that the AmazonS3Client.initiateMultipartUpload() method returns.
You provide this upload ID for each subsequent multipart upload operation.

• Uploads the parts of the object. For each part, you call the AmazonS3Client.uploadPart()
method. You provide part upload information using an UploadPartRequest object.

• For each part, saves the ETag from the response of the AmazonS3Client.uploadPart() method in
a list. You use the ETag values to complete the multipart upload.

• Calls the AmazonS3Client.completeMultipartUpload() method to complete the multipart
upload.

Example

For instructions on creating and testing a working sample, see Testing the Amazon S3 Java Code
Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class LowLevelMultipartUpload {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String keyName = "*** Key name ***";
 String filePath = "*** Path to file to upload ***";

 File file = new File(filePath);
 long contentLength = file.length();

API Version 2006-03-01
186

Amazon Simple Storage Service Developer Guide
Uploading Objects

 long partSize = 5 * 1024 * 1024; // Set part size to 5 MB.

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(clientRegion)
 .withCredentials(new ProfileCredentialsProvider())
 .build();

 // Create a list of ETag objects. You retrieve ETags for each object part
 uploaded,
 // then, after each individual part has been uploaded, pass the list of ETags
 to
 // the request to complete the upload.
 List<PartETag> partETags = new ArrayList<PartETag>();

 // Initiate the multipart upload.
 InitiateMultipartUploadRequest initRequest = new
 InitiateMultipartUploadRequest(bucketName, keyName);
 InitiateMultipartUploadResult initResponse =
 s3Client.initiateMultipartUpload(initRequest);

 // Upload the file parts.
 long filePosition = 0;
 for (int i = 1; filePosition < contentLength; i++) {
 // Because the last part could be less than 5 MB, adjust the part size as
 needed.
 partSize = Math.min(partSize, (contentLength - filePosition));

 // Create the request to upload a part.
 UploadPartRequest uploadRequest = new UploadPartRequest()
 .withBucketName(bucketName)
 .withKey(keyName)
 .withUploadId(initResponse.getUploadId())
 .withPartNumber(i)
 .withFileOffset(filePosition)
 .withFile(file)
 .withPartSize(partSize);

 // Upload the part and add the response's ETag to our list.
 UploadPartResult uploadResult = s3Client.uploadPart(uploadRequest);
 partETags.add(uploadResult.getPartETag());

 filePosition += partSize;
 }

 // Complete the multipart upload.
 CompleteMultipartUploadRequest compRequest = new
 CompleteMultipartUploadRequest(bucketName, keyName,
 initResponse.getUploadId(), partETags);
 s3Client.completeMultipartUpload(compRequest);
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

API Version 2006-03-01
187

Amazon Simple Storage Service Developer Guide
Uploading Objects

List Multipart Uploads

Example

The following example shows how to retrieve a list of in-progress multipart uploads using the low-level
Java API:

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.ListMultipartUploadsRequest;
import com.amazonaws.services.s3.model.MultipartUpload;
import com.amazonaws.services.s3.model.MultipartUploadListing;

import java.util.List;

public class ListMultipartUploads {

 public static void main(String[] args) {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 // Retrieve a list of all in-progress multipart uploads.
 ListMultipartUploadsRequest allMultipartUploadsRequest = new
 ListMultipartUploadsRequest(bucketName);
 MultipartUploadListing multipartUploadListing =
 s3Client.listMultipartUploads(allMultipartUploadsRequest);
 List<MultipartUpload> uploads = multipartUploadListing.getMultipartUploads();

 // Display information about all in-progress multipart uploads.
 System.out.println(uploads.size() + " multipart upload(s) in progress.");
 for (MultipartUpload u : uploads) {
 System.out.println("Upload in progress: Key = \"" + u.getKey() + "\", id =
 " + u.getUploadId());
 }
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Abort a Multipart Upload

You can abort an in-progress multipart upload by calling the
AmazonS3Client.abortMultipartUpload() method. This method deletes all parts that were
uploaded to Amazon S3 and frees the resources. You provide the upload ID, bucket name, and key name.

API Version 2006-03-01
188

Amazon Simple Storage Service Developer Guide
Uploading Objects

Example

The following example shows how to abort multipart uploads using the low-level Java API.

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AbortMultipartUploadRequest;
import com.amazonaws.services.s3.model.ListMultipartUploadsRequest;
import com.amazonaws.services.s3.model.MultipartUpload;
import com.amazonaws.services.s3.model.MultipartUploadListing;

import java.util.List;

public class LowLevelAbortMultipartUpload {

 public static void main(String[] args) {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(clientRegion)
 .withCredentials(new ProfileCredentialsProvider())
 .build();

 // Find all in-progress multipart uploads.
 ListMultipartUploadsRequest allMultipartUploadsRequest = new
 ListMultipartUploadsRequest(bucketName);
 MultipartUploadListing multipartUploadListing =
 s3Client.listMultipartUploads(allMultipartUploadsRequest);

 List<MultipartUpload> uploads = multipartUploadListing.getMultipartUploads();
 System.out.println("Before deletions, " + uploads.size() + " multipart uploads
 in progress.");

 // Abort each upload.
 for (MultipartUpload u : uploads) {
 System.out.println("Upload in progress: Key = \"" + u.getKey() + "\", id =
 " + u.getUploadId());
 s3Client.abortMultipartUpload(new AbortMultipartUploadRequest(bucketName,
 u.getKey(), u.getUploadId()));
 System.out.println("Upload deleted: Key = \"" + u.getKey() + "\", id = " +
 u.getUploadId());
 }

 // Verify that all in-progress multipart uploads have been aborted.
 multipartUploadListing =
 s3Client.listMultipartUploads(allMultipartUploadsRequest);
 uploads = multipartUploadListing.getMultipartUploads();
 System.out.println("After aborting uploads, " + uploads.size() + " multipart
 uploads in progress.");
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }

API Version 2006-03-01
189

Amazon Simple Storage Service Developer Guide
Uploading Objects

 }
}

Note
Instead of aborting multipart uploads individually, you can abort all of your in-progress
multipart uploads that were initiated before a specific time. This clean-up operation is useful
for aborting multipart uploads that you initiated but that didn't complete or were aborted. For
more information, see Abort Multipart Uploads (p. 183).

API Version 2006-03-01
190

Amazon Simple Storage Service Developer Guide
Uploading Objects

Using the AWS SDK for .NET for Multipart Upload (High-Level API)

Topics
• Upload a File to an S3 Bucket Using the AWS SDK for .NET (High-Level API) (p. 191)

• Upload a Directory (p. 192)

• Abort Multipart Uploads to an S3 Bucket Using the AWS SDK for .NET (High-Level API) (p. 194)

• Track the Progress of a Multipart Upload to an S3 Bucket Using the AWS SDK for .NET (High-level
API) (p. 195)

The AWS SDK for .NET exposes a high-level API that simplifies multipart uploads (see Uploading Objects
Using Multipart Upload API (p. 175)). You can upload data from a file, a directory, or a stream. For more
information about Amazon S3 multipart uploads, see Multipart Upload Overview (p. 175).

The TransferUtility class provides a methods for uploading files and directories, tracking upload
progress, and aborting multipart uploads.

Upload a File to an S3 Bucket Using the AWS SDK for .NET (High-Level API)

To upload a file to an S3 bucket, use the TransferUtility class. When uploading data from a file,
you must provide the object's key name. If you don't, the API uses the file name for the key name. When
uploading data from a stream, you must provide the object's key name.

To set advanced upload options—such as the part size, the number of threads when uploading the parts
concurrently, metadata, the storage class, or ACL—use the TransferUtilityUploadRequest class.

The following C# example uploads a file to an Amazon S3 bucket in multiple parts. It shows how to use
various TransferUtility.Upload overloads to upload a file. Each successive call to upload replaces
the previous upload. For information about the example's compatibility with a specific version of the
AWS SDK for .NET and instructions for creating and testing a working sample, see Running the Amazon
S3 .NET Code Examples (p. 678).

using Amazon.S3;
using Amazon.S3.Transfer;
using System;
using System.IO;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class UploadFileMPUHighLevelAPITest
 {
 private const string bucketName = "*** provide bucket name ***";
 private const string keyName = "*** provide a name for the uploaded object ***";
 private const string filePath = "*** provide the full path name of the file to
 upload ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 s3Client;

 public static void Main()
 {
 s3Client = new AmazonS3Client(bucketRegion);
 UploadFileAsync().Wait();
 }

 private static async Task UploadFileAsync()
 {
 try

API Version 2006-03-01
191

Amazon Simple Storage Service Developer Guide
Uploading Objects

 {
 var fileTransferUtility =
 new TransferUtility(s3Client);

 // Option 1. Upload a file. The file name is used as the object key name.
 await fileTransferUtility.UploadAsync(filePath, bucketName);
 Console.WriteLine("Upload 1 completed");

 // Option 2. Specify object key name explicitly.
 await fileTransferUtility.UploadAsync(filePath, bucketName, keyName);
 Console.WriteLine("Upload 2 completed");

 // Option 3. Upload data from a type of System.IO.Stream.
 using (var fileToUpload =
 new FileStream(filePath, FileMode.Open, FileAccess.Read))
 {
 await fileTransferUtility.UploadAsync(fileToUpload,
 bucketName, keyName);
 }
 Console.WriteLine("Upload 3 completed");

 // Option 4. Specify advanced settings.
 var fileTransferUtilityRequest = new TransferUtilityUploadRequest
 {
 BucketName = bucketName,
 FilePath = filePath,
 StorageClass = S3StorageClass.StandardInfrequentAccess,
 PartSize = 6291456, // 6 MB.
 Key = keyName,
 CannedACL = S3CannedACL.PublicRead
 };
 fileTransferUtilityRequest.Metadata.Add("param1", "Value1");
 fileTransferUtilityRequest.Metadata.Add("param2", "Value2");

 await fileTransferUtility.UploadAsync(fileTransferUtilityRequest);
 Console.WriteLine("Upload 4 completed");
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Error encountered on server. Message:'{0}' when writing
 an object", e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown encountered on server. Message:'{0}' when
 writing an object", e.Message);
 }

 }
 }
}

More Info

AWS SDK for .NET

Upload a Directory

You can use the TransferUtility class to upload an entire directory. By default, the API uploads only
the files at the root of the specified directory. You can, however, specify recursively uploading files in all
of the subdirectories.

To select files in the specified directory based on filtering criteria, specify filtering expressions. For
example, to upload only the .pdf files from a directory, specify the "*.pdf" filter expression.

API Version 2006-03-01
192

https://aws.amazon.com/sdk-for-net/

Amazon Simple Storage Service Developer Guide
Uploading Objects

When uploading files from a directory, you don't specify the key names for the resulting objects. Amazon
S3 constructs the key names using the original file path. For example, assume that you have a directory
called c:\myfolder with the following structure:

Example

C:\myfolder
 \a.txt
 \b.pdf
 \media\
 An.mp3

When you upload this directory, Amazon S3 uses the following key names:

Example

a.txt
b.pdf
media/An.mp3

Example

The following C# example uploads a directory to an Amazon S3 bucket. It shows how to use various
TransferUtility.UploadDirectory overloads to upload the directory. Each successive call to
upload replaces the previous upload. For instructions on how to create and test a working sample, see
Running the Amazon S3 .NET Code Examples (p. 678).

using Amazon.S3;
using Amazon.S3.Transfer;
using System;
using System.IO;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class UploadDirMPUHighLevelAPITest
 {
 private const string existingBucketName = "*** bucket name ***";
 private const string directoryPath = @"*** directory path ***";
 // The example uploads only .txt files.
 private const string wildCard = "*.txt";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 s3Client;
 static void Main()
 {
 s3Client = new AmazonS3Client(bucketRegion);
 UploadDirAsync().Wait();
 }

 private static async Task UploadDirAsync()
 {
 try
 {
 var directoryTransferUtility =
 new TransferUtility(s3Client);

 // 1. Upload a directory.
 await directoryTransferUtility.UploadDirectoryAsync(directoryPath,
 existingBucketName);

API Version 2006-03-01
193

Amazon Simple Storage Service Developer Guide
Uploading Objects

 Console.WriteLine("Upload statement 1 completed");

 // 2. Upload only the .txt files from a directory
 // and search recursively.
 await directoryTransferUtility.UploadDirectoryAsync(
 directoryPath,
 existingBucketName,
 wildCard,
 SearchOption.AllDirectories);
 Console.WriteLine("Upload statement 2 completed");

 // 3. The same as Step 2 and some optional configuration.
 // Search recursively for .txt files to upload.
 var request = new TransferUtilityUploadDirectoryRequest
 {
 BucketName = existingBucketName,
 Directory = directoryPath,
 SearchOption = SearchOption.AllDirectories,
 SearchPattern = wildCard
 };

 await directoryTransferUtility.UploadDirectoryAsync(request);
 Console.WriteLine("Upload statement 3 completed");
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine(
 "Error encountered ***. Message:'{0}' when writing an object",
 e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine(
 "Unknown encountered on server. Message:'{0}' when writing an object",
 e.Message);
 }
 }
 }
}

Abort Multipart Uploads to an S3 Bucket Using the AWS SDK for .NET (High-Level API)

To abort in-progress multipart uploads, use the TransferUtility class from the AWS SDK for .NET.
You provide a DateTimevalue. The API then aborts all of the multipart uploads that were initiated
before the specified date and time and remove the uploaded parts. An upload is considered to be in-
progress after you initiate it and it completes or you abort it.

Because you are billed for all storage associated with uploaded parts, it's important that you either
complete the multipart upload to finish creating the object or abort it to remove uploaded parts. For
more information about Amazon S3 multipart uploads, see Multipart Upload Overview (p. 175). For
information about pricing, see Multipart Upload and Pricing (p. 177).

The following C# example aborts all in-progress multipart uploads that were initiated on a specific
bucket over a week ago. For information about the example's compatibility with a specific version of the
AWS SDK for .NET and instructions on creating and testing a working sample, see Running the Amazon
S3 .NET Code Examples (p. 678).

using Amazon.S3;
using Amazon.S3.Transfer;
using System;
using System.Threading.Tasks;

API Version 2006-03-01
194

Amazon Simple Storage Service Developer Guide
Uploading Objects

namespace Amazon.DocSamples.S3
{
 class AbortMPUUsingHighLevelAPITest
 {
 private const string bucketName = "*** provide bucket name ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 s3Client;

 public static void Main()
 {
 s3Client = new AmazonS3Client(bucketRegion);
 AbortMPUAsync().Wait();
 }

 private static async Task AbortMPUAsync()
 {
 try
 {
 var transferUtility = new TransferUtility(s3Client);

 // Abort all in-progress uploads initiated before the specified date.
 await transferUtility.AbortMultipartUploadsAsync(
 bucketName, DateTime.Now.AddDays(-7));
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Error encountered on server. Message:'{0}' when writing
 an object", e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown encountered on server. Message:'{0}' when
 writing an object", e.Message);
 }
 }
 }
}

Note
You can also abort a specific multipart upload. For more information, see List Multipart Uploads
to an S3 Bucket Using the AWS SDK for .NET (Low-level) (p. 199).

More Info

AWS SDK for .NET

Track the Progress of a Multipart Upload to an S3 Bucket Using the AWS SDK for .NET (High-
level API)

The following C# example uploads a file to an S3 bucket using the TransferUtility class, and tracks
the progress of the upload. For information about the example's compatibility with a specific version
of the AWS SDK for .NET and instructions for creating and testing a working sample, see Running the
Amazon S3 .NET Code Examples (p. 678).

using Amazon.S3;
using Amazon.S3.Transfer;
using System;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{

API Version 2006-03-01
195

https://aws.amazon.com/sdk-for-net/

Amazon Simple Storage Service Developer Guide
Uploading Objects

 class TrackMPUUsingHighLevelAPITest
 {
 private const string bucketName = "*** provide the bucket name ***";
 private const string keyName = "*** provide the name for the uploaded object ***";
 private const string filePath = " *** provide the full path name of the file to
 upload **";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 s3Client;

 public static void Main()
 {
 s3Client = new AmazonS3Client(bucketRegion);
 TrackMPUAsync().Wait();
 }

 private static async Task TrackMPUAsync()
 {
 try
 {
 var fileTransferUtility = new TransferUtility(s3Client);

 // Use TransferUtilityUploadRequest to configure options.
 // In this example we subscribe to an event.
 var uploadRequest =
 new TransferUtilityUploadRequest
 {
 BucketName = bucketName,
 FilePath = filePath,
 Key = keyName
 };

 uploadRequest.UploadProgressEvent +=
 new EventHandler<UploadProgressArgs>
 (uploadRequest_UploadPartProgressEvent);

 await fileTransferUtility.UploadAsync(uploadRequest);
 Console.WriteLine("Upload completed");
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Error encountered on server. Message:'{0}' when writing
 an object", e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown encountered on server. Message:'{0}' when
 writing an object", e.Message);
 }
 }

 static void uploadRequest_UploadPartProgressEvent(object sender, UploadProgressArgs
 e)
 {
 // Process event.
 Console.WriteLine("{0}/{1}", e.TransferredBytes, e.TotalBytes);
 }
 }
}

More Info

AWS SDK for .NET

API Version 2006-03-01
196

https://aws.amazon.com/sdk-for-net/

Amazon Simple Storage Service Developer Guide
Uploading Objects

Using the AWS SDK for .NET for Multipart Upload (Low-Level API)

The AWS SDK for .NET exposes a low-level API that closely resembles the Amazon S3 REST API for
multipart upload (see Using the REST API for Multipart Upload (p. 206)). Use the low-level API when
you need to pause and resume multipart uploads, vary part sizes during the upload, or when you do
not know the size of the data in advance. Use the high-level API (see Using the AWS SDK for .NET for
Multipart Upload (High-Level API) (p. 191)), whenever you don't have these requirements.

Topics

• Upload a File to an S3 Bucket Using the AWS SDK for .NET (Low-Level API) (p. 197)

• List Multipart Uploads to an S3 Bucket Using the AWS SDK for .NET (Low-level) (p. 199)

• Track the Progress of a Multipart Upload to an S3 Bucket Using the AWS SDK for .NET (Low-
Level) (p. 199)

• Abort Multipart Uploads to an S3 Bucket Using the AWS SDK for .NET (Low-Level) (p. 200)

Upload a File to an S3 Bucket Using the AWS SDK for .NET (Low-Level API)

The following C# example shows how to use the low-level AWS SDK for .NET multipart upload API to
upload a file to an S3 bucket. For information about Amazon S3 multipart uploads, see Multipart Upload
Overview (p. 175).

Note
When you use the AWS SDK for .NET API to upload large objects, a timeout might occur
while data is being written to the request stream. You can set an explicit timeout using the
UploadPartRequest.

The following C# example uploads a file to an S3 bucket using the low-level multipart upload API.
For information about the example's compatibility with a specific version of the AWS SDK for .NET
and instructions for creating and testing a working sample, see Running the Amazon S3 .NET Code
Examples (p. 678).

using Amazon.Runtime;
using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class UploadFileMPULowLevelAPITest
 {
 private const string bucketName = "*** provide bucket name ***";
 private const string keyName = "*** provide a name for the uploaded object ***";
 private const string filePath = "*** provide the full path name of the file to
 upload ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 s3Client;

 public static void Main()
 {
 s3Client = new AmazonS3Client(bucketRegion);
 Console.WriteLine("Uploading an object");
 UploadObjectAsync().Wait();
 }

API Version 2006-03-01
197

Amazon Simple Storage Service Developer Guide
Uploading Objects

 private static async Task UploadObjectAsync()
 {
 // Create list to store upload part responses.
 List<UploadPartResponse> uploadResponses = new List<UploadPartResponse>();

 // Setup information required to initiate the multipart upload.
 InitiateMultipartUploadRequest initiateRequest = new
 InitiateMultipartUploadRequest
 {
 BucketName = bucketName,
 Key = keyName
 };

 // Initiate the upload.
 InitiateMultipartUploadResponse initResponse =
 await s3Client.InitiateMultipartUploadAsync(initiateRequest);

 // Upload parts.
 long contentLength = new FileInfo(filePath).Length;
 long partSize = 5 * (long)Math.Pow(2, 20); // 5 MB

 try
 {
 Console.WriteLine("Uploading parts");

 long filePosition = 0;
 for (int i = 1; filePosition < contentLength; i++)
 {
 UploadPartRequest uploadRequest = new UploadPartRequest
 {
 BucketName = bucketName,
 Key = keyName,
 UploadId = initResponse.UploadId,
 PartNumber = i,
 PartSize = partSize,
 FilePosition = filePosition,
 FilePath = filePath
 };

 // Track upload progress.
 uploadRequest.StreamTransferProgress +=
 new
 EventHandler<StreamTransferProgressArgs>(UploadPartProgressEventCallback);

 // Upload a part and add the response to our list.
 uploadResponses.Add(await s3Client.UploadPartAsync(uploadRequest));

 filePosition += partSize;
 }

 // Setup to complete the upload.
 CompleteMultipartUploadRequest completeRequest = new
 CompleteMultipartUploadRequest
 {
 BucketName = bucketName,
 Key = keyName,
 UploadId = initResponse.UploadId
 };
 completeRequest.AddPartETags(uploadResponses);

 // Complete the upload.
 CompleteMultipartUploadResponse completeUploadResponse =
 await s3Client.CompleteMultipartUploadAsync(completeRequest);
 }
 catch (Exception exception)
 {

API Version 2006-03-01
198

Amazon Simple Storage Service Developer Guide
Uploading Objects

 Console.WriteLine("An AmazonS3Exception was thrown: { 0}",
 exception.Message);

 // Abort the upload.
 AbortMultipartUploadRequest abortMPURequest = new
 AbortMultipartUploadRequest
 {
 BucketName = bucketName,
 Key = keyName,
 UploadId = initResponse.UploadId
 };
 await s3Client.AbortMultipartUploadAsync(abortMPURequest);
 }
 }
 public static void UploadPartProgressEventCallback(object sender,
 StreamTransferProgressArgs e)
 {
 // Process event.
 Console.WriteLine("{0}/{1}", e.TransferredBytes, e.TotalBytes);
 }
 }
}

More Info

AWS SDK for .NET

List Multipart Uploads to an S3 Bucket Using the AWS SDK for .NET (Low-level)

To list all of the in-progress multipart uploads on a specific bucket, use the AWS SDK
for .NET low-level multipart upload API's ListMultipartUploadsRequest class.
The AmazonS3Client.ListMultipartUploads method returns an instance of the
ListMultipartUploadsResponse class that provides information about the in-progress multipart
uploads.

An in-progress multipart upload is a multipart upload that has been initiated using the initiate multipart
upload request, but has not yet been completed or aborted. For more information about Amazon S3
multipart uploads, see Multipart Upload Overview (p. 175).

The following C# example shows how to use the AWS SDK for .NET to list all in-progress multipart
uploads on a bucket. For information about the example's compatibility with a specific version of the
AWS SDK for .NET and instructions on how to create and test a working sample, see Running the Amazon
S3 .NET Code Examples (p. 678).

ListMultipartUploadsRequest request = new ListMultipartUploadsRequest
{
 BucketName = bucketName // Bucket receiving the uploads.
};

ListMultipartUploadsResponse response = await
 AmazonS3Client.ListMultipartUploadsAsync(request);

More Info

AWS SDK for .NET

Track the Progress of a Multipart Upload to an S3 Bucket Using the AWS SDK for .NET (Low-
Level)

To track the progress of a multipart upload, use the UploadPartRequest.StreamTransferProgress
event provided by the AWS SDK for .NET low-level multipart upload API. The event occurs periodically. It
returns information such as the total number of bytes to transfer and the number of bytes transferred.

API Version 2006-03-01
199

https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/sdk-for-net/

Amazon Simple Storage Service Developer Guide
Uploading Objects

The following C# example shows how to track the progress of multipart uploads. For a complete C#
sample that includes the following code, see Upload a File to an S3 Bucket Using the AWS SDK for .NET
(Low-Level API) (p. 197).

UploadPartRequest uploadRequest = new UploadPartRequest
{
// Provide the request data.
};

uploadRequest.StreamTransferProgress +=
 new EventHandler<StreamTransferProgressArgs>(UploadPartProgressEventCallback);

...
public static void UploadPartProgressEventCallback(object sender,
 StreamTransferProgressArgs e)
{
 // Process the event.
 Console.WriteLine("{0}/{1}", e.TransferredBytes, e.TotalBytes);
}

More Info

AWS SDK for .NET

Abort Multipart Uploads to an S3 Bucket Using the AWS SDK for .NET (Low-Level)

You can abort an in-progress multipart upload by calling the
AmazonS3Client.AbortMultipartUploadAsync method. In addition to aborting the upload, this
method deletes all parts that were uploaded to Amazon S3.

To abort a multipart upload, you provide the upload ID, and the bucket and key names that are used
in the upload. After you have aborted a multipart upload, you can't use the upload ID to upload
additional parts. For more information about Amazon S3 multipart uploads, see Multipart Upload
Overview (p. 175).

The following C# example shows how to abort an multipart upload. For a complete C# sample that
includes the following code, see Upload a File to an S3 Bucket Using the AWS SDK for .NET (Low-Level
API) (p. 197).

AbortMultipartUploadRequest abortMPURequest = new AbortMultipartUploadRequest
{
 BucketName = existingBucketName,
 Key = keyName,
 UploadId = initResponse.UploadId
};
await AmazonS3Client.AbortMultipartUploadAsync(abortMPURequest);

You can also abort all in-progress multipart uploads that were initiated prior to a specific time. This
clean-up operation is useful for aborting multipart uploads that didn't complete or were aborted. For
more information, see Abort Multipart Uploads to an S3 Bucket Using the AWS SDK for .NET (High-Level
API) (p. 194).

More Info

AWS SDK for .NET

API Version 2006-03-01
200

https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/sdk-for-net/

Amazon Simple Storage Service Developer Guide
Uploading Objects

Using the AWS PHP SDK for Multipart Upload

You can upload large files to Amazon S3 in multiple parts. You must use a multipart upload for files
larger than 5 GB. The AWS SDK for PHP exposes the MultipartUploader class that simplifies multipart
uploads.

The upload method of the MultipartUploader class is best used for a simple multipart upload. If you
need to pause and resume multipart uploads, vary part sizes during the upload, or do not know the size
of the data in advance, use the low-level PHP API. For more information, see Using the AWS PHP SDK for
Multipart Upload (Low-Level API) (p. 203).

For more information about multipart uploads, see Uploading Objects Using Multipart Upload
API (p. 175). For information on uploading files that are less than 5GB in size, see Upload an Object
Using the AWS SDK for PHP (p. 173).

Upload a File Using the High-Level Multipart Upload

This topic explains how to use the high-level Aws\S3\Model\MultipartUpload\UploadBuilder
class from the AWS SDK for PHP for multipart file uploads. It assumes that you are already following the
instructions for Using the AWS SDK for PHP and Running PHP Examples (p. 678) and have the AWS
SDK for PHP properly installed.

The following PHP example uploads a file to an Amazon S3 bucket. The example demonstrates how to
set parameters for the MultipartUploader object.

For information about running the PHP examples in this guide, see Running PHP Examples (p. 679).

 require 'vendor/autoload.php';

use Aws\Common\Exception\MultipartUploadException;
use Aws\S3\MultipartUploader;
use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';

$s3 = new S3Client([
 'version' => 'latest',
 'region' => 'us-east-1'
]);

// Prepare the upload parameters.
$uploader = new MultipartUploader($s3, '/path/to/large/file.zip', [
 'bucket' => $bucket,
 'key' => $keyname
]);

// Perform the upload.
try {
 $result = $uploader->upload();
 echo "Upload complete: {$result['ObjectURL']}" . PHP_EOL;
} catch (MultipartUploadException $e) {
 echo $e->getMessage() . PHP_EOL;
}

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class
• Amazon S3 Multipart Uploads
• AWS SDK for PHP Documentation

API Version 2006-03-01
201

https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.S3.MultipartUploader.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.S3.S3Client.html
https://docs.aws.amazon.com/aws-sdk-php/v3/guide/service/s3-multipart-upload.html
http://aws.amazon.com/documentation/sdk-for-php/

Amazon Simple Storage Service Developer Guide
Uploading Objects

API Version 2006-03-01
202

Amazon Simple Storage Service Developer Guide
Uploading Objects

Using the AWS PHP SDK for Multipart Upload (Low-Level API)

Topics

• Upload a File in Multiple Parts Using the PHP SDK Low-Level API (p. 203)

• List Multipart Uploads Using the Low-Level AWS SDK for PHP API (p. 204)

• Abort a Multipart Upload (p. 205)

The AWS SDK for PHP exposes a low-level API that closely resembles the Amazon S3 REST API for
multipart upload (see Using the REST API for Multipart Upload (p. 206)). Use the low-level API when
you need to pause and resume multipart uploads, vary part sizes during the upload, or if you do not
know the size of the data in advance. Use the AWS SDK for PHP high-level abstractions (see Using the
AWS PHP SDK for Multipart Upload (p. 201)) whenever you don't have these requirements.

Upload a File in Multiple Parts Using the PHP SDK Low-Level API

This topic guides shows how to use the low-level uploadPart method from version 3 of the AWS SDK
for PHP to upload a file in multiple parts. It assumes that you are already following the instructions
for Using the AWS SDK for PHP and Running PHP Examples (p. 678) and have the AWS SDK for PHP
properly installed.

The following PHP example uploads a file to an Amazon S3 bucket using the low-level PHP API
multipart upload. For information about running the PHP examples in this guide, see Running PHP
Examples (p. 679).

 require 'vendor/autoload.php';

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';
$filename = '*** Path to and Name of the File to Upload ***';

$s3 = new S3Client([
 'version' => 'latest',
 'region' => 'us-east-1'
]);

$result = $s3->createMultipartUpload([
 'Bucket' => $bucket,
 'Key' => $keyname,
 'StorageClass' => 'REDUCED_REDUNDANCY',
 'ACL' => 'public-read',
 'Metadata' => [
 'param1' => 'value 1',
 'param2' => 'value 2',
 'param3' => 'value 3'
]
]);
$uploadId = $result['UploadId'];

// Upload the file in parts.
try {
 $file = fopen($filename, 'r');
 $partNumber = 1;
 while (!feof($file)) {
 $result = $s3->uploadPart([
 'Bucket' => $bucket,
 'Key' => $keyname,
 'UploadId' => $uploadId,
 'PartNumber' => $partNumber,

API Version 2006-03-01
203

Amazon Simple Storage Service Developer Guide
Uploading Objects

 'Body' => fread($file, 5 * 1024 * 1024),
]);
 $parts['Parts'][$partNumber] = [
 'PartNumber' => $partNumber,
 'ETag' => $result['ETag'],
];
 $partNumber++;

 echo "Uploading part {$partNumber} of {$filename}." . PHP_EOL;
 }
 fclose($file);
} catch (S3Exception $e) {
 $result = $s3->abortMultipartUpload([
 'Bucket' => $bucket,
 'Key' => $keyname,
 'UploadId' => $uploadId
]);

 echo "Upload of {$filename} failed." . PHP_EOL;
}

// Complete the multipart upload.
$result = $s3->completeMultipartUpload([
 'Bucket' => $bucket,
 'Key' => $keyname,
 'UploadId' => $uploadId,
 'MultipartUpload' => $parts,
]);
$url = $result['Location'];

echo "Uploaded {$filename} to {$url}." . PHP_EOL;

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• Amazon S3 Multipart Uploads

• AWS SDK for PHP Documentation

List Multipart Uploads Using the Low-Level AWS SDK for PHP API

This topic shows how to use the low-level API classes from version 3 of the AWS SDK for PHP to list all
in-progress multipart uploads on a bucket. It assumes that you are already following the instructions
for Using the AWS SDK for PHP and Running PHP Examples (p. 678) and have the AWS SDK for PHP
properly installed.

The following PHP example demonstrates listing all in-progress multipart uploads on a bucket.

 require 'vendor/autoload.php';

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';

$s3 = new S3Client([
 'version' => 'latest',
 'region' => 'us-east-1'
]);

// Retrieve a list of the current multipart uploads.
$result = $s3->listMultipartUploads([
 'Bucket' => $bucket

API Version 2006-03-01
204

https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.S3.S3Client.html
https://docs.aws.amazon.com/aws-sdk-php/v3/guide/service/s3-multipart-upload.html
http://aws.amazon.com/documentation/sdk-for-php/

Amazon Simple Storage Service Developer Guide
Uploading Objects

]);

// Write the list of uploads to the page.
print_r($result->toArray());

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• Amazon S3 Multipart Uploads

• AWS SDK for PHP Documentation

Abort a Multipart Upload

This topic describes how to use a class from version 3 of the AWS SDK for PHP to abort a multipart
upload that is in progress. It assumes that you are already following the instructions for Using the AWS
SDK for PHP and Running PHP Examples (p. 678) and have the AWS SDK for PHP properly installed.

The following PHP example shows how to abort an in-progress multipart upload using the
abortMultipartUpload() method. For information about running the PHP examples in this guide,
see Running PHP Examples (p. 679).

 require 'vendor/autoload.php';

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';
$uploadId = '*** Upload ID of upload to Abort ***';

$s3 = new S3Client([
 'version' => 'latest',
 'region' => 'us-east-1'
]);

// Abort the multipart upload.
$s3->abortMultipartUpload([
 'Bucket' => $bucket,
 'Key' => $keyname,
 'UploadId' => $uploadId,
]);

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• Amazon S3 Multipart Uploads

• AWS SDK for PHP Documentation

Using the AWS SDK for Ruby for Multipart Upload

The AWS SDK for Ruby version 3 supports Amazon S3 multipart uploads in two ways. For the first option,
you can use a managed file upload helper. This is the recommended method for uploading files to a
bucket and it provides the following benefits:

• Manages multipart uploads for objects larger than 15MB.

• Correctly opens files in binary mode to avoid encoding issues.

• Uses multiple threads for uploading parts of large objects in parallel.

API Version 2006-03-01
205

https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.S3.S3Client.html
https://docs.aws.amazon.com/aws-sdk-php/v3/guide/service/s3-multipart-upload.html
http://aws.amazon.com/documentation/sdk-for-php/
https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.S3.S3Client.html
https://docs.aws.amazon.com/aws-sdk-php/v3/guide/service/s3-multipart-upload.html
http://aws.amazon.com/documentation/sdk-for-php/

Amazon Simple Storage Service Developer Guide
Uploading Objects

For more information, see Uploading Files to Amazon S3 in the AWS Developer Blog.

Alternatively, you can use the following multipart upload client operations directly:

• create_multipart_upload – Initiates a multipart upload and returns an upload ID.

• upload_part – Uploads a part in a multipart upload.

• upload_part_copy – Uploads a part by copying data from an existing object as data source.

• complete_multipart_upload – Completes a multipart upload by assembling previously uploaded parts.

• abort_multipart_upload – Aborts a multipart upload.

For more information, see Using the AWS SDK for Ruby - Version 3 (p. 679).

Using the REST API for Multipart Upload

The following sections in the Amazon Simple Storage Service API Reference describe the REST API for
multipart upload.

• Initiate Multipart Upload

• Upload Part

• Complete Multipart Upload

• Abort Multipart Upload

• List Parts

• List Multipart Uploads

You can use these APIs to make your own REST requests, or you can use one the SDKs we provide. For
more information about the SDKs, see API Support for Multipart Upload (p. 179).

Uploading Objects Using Presigned URLs
Topics

• Upload an Object Using a Presigned URL (AWS SDK for Java) (p. 207)

• Upload an Object to an S3 Bucket Using a Presigned URL (AWS SDK for .NET) (p. 208)

• Upload an Object Using a Presigned URL (AWS SDK for Ruby) (p. 209)

A presigned URL gives you access to the object identified in the URL, provided that the creator of the
presigned URL has permissions to access that object. That is, if you receive a presigned URL to upload an
object, you can upload the object only if the creator of the presigned URL has the necessary permissions
to upload that object.

All objects and buckets by default are private. The presigned URLs are useful if you want your user/
customer to be able to upload a specific object to your bucket, but you don't require them to have AWS
security credentials or permissions. When you create a presigned URL, you must provide your security
credentials and then specify a bucket name, an object key, an HTTP method (PUT for uploading objects),
and an expiration date and time. The presigned URLs are valid only for the specified duration.

You can generate a presigned URL programmatically using the AWS SDK for Java or the AWS SDK
for .NET. If you are using Microsoft Visual Studio, you can also use AWS Explorer to generate a
presigned object URL without writing any code. Anyone who receives a valid presigned URL can then
programmatically upload an object.

For more information, go to Using Amazon S3 from AWS Explorer.

API Version 2006-03-01
206

https://aws.amazon.com/blogs/developer/uploading-files-to-amazon-s3/
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/S3/Client.html#create_multipart_upload-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/S3/Client.html#upload_part-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/S3/Client.html#upload_part_copy-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/S3/Client.html#complete_multipart_upload-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/S3/Client.html#abort_multipart_upload-instance_method
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPart.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadComplete.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadAbort.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListParts.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListMPUpload.html
https://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/using-s3.html

Amazon Simple Storage Service Developer Guide
Uploading Objects

For instructions about how to install AWS Explorer, see Using the AWS SDKs, CLI, and Explorers (p. 669).

Note
Anyone with valid security credentials can create a presigned URL. However, in order for you
to successfully upload an object, the presigned URL must be created by someone who has
permission to perform the operation that the presigned URL is based upon.

Upload an Object Using a Presigned URL (AWS SDK for Java)

You can use the AWS SDK for Java to generate a presigned URL that you, or anyone you give the URL,
can use to upload an object to Amazon S3. When you use the URL to upload an object, Amazon S3
creates the object in the specified bucket. If an object with the same key that is specified in the presigned
URL already exists in the bucket, Amazon S3 replaces the existing object with the uploaded object. To
successfully complete an upload, you must do the following:

• Specify the HTTP PUT verb when creating the GeneratePresignedUrlRequest and
HttpURLConnection objects.

• Interact with the HttpURLConnection object in some way after finishing the upload. The following
example accomplishes this by using the HttpURLConnection object to check the HTTP response
code.

Example

This example generates a presigned URL and uses it to upload sample data as an object. For instructions
on creating and testing a working sample, see Testing the Amazon S3 Java Code Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.HttpMethod;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.GeneratePresignedUrlRequest;
import com.amazonaws.services.s3.model.S3Object;

import java.io.IOException;
import java.io.OutputStreamWriter;
import java.net.HttpURLConnection;
import java.net.URL;

public class GeneratePresignedUrlAndUploadObject {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String objectKey = "*** Object key ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 // Set the pre-signed URL to expire after one hour.
 java.util.Date expiration = new java.util.Date();
 long expTimeMillis = expiration.getTime();
 expTimeMillis += 1000 * 60 * 60;
 expiration.setTime(expTimeMillis);

API Version 2006-03-01
207

Amazon Simple Storage Service Developer Guide
Uploading Objects

 // Generate the pre-signed URL.
 System.out.println("Generating pre-signed URL.");
 GeneratePresignedUrlRequest generatePresignedUrlRequest = new
 GeneratePresignedUrlRequest(bucketName, objectKey)
 .withMethod(HttpMethod.PUT)
 .withExpiration(expiration);
 URL url = s3Client.generatePresignedUrl(generatePresignedUrlRequest);

 // Create the connection and use it to upload the new object using the pre-
signed URL.
 HttpURLConnection connection = (HttpURLConnection) url.openConnection();
 connection.setDoOutput(true);
 connection.setRequestMethod("PUT");
 OutputStreamWriter out = new OutputStreamWriter(connection.getOutputStream());
 out.write("This text uploaded as an object via presigned URL.");
 out.close();

 // Check the HTTP response code. To complete the upload and make the object
 available,
 // you must interact with the connection object in some way.
 connection.getResponseCode();
 System.out.println("HTTP response code: " + connection.getResponseCode());

 // Check to make sure that the object was uploaded successfully.
 S3Object object = s3Client.getObject(bucketName, objectKey);
 System.out.println("Object " + object.getKey() + " created in bucket " +
 object.getBucketName());
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Upload an Object to an S3 Bucket Using a Presigned URL (AWS SDK for .NET)

The following C# example shows how to use the AWS SDK for .NET to upload an object to an S3 bucket
using a presigned URL. For more information about presigned URLs, see Uploading Objects Using
Presigned URLs (p. 206).

This example generates a presigned URL for a specific object and uses it to upload a file. For information
about the example's compatibility with a specific version of the AWS SDK for .NET and instructions about
how to create and test a working sample, see Running the Amazon S3 .NET Code Examples (p. 678).

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.IO;
using System.Net;

namespace Amazon.DocSamples.S3
{
 class UploadObjectUsingPresignedURLTest
 {
 private const string bucketName = "*** provide bucket name ***";
 private const string objectKey = "*** provide the name for the uploaded object
 ***";

API Version 2006-03-01
208

Amazon Simple Storage Service Developer Guide
Uploading Objects

 private const string filePath = "*** provide the full path name of the file to
 upload ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 s3Client;

 public static void Main()
 {
 s3Client = new AmazonS3Client(bucketRegion);
 var url = GeneratePreSignedURL();
 UploadObject(url);
 }

 private static void UploadObject(string url)
 {
 HttpWebRequest httpRequest = WebRequest.Create(url) as HttpWebRequest;
 httpRequest.Method = "PUT";
 using (Stream dataStream = httpRequest.GetRequestStream())
 {
 var buffer = new byte[8000];
 using (FileStream fileStream = new FileStream(filePath, FileMode.Open,
 FileAccess.Read))
 {
 int bytesRead = 0;
 while ((bytesRead = fileStream.Read(buffer, 0, buffer.Length)) > 0)
 {
 dataStream.Write(buffer, 0, bytesRead);
 }
 }
 }
 HttpWebResponse response = httpRequest.GetResponse() as HttpWebResponse;
 }

 private static string GeneratePreSignedURL()
 {
 var request = new GetPreSignedUrlRequest
 {
 BucketName = bucketName,
 Key = objectKey,
 Verb = HttpVerb.PUT,
 Expires = DateTime.Now.AddMinutes(5)
 };

 string url = s3Client.GetPreSignedURL(request);
 return url;
 }
 }
}

More Info

AWS SDK for .NET

Upload an Object Using a Presigned URL (AWS SDK for Ruby)

The following tasks guide you through using a Ruby script to upload an object using a presigned URL for
SDK for Ruby - Version 3.

Uploading Objects - SDK for Ruby - Version 3

1 Create an instance of the Aws::S3::Resource class.

2 Provide a bucket name and an object key by calling the #bucket[] and the #object[]
methods of your Aws::S3::Resource class instance.

API Version 2006-03-01
209

https://aws.amazon.com/sdk-for-net/

Amazon Simple Storage Service Developer Guide
Copying Objects

Generate a presigned URL by creating an instance of the URI class, and use it to parse
the .presigned_url method of your Aws::S3::Resource class instance. You
must specify :put as an argument to .presigned_url, and you must specify PUT to
Net::HTTP::Session#send_request if you want to upload an object.

3 Anyone with the presigned URL can upload an object.

The upload creates an object or replaces any existing object with the same key that is
specified in the presigned URL.

The following Ruby code example demonstrates the preceding tasks for SDK for Ruby - Version 3.

Example

#Uploading an object using a presigned URL for SDK for Ruby - Version 3.

require 'aws-sdk-s3'
require 'net/http'

s3 = Aws::S3::Resource.new(region:'us-west-2')

obj = s3.bucket('BucketName').object('KeyName')
Replace BucketName with the name of your bucket.
Replace KeyName with the name of the object you are creating or replacing.

url = URI.parse(obj.presigned_url(:put))

body = "Hello World!"
This is the contents of your object. In this case, it's a simple string.

Net::HTTP.start(url.host) do |http|
 http.send_request("PUT", url.request_uri, body, {
This is required, or Net::HTTP will add a default unsigned content-type.
 "content-type" => "",
 })
end

puts obj.get.body.read
This will print out the contents of your object to the terminal window.

Copying Objects
The copy operation creates a copy of an object that is already stored in Amazon S3. You can create
a copy of your object up to 5 GB in a single atomic operation. However, for copying an object that is
greater than 5 GB, you must use the multipart upload API. Using the copy operation, you can:

• Create additional copies of objects
• Rename objects by copying them and deleting the original ones
• Move objects across Amazon S3 locations (e.g., us-west-1 and EU)
• Change object metadata

Each Amazon S3 object has metadata. It is a set of name-value pairs. You can set object metadata at
the time you upload it. After you upload the object, you cannot modify object metadata. The only way
to modify object metadata is to make a copy of the object and set the metadata. In the copy operation
you set the same object as the source and target.

Each object has metadata. Some of it is system metadata and other user-defined. Users control some of
the system metadata such as storage class configuration to use for the object, and configure server-side

API Version 2006-03-01
210

Amazon Simple Storage Service Developer Guide
Copying Objects

encryption. When you copy an object, user-controlled system metadata and user-defined metadata are
also copied. Amazon S3 resets the system-controlled metadata. For example, when you copy an object,
Amazon S3 resets the creation date of the copied object. You don't need to set any of these values in
your copy request.

When copying an object, you might decide to update some of the metadata values. For example, if
your source object is configured to use standard storage, you might choose to use reduced redundancy
storage for the object copy. You might also decide to alter some of the user-defined metadata values
present on the source object. Note that if you choose to update any of the object's user-configurable
metadata (system or user-defined) during the copy, then you must explicitly specify all of the user-
configurable metadata present on the source object in your request, even if you are only changing only
one of the metadata values.

For more information about the object metadata, see Object Key and Metadata (p. 99).

Note

• Copying objects across locations incurs bandwidth charges.
• If the source object is archived in GLACIER or DEEP_ARCHIVE, you must first restore a

temporary copy before you can copy the object to another bucket. For information about
archiving objects, see Transitioning to the GLACIER and DEEP ARCHIVE Storage Classes
(Object Archival) (p. 123).

When copying objects, you can request Amazon S3 to save the target object encrypted using an AWS Key
Management Service (AWS KMS) encryption key, an Amazon S3-managed encryption key, or a customer-
provided encryption key. Accordingly, you must specify encryption information in your request. If the
copy source is an object that is stored in Amazon S3 using server-side encryption with customer provided
key, you will need to provide encryption information in your request so Amazon S3 can decrypt the
object for copying. For more information, see Protecting Data Using Encryption (p. 264).

To copy more than one Amazon S3 object with a single request, you can use Amazon S3 batch
operations. You provide Amazon S3 batch operations with a list of objects to operate on. Amazon S3
batch operations call the respective API to perform the specified operation. A single Amazon S3 batch
operations job can perform the specified operation on billions of objects containing exabytes of data.

Amazon S3 batch operations track progress, send notifications, and store a detailed completion report
of all actions, providing a fully managed, auditable, serverless experience. You can use Amazon S3
batch operations through the AWS Management Console, AWS CLI, AWS SDKs, or REST API. For more
information, see the section called “The Basics: Jobs” (p. 468).

Related Resources
• Using the AWS SDKs, CLI, and Explorers (p. 669)

Copying Objects in a Single Operation
The examples in this section show how to copy objects up to 5 GB in a single operation. For copying
objects greater than 5 GB, you must use multipart upload API. For more information, see Copying
Objects Using the Multipart Upload API (p. 217).

Topics
• Copy an Object Using the AWS SDK for Java (p. 212)
• Copy an Amazon S3 Object in a Single Operation Using the AWS SDK for .NET (p. 212)
• Copy an Object Using the AWS SDK for PHP (p. 213)
• Copy an Object Using the AWS SDK for Ruby (p. 215)

API Version 2006-03-01
211

Amazon Simple Storage Service Developer Guide
Copying Objects

• Copy an Object Using the REST API (p. 215)

Copy an Object Using the AWS SDK for Java

Example

The following example shows how to copy an object in Amazon S3 using the AWS SDK for Java.
For instructions on creating and testing a working sample, see Testing the Amazon S3 Java Code
Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.CopyObjectRequest;

import java.io.IOException;

public class CopyObjectSingleOperation {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String sourceKey = "*** Source object key *** ";
 String destinationKey = "*** Destination object key ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 // Copy the object into a new object in the same bucket.
 CopyObjectRequest copyObjRequest = new CopyObjectRequest(bucketName, sourceKey,
 bucketName, destinationKey);
 s3Client.copyObject(copyObjRequest);
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Copy an Amazon S3 Object in a Single Operation Using the AWS SDK for .NET

The following C# example shows how to use the high-level AWS SDK for .NET to copy objects that are
as big as 5 GB in a single operation. For objects that are bigger than 5 GB, use the multipart upload
copy example described in Copy an Amazon S3 Object Using the AWS SDK for .NET Multipart Upload
API (p. 219).

This example makes a copy of an object that is a maximum of 5 GB. For information about the example's
compatibility with a specific version of the AWS SDK for .NET and instructions on how to create and test
a working sample, see Running the Amazon S3 .NET Code Examples (p. 678).

API Version 2006-03-01
212

Amazon Simple Storage Service Developer Guide
Copying Objects

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class CopyObjectTest
 {
 private const string sourceBucket = "*** provide the name of the bucket with source
 object ***";
 private const string destinationBucket = "*** provide the name of the bucket to
 copy the object to ***";
 private const string objectKey = "*** provide the name of object to copy ***";
 private const string destObjectKey = "*** provide the destination object key name
 ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 s3Client;

 public static void Main()
 {
 s3Client = new AmazonS3Client(bucketRegion);
 Console.WriteLine("Copying an object");
 CopyingObjectAsync().Wait();
 }

 private static async Task CopyingObjectAsync()
 {
 try
 {
 CopyObjectRequest request = new CopyObjectRequest
 {
 SourceBucket = sourceBucket,
 SourceKey = objectKey,
 DestinationBucket = destinationBucket,
 DestinationKey = destObjectKey
 };
 CopyObjectResponse response = await s3Client.CopyObjectAsync(request);
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Error encountered on server. Message:'{0}' when writing
 an object", e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown encountered on server. Message:'{0}' when
 writing an object", e.Message);
 }
 }
 }
}

More Info

AWS SDK for .NET

Copy an Object Using the AWS SDK for PHP

This topic guides you through using classes from version 3 of the AWS SDK for PHP to copy a single
object and multiple objects within Amazon S3, from one bucket to another or within the same bucket.

API Version 2006-03-01
213

https://aws.amazon.com/sdk-for-net/

Amazon Simple Storage Service Developer Guide
Copying Objects

This topic assumes that you are already following the instructions for Using the AWS SDK for PHP and
Running PHP Examples (p. 678) and have the AWS SDK for PHP properly installed.

The following tasks guide you through using PHP SDK classes to copy an object that is already stored in
Amazon S3.

The following tasks guide you through using PHP classes to make multiple copies of an object within
Amazon S3.

Copying Objects

1 Create an instance of an Amazon S3 client by using the Aws\S3\S3Client class
constructor.

2 To make multiple copies of an object, you execute a batch of calls to the Amazon S3
client getCommand() method, which is inherited from the Aws\CommandInterface class.
You provide the CopyObject command as the first argument and an array containing
the source bucket, source key name, target bucket, and target key name as the second
argument.

Example of Copying Objects within Amazon S3

The following PHP example illustrates the use of the copyObject() method to copy a single object
within Amazon S3 and using a batch of calls to CopyObject using the getcommand() method to make
multiple copies of an object.

 require 'vendor/autoload.php';

use Aws\S3\S3Client;

$sourceBucket = '*** Your Source Bucket Name ***';
$sourceKeyname = '*** Your Source Object Key ***';
$targetBucket = '*** Your Target Bucket Name ***';

$s3 = new S3Client([
 'version' => 'latest',
 'region' => 'us-east-1'
]);

// Copy an object.
$s3->copyObject([
 'Bucket' => $targetBucket,
 'Key' => "{$sourceKeyname}-copy",
 'CopySource' => "{$sourceBucket}/{$sourceKeyname}",
]);

// Perform a batch of CopyObject operations.
$batch = array();
for ($i = 1; $i <= 3; $i++) {
 $batch[] = $s3->getCommand('CopyObject', [
 'Bucket' => $targetBucket,
 'Key' => "{targetKeyname}-{$i}",
 'CopySource' => "{$sourceBucket}/{$sourceKeyname}",
]);
}
try {
 $results = CommandPool::batch($s3, $batch);
 foreach($results as $result) {
 if ($result instanceof ResultInterface) {
 // Result handling here
 }
 if ($result instanceof AwsException) {

API Version 2006-03-01
214

https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.AwsClientInterface.html#_getCommand
https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.CommandInterface.html

Amazon Simple Storage Service Developer Guide
Copying Objects

 // AwsException handling here
 }
 }
} catch (\Exception $e) {
 // General error handling here
}

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class
• AWS SDK for PHP Documentation

Copy an Object Using the AWS SDK for Ruby

The following tasks guide you through using the Ruby classes to copy an object in Amazon S3, from one
bucket to another or to copy an object within the same bucket.

Copying Objects

1 Use the Amazon S3 modularized gem for version 3 of the AWS SDK for Ruby, require 'aws-
sdk-s3', and provide your AWS credentials. For more information about how to provide
your credentials, see Making Requests Using AWS Account or IAM User Credentials (p. 19).

2 Provide the request information, such as source bucket name, source key name,
destination bucket name, and destination key.

The following Ruby code example demonstrates the preceding tasks using the #copy_object method
to copy an object from one bucket to another.

Example

require 'aws-sdk-s3'

source_bucket_name = '*** Provide bucket name ***'
target_bucket_name = '*** Provide bucket name ***'
source_key = '*** Provide source key ***'
target_key = '*** Provide target key ***'

begin
 s3 = Aws::S3::Client.new(region: 'us-west-2')
 s3.copy_object(bucket: target_bucket_name, copy_source: source_bucket_name + '/' +
 source_key, key: target_key)
rescue StandardError => ex
 puts 'Caught exception copying object ' + source_key + ' from bucket ' +
 source_bucket_name + ' to bucket ' + target_bucket_name + ' as ' + target_key + ':'
 puts ex.message
end

puts 'Copied ' + source_key + ' from bucket ' + source_bucket_name + ' to bucket ' +
 target_bucket_name + ' as ' + target_key

Copy an Object Using the REST API

This example describes how to copy an object using REST. For more information about the REST API, go
to PUT Object (Copy).

This example copies the flotsam object from the pacific bucket to the jetsam object of the
atlantic bucket, preserving its metadata.

API Version 2006-03-01
215

https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.S3.S3Client.html
http://aws.amazon.com/documentation/sdk-for-php/
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html

Amazon Simple Storage Service Developer Guide
Copying Objects

PUT /jetsam HTTP/1.1
Host: atlantic.s3.amazonaws.com
x-amz-copy-source: /pacific/flotsam
Authorization: AWS AKIAIOSFODNN7EXAMPLE:ENoSbxYByFA0UGLZUqJN5EUnLDg=
Date: Wed, 20 Feb 2008 22:12:21 +0000

The signature was generated from the following information.

PUT\r\n
\r\n
\r\n
Wed, 20 Feb 2008 22:12:21 +0000\r\n

x-amz-copy-source:/pacific/flotsam\r\n
/atlantic/jetsam

Amazon S3 returns the following response that specifies the ETag of the object and when it was last
modified.

HTTP/1.1 200 OK
x-amz-id-2: Vyaxt7qEbzv34BnSu5hctyyNSlHTYZFMWK4FtzO+iX8JQNyaLdTshL0KxatbaOZt
x-amz-request-id: 6B13C3C5B34AF333
Date: Wed, 20 Feb 2008 22:13:01 +0000

Content-Type: application/xml
Transfer-Encoding: chunked
Connection: close
Server: AmazonS3
<?xml version="1.0" encoding="UTF-8"?>

<CopyObjectResult>
 <LastModified>2008-02-20T22:13:01</LastModified>
 <ETag>"7e9c608af58950deeb370c98608ed097"</ETag>
</CopyObjectResult>

API Version 2006-03-01
216

Amazon Simple Storage Service Developer Guide
Copying Objects

Copying Objects Using the Multipart Upload API
The examples in this section show you how to copy objects greater than 5 GB using the multipart upload
API. You can copy objects less than 5 GB in a single operation. For more information, see Copying Objects
in a Single Operation (p. 211).

Topics
• Copy an Object Using the AWS SDK for Java Multipart Upload API (p. 217)
• Copy an Amazon S3 Object Using the AWS SDK for .NET Multipart Upload API (p. 219)
• Copy Object Using the REST Multipart Upload API (p. 221)

Copy an Object Using the AWS SDK for Java Multipart Upload API

To copy an Amazon S3 object that is larger than 5 GB with the AWS SDK for Java, use the low-level Java
API . For objects smaller than 5 GB, use the single-operation copy described in Copy an Object Using the
AWS SDK for Java (p. 212).

To copy an object using the low-level Java API, do the following:

• Initiate a multipart upload by executing the AmazonS3Client.initiateMultipartUpload()
method.

• Save the upload ID from the response object that the
AmazonS3Client.initiateMultipartUpload() method returns. You provide this upload ID for
each part-upload operation.

• Copy all of the parts. For each part that you need to copy, create a new instance of the
CopyPartRequest class. Provide the part information, including the source and destination bucket
names, source and destination object keys, upload ID, locations of the first and last bytes of the part,
and part number.

• Save the responses of the AmazonS3Client.copyPart() method calls. Each response includes
the ETag value and part number for the uploaded part. You need this information to complete the
multipart upload.

• Call the AmazonS3Client.completeMultipartUpload() method to complete the copy operation.

Example

The following example shows how to use the Amazon S3 low-level Java API to perform a multipart
copy. For instructions on creating and testing a working sample, see Testing the Amazon S3 Java Code
Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class LowLevelMultipartCopy {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;

API Version 2006-03-01
217

Amazon Simple Storage Service Developer Guide
Copying Objects

 String sourceBucketName = "*** Source bucket name ***";
 String sourceObjectKey = "*** Source object key ***";
 String destBucketName = "*** Target bucket name ***";
 String destObjectKey = "*** Target object key ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 // Initiate the multipart upload.
 InitiateMultipartUploadRequest initRequest = new
 InitiateMultipartUploadRequest(destBucketName, destObjectKey);
 InitiateMultipartUploadResult initResult =
 s3Client.initiateMultipartUpload(initRequest);

 // Get the object size to track the end of the copy operation.
 GetObjectMetadataRequest metadataRequest = new
 GetObjectMetadataRequest(sourceBucketName, sourceObjectKey);
 ObjectMetadata metadataResult = s3Client.getObjectMetadata(metadataRequest);
 long objectSize = metadataResult.getContentLength();

 // Copy the object using 5 MB parts.
 long partSize = 5 * 1024 * 1024;
 long bytePosition = 0;
 int partNum = 1;
 List<CopyPartResult> copyResponses = new ArrayList<CopyPartResult>();
 while (bytePosition < objectSize) {
 // The last part might be smaller than partSize, so check to make sure
 // that lastByte isn't beyond the end of the object.
 long lastByte = Math.min(bytePosition + partSize - 1, objectSize - 1);

 // Copy this part.
 CopyPartRequest copyRequest = new CopyPartRequest()
 .withSourceBucketName(sourceBucketName)
 .withSourceKey(sourceObjectKey)
 .withDestinationBucketName(destBucketName)
 .withDestinationKey(destObjectKey)
 .withUploadId(initResult.getUploadId())
 .withFirstByte(bytePosition)
 .withLastByte(lastByte)
 .withPartNumber(partNum++);
 copyResponses.add(s3Client.copyPart(copyRequest));
 bytePosition += partSize;
 }

 // Complete the upload request to concatenate all uploaded parts and make the
 copied object available.
 CompleteMultipartUploadRequest completeRequest = new
 CompleteMultipartUploadRequest(
 destBucketName,
 destObjectKey,
 initResult.getUploadId(),
 getETags(copyResponses));
 s3Client.completeMultipartUpload(completeRequest);
 System.out.println("Multipart copy complete.");
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }

API Version 2006-03-01
218

Amazon Simple Storage Service Developer Guide
Copying Objects

 }

 // This is a helper function to construct a list of ETags.
 private static List<PartETag> getETags(List<CopyPartResult> responses) {
 List<PartETag> etags = new ArrayList<PartETag>();
 for (CopyPartResult response : responses) {
 etags.add(new PartETag(response.getPartNumber(), response.getETag()));
 }
 return etags;
 }
}

Copy an Amazon S3 Object Using the AWS SDK for .NET Multipart Upload API

The following C# example shows how to use the AWS SDK for .NET to copy an Amazon S3 object that
is larger than 5 GB from one source location to another, such as from one bucket to another. To copy
objects that are smaller than 5 GB, use the single-operation copy procedure described in Copy an
Amazon S3 Object in a Single Operation Using the AWS SDK for .NET (p. 212). For more information
about Amazon S3 multipart uploads, see Multipart Upload Overview (p. 175).

This example shows how to copy an Amazon S3 object that is larger than 5 GB from one S3 bucket to
another using the AWS SDK for .NET multipart upload API. For information about SDK compatibility
and instructions for creating and testing a working sample, see Running the Amazon S3 .NET Code
Examples (p. 678).

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class CopyObjectUsingMPUapiTest
 {
 private const string sourceBucket = "*** provide the name of the bucket with source
 object ***";
 private const string targetBucket = "*** provide the name of the bucket to copy the
 object to ***";
 private const string sourceObjectKey = "*** provide the name of object to copy
 ***";
 private const string targetObjectKey = "*** provide the name of the object copy
 ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 s3Client;

 public static void Main()
 {
 s3Client = new AmazonS3Client(bucketRegion);
 Console.WriteLine("Copying an object");
 MPUCopyObjectAsync().Wait();
 }
 private static async Task MPUCopyObjectAsync()
 {
 // Create a list to store the upload part responses.
 List<UploadPartResponse> uploadResponses = new List<UploadPartResponse>();
 List<CopyPartResponse> copyResponses = new List<CopyPartResponse>();

 // Setup information required to initiate the multipart upload.
 InitiateMultipartUploadRequest initiateRequest =

API Version 2006-03-01
219

Amazon Simple Storage Service Developer Guide
Copying Objects

 new InitiateMultipartUploadRequest
 {
 BucketName = targetBucket,
 Key = targetObjectKey
 };

 // Initiate the upload.
 InitiateMultipartUploadResponse initResponse =
 await s3Client.InitiateMultipartUploadAsync(initiateRequest);

 // Save the upload ID.
 String uploadId = initResponse.UploadId;

 try
 {
 // Get the size of the object.
 GetObjectMetadataRequest metadataRequest = new GetObjectMetadataRequest
 {
 BucketName = sourceBucket,
 Key = sourceObjectKey
 };

 GetObjectMetadataResponse metadataResponse =
 await s3Client.GetObjectMetadataAsync(metadataRequest);
 long objectSize = metadataResponse.ContentLength; // Length in bytes.

 // Copy the parts.
 long partSize = 5 * (long)Math.Pow(2, 20); // Part size is 5 MB.

 long bytePosition = 0;
 for (int i = 1; bytePosition < objectSize; i++)
 {
 CopyPartRequest copyRequest = new CopyPartRequest
 {
 DestinationBucket = targetBucket,
 DestinationKey = targetObjectKey,
 SourceBucket = sourceBucket,
 SourceKey = sourceObjectKey,
 UploadId = uploadId,
 FirstByte = bytePosition,
 LastByte = bytePosition + partSize - 1 >= objectSize ? objectSize -
 1 : bytePosition + partSize - 1,
 PartNumber = i
 };

 copyResponses.Add(await s3Client.CopyPartAsync(copyRequest));

 bytePosition += partSize;
 }

 // Set up to complete the copy.
 CompleteMultipartUploadRequest completeRequest =
 new CompleteMultipartUploadRequest
 {
 BucketName = targetBucket,
 Key = targetObjectKey,
 UploadId = initResponse.UploadId
 };
 completeRequest.AddPartETags(copyResponses);

 // Complete the copy.
 CompleteMultipartUploadResponse completeUploadResponse =
 await s3Client.CompleteMultipartUploadAsync(completeRequest);
 }
 catch (AmazonS3Exception e)
 {

API Version 2006-03-01
220

Amazon Simple Storage Service Developer Guide
Listing Object Keys

 Console.WriteLine("Error encountered on server. Message:'{0}' when writing
 an object", e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown encountered on server. Message:'{0}' when
 writing an object", e.Message);
 }
 }
 }
}

More Info

AWS SDK for .NET

Copy Object Using the REST Multipart Upload API

The following sections in the Amazon Simple Storage Service API Reference describe the REST API for
multipart upload. For copying an existing object you use the Upload Part (Copy) API and specify the
source object by adding the x-amz-copy-source request header in your request.

• Initiate Multipart Upload
• Upload Part
• Upload Part (Copy)
• Complete Multipart Upload
• Abort Multipart Upload
• List Parts
• List Multipart Uploads

You can use these APIs to make your own REST requests, or you can use one the SDKs we provide. For
more information about the SDKs, see API Support for Multipart Upload (p. 179).

Listing Object Keys
Keys can be listed by prefix. By choosing a common prefix for the names of related keys and marking
these keys with a special character that delimits hierarchy, you can use the list operation to select and
browse keys hierarchically. This is similar to how files are stored in directories within a file system.

Amazon S3 exposes a list operation that lets you enumerate the keys contained in a bucket. Keys are
selected for listing by bucket and prefix. For example, consider a bucket named "dictionary" that contains
a key for every English word. You might make a call to list all the keys in that bucket that start with the
letter "q". List results are always returned in UTF-8 binary order.

Both the SOAP and REST list operations return an XML document that contains the names of matching
keys and information about the object identified by each key.

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or the
AWS SDKs.

Groups of keys that share a prefix terminated by a special delimiter can be rolled up by that common
prefix for the purposes of listing. This enables applications to organize and browse their keys
hierarchically, much like how you would organize your files into directories in a file system. For
example, to extend the dictionary bucket to contain more than just English words, you might form

API Version 2006-03-01
221

https://aws.amazon.com/sdk-for-net/
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPart.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPartCopy.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadComplete.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadAbort.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListParts.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListMPUpload.html

Amazon Simple Storage Service Developer Guide
Listing Object Keys

keys by prefixing each word with its language and a delimiter, such as "French/logical". Using this
naming scheme and the hierarchical listing feature, you could retrieve a list of only French words. You
could also browse the top-level list of available languages without having to iterate through all the
lexicographically intervening keys.

For more information on this aspect of listing, see Listing Keys Hierarchically Using a Prefix and
Delimiter (p. 222).

List Implementation Efficiency

List performance is not substantially affected by the total number of keys in your bucket, nor by the
presence or absence of the prefix, marker, maxkeys, or delimiter arguments.

Iterating Through Multi-Page Results
As buckets can contain a virtually unlimited number of keys, the complete results of a list query can
be extremely large. To manage large result sets, the Amazon S3 API supports pagination to split them
into multiple responses. Each list keys response returns a page of up to 1,000 keys with an indicator
indicating if the response is truncated. You send a series of list keys requests until you have received all
the keys. AWS SDK wrapper libraries provide the same pagination.

The following Java and .NET SDK examples show how to use pagination when listing keys in a bucket:

• Listing Keys Using the AWS SDK for Java (p. 223)
• Listing Keys Using the AWS SDK for .NET (p. 224)

Related Resources

• Using the AWS SDKs, CLI, and Explorers (p. 669)

Listing Keys Hierarchically Using a Prefix and Delimiter
The prefix and delimiter parameters limit the kind of results returned by a list operation. The prefix limits
the results to only those keys that begin with the specified prefix. The delimiter causes a list operation to
roll up all the keys that share a common prefix into a single summary list result.

The purpose of the prefix and delimiter parameters is to help you organize and then browse your keys
hierarchically. To do this, first pick a delimiter for your bucket, such as slash (/), that doesn't occur in any
of your anticipated key names. Next, construct your key names by concatenating all containing levels of
the hierarchy, separating each level with the delimiter.

For example, if you were storing information about cities, you might naturally organize them by
continent, then by country, then by province or state. Because these names don't usually contain
punctuation, you might select slash (/) as the delimiter. The following examples use a slash (/) delimiter.

• Europe/France/Aquitaine/Bordeaux
• North America/Canada/Quebec/Montreal
• North America/USA/Washington/Bellevue
• North America/USA/Washington/Seattle

If you stored data for every city in the world in this manner, it would become awkward to manage
a flat key namespace. By using Prefix and Delimiter with the list operation, you can use the
hierarchy you've created to list your data. For example, to list all the states in USA, set Delimiter='/'
and Prefix='North America/USA/'. To list all the provinces in Canada for which you have data, set
Delimiter='/' and Prefix='North America/Canada/'.

API Version 2006-03-01
222

Amazon Simple Storage Service Developer Guide
Listing Object Keys

A list request with a delimiter lets you browse your hierarchy at just one level, skipping over and
summarizing the (possibly millions of) keys nested at deeper levels. For example, assume you have a
bucket (ExampleBucket) the following keys.

sample.jpg

photos/2006/January/sample.jpg

photos/2006/February/sample2.jpg

photos/2006/February/sample3.jpg

photos/2006/February/sample4.jpg

The sample bucket has only the sample.jpg object at the root level. To list only the root level objects
in the bucket you send a GET request on the bucket with "/" delimiter character. In response, Amazon
S3 returns the sample.jpg object key because it does not contain the "/" delimiter character. All other
keys contain the delimiter character. Amazon S3 groups these keys and return a single CommonPrefixes
element with prefix value photos/ that is a substring from the beginning of these keys to the first
occurrence of the specified delimiter.

Example

<ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Name>ExampleBucket</Name>
 <Prefix></Prefix>
 <Marker></Marker>
 <MaxKeys>1000</MaxKeys>
 <Delimiter>/</Delimiter>
 <IsTruncated>false</IsTruncated>
 <Contents>
 <Key>sample.jpg</Key>
 <LastModified>2011-07-24T19:39:30.000Z</LastModified>
 <ETag>"d1a7fb5eab1c16cb4f7cf341cf188c3d"</ETag>
 <Size>6</Size>
 <Owner>
 <ID>75cc57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID>
 <DisplayName>displayname</DisplayName>
 </Owner>
 <StorageClass>STANDARD</StorageClass>
 </Contents>
 <CommonPrefixes>
 <Prefix>photos/</Prefix>
 </CommonPrefixes>
</ListBucketResult>

Listing Keys Using the AWS SDK for Java

Example

The following example lists the object keys in a bucket. The example uses pagination to retrieve a set
of object keys. If there are more keys to return after the first page, Amazon S3 includes a continuation
token in the response. The example uses the continuation token in the subsequent request to fetch the
next set of object keys.

For instructions on creating and testing a working sample, see Testing the Amazon S3 Java Code
Examples (p. 677).

import com.amazonaws.AmazonServiceException;

API Version 2006-03-01
223

Amazon Simple Storage Service Developer Guide
Listing Object Keys

import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.ListObjectsV2Request;
import com.amazonaws.services.s3.model.ListObjectsV2Result;
import com.amazonaws.services.s3.model.S3ObjectSummary;

import java.io.IOException;

public class ListKeys {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 System.out.println("Listing objects");

 // maxKeys is set to 2 to demonstrate the use of
 // ListObjectsV2Result.getNextContinuationToken()
 ListObjectsV2Request req = new
 ListObjectsV2Request().withBucketName(bucketName).withMaxKeys(2);
 ListObjectsV2Result result;

 do {
 result = s3Client.listObjectsV2(req);

 for (S3ObjectSummary objectSummary : result.getObjectSummaries()) {
 System.out.printf(" - %s (size: %d)\n", objectSummary.getKey(),
 objectSummary.getSize());
 }
 // If there are more than maxKeys keys in the bucket, get a continuation
 token
 // and list the next objects.
 String token = result.getNextContinuationToken();
 System.out.println("Next Continuation Token: " + token);
 req.setContinuationToken(token);
 } while (result.isTruncated());
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Listing Keys Using the AWS SDK for .NET
Example

The following C# example lists the object keys for a bucket. In the example, we use pagination to retrieve
a set of object keys. If there are more keys to return, Amazon S3 includes a continuation token in the

API Version 2006-03-01
224

Amazon Simple Storage Service Developer Guide
Listing Object Keys

response. The code uses the continuation token in the subsequent request to fetch the next set of object
keys.

For instructions on how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 678).

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class ListObjectsTest
 {
 private const string bucketName = "*** bucket name ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;

 private static IAmazonS3 client;

 public static void Main()
 {
 client = new AmazonS3Client(bucketRegion);
 ListingObjectsAsync().Wait();
 }

 static async Task ListingObjectsAsync()
 {
 try
 {
 ListObjectsV2Request request = new ListObjectsV2Request
 {
 BucketName = bucketName,
 MaxKeys = 10
 };
 ListObjectsV2Response response;
 do
 {
 response = await client.ListObjectsV2Async(request);

 // Process the response.
 foreach (S3Object entry in response.S3Objects)
 {
 Console.WriteLine("key = {0} size = {1}",
 entry.Key, entry.Size);
 }
 Console.WriteLine("Next Continuation Token: {0}",
 response.NextContinuationToken);
 request.ContinuationToken = response.NextContinuationToken;
 } while (response.IsTruncated);
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 Console.WriteLine("S3 error occurred. Exception: " +
 amazonS3Exception.ToString());
 Console.ReadKey();
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: " + e.ToString());
 Console.ReadKey();
 }
 }

API Version 2006-03-01
225

Amazon Simple Storage Service Developer Guide
Listing Object Keys

 }
}

Listing Keys Using the AWS SDK for PHP
This topic guides you through using classes from version 3 of the AWS SDK for PHP to list the object keys
contained in an Amazon S3 bucket.

This topic assumes that you are already following the instructions for Using the AWS SDK for PHP and
Running PHP Examples (p. 678) and have the AWS SDK for PHP properly installed.

To list the object keys contained in a bucket using the AWS SDK for PHP you first must list the objects
contained in the bucket and then extract the key from each of the listed objects. When listing objects in
a bucket you have the option of using the low-level Aws\S3\S3Client::listObjects() method or the high-
level Aws\ResultPaginator class.

The low-level listObjects() method maps to the underlying Amazon S3 REST API. Each
listObjects() request returns a page of up to 1,000 objects. If you have more than 1,000 objects in
the bucket, your response will be truncated and you will need to send another listObjects() request
to retrieve the next set of 1,000 objects.

You can use the high-level ListObjects paginator to make your task of listing the objects contained
in a bucket a bit easier. To use the ListObjects paginator to create a list of objects you execute
the Amazon S3 client getPaginator() method that is inherited from Aws/AwsClientInterface class
with the ListObjects command as the first argument and an array to contain the returned objects
from the specified bucket as the second argument. When used as a ListObjects paginator the
getPaginator() method returns all the objects contained in the specified bucket. There is no 1,000
object limit, so you don't need to worry if the response is truncated or not.

The following tasks guide you through using the PHP Amazon S3 client methods to list the objects
contained in a bucket from which you can list the object keys.

Example of Listing Object Keys

The following PHP example demonstrates how to list the keys from a specified bucket. It shows how
to use the high-level getIterator() method to list the objects in a bucket and then how to extract
the key from each of the objects in the list. It also show how to use the low-level listObjects()
method to list the objects in a bucket and then how to extract the key from each of the objects in
the list returned. For information about running the PHP examples in this guide, go to Running PHP
Examples (p. 679).

 require 'vendor/autoload.php';

use Aws\S3\S3Client;
use Aws\S3\Exception\S3Exception;

$bucket = '*** Your Bucket Name ***';

// Instantiate the client.
$s3 = new S3Client([
 'version' => 'latest',
 'region' => 'us-east-1'
]);

// Use the high-level iterators (returns ALL of your objects).
try {
 $results = $s3->getPaginator('ListObjects', [
 'Bucket' => $bucket
]);

API Version 2006-03-01
226

https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-s3-2006-03-01.html#listobjects
https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.ResultPaginator.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.AwsClientInterface.html#_getPaginator
https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.AwsClientInterface.html

Amazon Simple Storage Service Developer Guide
Deleting Objects

 foreach ($results as $result) {
 foreach ($result['Contents'] as $object) {
 echo $object['Key'] . PHP_EOL;
 }
 }
} catch (S3Exception $e) {
 echo $e->getMessage() . PHP_EOL;
}

// Use the plain API (returns ONLY up to 1000 of your objects).
try {
 $objects = $s3->listObjects([
 'Bucket' => $bucket
]);
 foreach ($objects['Contents'] as $object) {
 echo $object['Key'] . PHP_EOL;
 }
} catch (S3Exception $e) {
 echo $e->getMessage() . PHP_EOL;
}

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class
• Paginators
• AWS SDK for PHP Documentation

Listing Keys Using the REST API
You can use the AWS SDK to list the object keys in a bucket. However, if your application requires it,
you can send REST requests directly. You can send a GET request to return some or all of the objects
in a bucket or you can use selection criteria to return a subset of the objects in a bucket. For more
information, go to GET Bucket (List Objects) Version 2.

Deleting Objects
Topics

• Deleting Objects from a Version-Enabled Bucket (p. 228)
• Deleting Objects from an MFA-Enabled Bucket (p. 228)
• Related Resources (p. 228)
• Deleting One Object Per Request (p. 228)
• Deleting Multiple Objects Per Request (p. 234)

You can delete one or more objects directly from Amazon S3. You have the following options when
deleting an object:

• Delete a single object—Amazon S3 provides the DELETE API that you can use to delete one object in a
single HTTP request.

• Delete multiple objects—Amazon S3 also provides the Multi-Object Delete API that you can use to
delete up to 1000 objects in a single HTTP request.

When deleting objects from a bucket that is not version-enabled, you provide only the object key name,
however, when deleting objects from a version-enabled bucket, you can optionally provide version ID of
the object to delete a specific version of the object.

API Version 2006-03-01
227

https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.S3.S3Client.html
https://docs.aws.amazon.com/aws-sdk-php/v3/guide/guide/paginators.html
http://aws.amazon.com/documentation/sdk-for-php/
https://docs.aws.amazon.com/AmazonS3/latest/API/v2-RESTBucketGET.html

Amazon Simple Storage Service Developer Guide
Deleting Objects

Deleting Objects from a Version-Enabled Bucket
If your bucket is version-enabled, then multiple versions of the same object can exist in the bucket. When
working with version-enabled buckets, the delete API enables the following options:

• Specify a non-versioned delete request—That is, you specify only the object's key, and not the
version ID. In this case, Amazon S3 creates a delete marker and returns its version ID in the response.
This makes your object disappear from the bucket. For information about object versioning and the
delete marker concept, see Object Versioning (p. 108).

• Specify a versioned delete request—That is, you specify both the key and also a version ID. In this
case the following two outcomes are possible:

• If the version ID maps to a specific object version, then Amazon S3 deletes the specific version of the
object.

• If the version ID maps to the delete marker of that object, Amazon S3 deletes the delete marker.
This makes the object reappear in your bucket.

Deleting Objects from an MFA-Enabled Bucket
When deleting objects from a Multi Factor Authentication (MFA) enabled bucket, note the following:

• If you provide an invalid MFA token, the request always fails.

• If you have an MFA-enabled bucket, and you make a versioned delete request (you provide an object
key and version ID), the request will fail if you don't provide a valid MFA token. In addition, when using
the Multi-Object Delete API on an MFA-enabled bucket, if any of the deletes is a versioned delete
request (that is, you specify object key and version ID), the entire request will fail if you don't provide
an MFA token.

On the other hand, in the following cases the request succeeds:

• If you have an MFA-enabled bucket, and you make a non-versioned delete request (you are not
deleting a versioned object), and you don't provide an MFA token, the delete succeeds.

• If you have a Multi-Object Delete request specifying only non-versioned objects to delete from an
MFA-enabled bucket, and you don't provide an MFA token, the deletions succeed.

For information on MFA delete, see MFA Delete (p. 433).

Related Resources
• Using the AWS SDKs, CLI, and Explorers (p. 669)

Deleting One Object Per Request
Topics

• Deleting an Object Using the AWS SDK for Java (p. 229)

• Deleting an Object Using the AWS SDK for .NET (p. 231)

• Deleting an Object Using the AWS SDK for PHP (p. 233)

• Deleting an Object Using the REST API (p. 234)

To delete one object per request, use the DELETE API (see DELETE Object). To learn more about object
deletion, see Deleting Objects (p. 227).

API Version 2006-03-01
228

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html

Amazon Simple Storage Service Developer Guide
Deleting Objects

You can use either the REST API directly or the wrapper libraries provided by the AWS SDKs that simplify
application development.

Deleting an Object Using the AWS SDK for Java

You can delete an object from a bucket. If you have versioning enabled on the bucket, you have the
following options:

• Delete a specific object version by specifying a version ID.
• Delete an object without specifying a version ID, in which case S3 adds a delete marker to the object.

For more information about versioning, see Object Versioning (p. 108).

Example Example 1: Deleting an Object (Non-Versioned Bucket)

The following example deletes an object from a bucket. The example assumes that the bucket is not
versioning-enabled and the object doesn't have any version IDs. In the delete request, you specify only
the object key and not a version ID. For instructions on creating and testing a working sample, see
Testing the Amazon S3 Java Code Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.DeleteObjectRequest;

import java.io.IOException;

public class DeleteObjectNonVersionedBucket {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String keyName = "*** Key name ****";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 s3Client.deleteObject(new DeleteObjectRequest(bucketName, keyName));
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Example Example 2: Deleting an Object (Versioned Bucket)

The following example deletes an object from a versioned bucket. The example deletes a specific object
version by specifying the object key name and version ID. The example does the following:

API Version 2006-03-01
229

Amazon Simple Storage Service Developer Guide
Deleting Objects

1. Adds a sample object to the bucket. Amazon S3 returns the version ID of the newly added object. The
example uses this version ID in the delete request.

2. Deletes the object version by specifying both the object key name and a version ID. If there are no
other versions of that object, Amazon S3 deletes the object entirely. Otherwise, Amazon S3 only
deletes the specified version.

Note
You can get the version IDs of an object by sending a ListVersions request.

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketVersioningConfiguration;
import com.amazonaws.services.s3.model.DeleteVersionRequest;
import com.amazonaws.services.s3.model.PutObjectResult;

import java.io.IOException;

public class DeleteObjectVersionEnabledBucket {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String keyName = "*** Key name ****";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 // Check to ensure that the bucket is versioning-enabled.
 String bucketVersionStatus =
 s3Client.getBucketVersioningConfiguration(bucketName).getStatus();
 if (!bucketVersionStatus.equals(BucketVersioningConfiguration.ENABLED)) {
 System.out.printf("Bucket %s is not versioning-enabled.", bucketName);
 } else {
 // Add an object.
 PutObjectResult putResult = s3Client.putObject(bucketName, keyName, "Sample
 content for deletion example.");
 System.out.printf("Object %s added to bucket %s\n", keyName, bucketName);

 // Delete the version of the object that we just created.
 System.out.println("Deleting versioned object " + keyName);
 s3Client.deleteVersion(new DeleteVersionRequest(bucketName, keyName,
 putResult.getVersionId()));
 System.out.printf("Object %s, version %s deleted\n", keyName,
 putResult.getVersionId());
 }
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }

API Version 2006-03-01
230

Amazon Simple Storage Service Developer Guide
Deleting Objects

}

Deleting an Object Using the AWS SDK for .NET

When you delete an object from a non-versioned bucket, the object is removed. If you have versioning
enabled on the bucket, you have the following options:

• Delete a specific version of an object by specifying a version ID.
• Delete an object without specifying a version ID. Amazon S3 adds a delete marker. For more

information about delete markers, see Object Versioning (p. 108).

The following examples show how to delete an object from both versioned and non-versioned buckets.
For more information about versioning, see Object Versioning (p. 108).

Example Deleting an Object from a Non-versioned Bucket

The following C# example deletes an object from a non-versioned bucket. The example assumes that
the objects don't have version IDs, so you don't specify version IDs. You specify only the object key. For
information about how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 678).

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class DeleteObjectNonVersionedBucketTest
 {
 private const string bucketName = "*** bucket name ***";
 private const string keyName = "*** object key ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 client;

 public static void Main()
 {
 client = new AmazonS3Client(bucketRegion);
 DeleteObjectNonVersionedBucketAsync().Wait();
 }
 private static async Task DeleteObjectNonVersionedBucketAsync()
 {
 try
 {
 var deleteObjectRequest = new DeleteObjectRequest
 {
 BucketName = bucketName,
 Key = keyName
 };

 Console.WriteLine("Deleting an object");
 await client.DeleteObjectAsync(deleteObjectRequest);
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Error encountered on server. Message:'{0}' when writing
 an object", e.Message);
 }

API Version 2006-03-01
231

Amazon Simple Storage Service Developer Guide
Deleting Objects

 catch (Exception e)
 {
 Console.WriteLine("Unknown encountered on server. Message:'{0}' when
 writing an object", e.Message);
 }
 }
 }
}

Example Deleting an Object from a Versioned Bucket

The following C# example deletes an object from a versioned bucket. It deletes a specific version of the
object by specifying the object key name and version ID.

The code performs the following tasks:

1. Enables versioning on a bucket that you specify (if versioning is already enabled, this has no effect).
2. Adds a sample object to the bucket. In response, Amazon S3 returns the version ID of the newly added

object. The example uses this version ID in the delete request.
3. Deletes the sample object by specifying both the object key name and a version ID.

Note
You can also get the version ID of an object by sending a ListVersions request:

var listResponse = client.ListVersions(new ListVersionsRequest { BucketName =
 bucketName, Prefix = keyName });

For information about how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 678).

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class DeleteObjectVersion
 {
 private const string bucketName = "*** versioning-enabled bucket name ***";
 private const string keyName = "*** Object Key Name ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 client;

 public static void Main()
 {
 client = new AmazonS3Client(bucketRegion);
 CreateAndDeleteObjectVersionAsync().Wait();
 }

 private static async Task CreateAndDeleteObjectVersionAsync()
 {
 try
 {
 // Add a sample object.
 string versionID = await PutAnObject(keyName);

 // Delete the object by specifying an object key and a version ID.
 DeleteObjectRequest request = new DeleteObjectRequest

API Version 2006-03-01
232

Amazon Simple Storage Service Developer Guide
Deleting Objects

 {
 BucketName = bucketName,
 Key = keyName,
 VersionId = versionID
 };
 Console.WriteLine("Deleting an object");
 await client.DeleteObjectAsync(request);
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Error encountered on server. Message:'{0}' when writing
 an object", e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown encountered on server. Message:'{0}' when
 writing an object", e.Message);
 }
 }

 static async Task<string> PutAnObject(string objectKey)
 {
 PutObjectRequest request = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = objectKey,
 ContentBody = "This is the content body!"
 };
 PutObjectResponse response = await client.PutObjectAsync(request);
 return response.VersionId;
 }
 }
}

Deleting an Object Using the AWS SDK for PHP

This topic shows how to use classes from version 3 of the AWS SDK for PHP to delete an object from a
non-versioned bucket. For information on deleting an object from a versioned bucket, see Deleting an
Object Using the REST API (p. 234).

This topic assumes that you are already following the instructions for Using the AWS SDK for PHP and
Running PHP Examples (p. 678) and have the AWS SDK for PHP properly installed.

The following PHP example deletes an object from a bucket. Because this example shows how to delete
objects from non-versioned buckets, it provides only the bucket name and object key (not a version ID)
in the delete request. . For information about running the PHP examples in this guide, see Running PHP
Examples (p. 679).

<?php

require 'vendor/autoload.php';

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';

$s3 = new S3Client([
 'version' => 'latest',
 'region' => 'us-east-1'
]);

// Delete an object from the bucket.

API Version 2006-03-01
233

Amazon Simple Storage Service Developer Guide
Deleting Objects

$s3->deleteObject([
 'Bucket' => $bucket,
 'Key' => $keyname
]);

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class
• AWS SDK for PHP Documentation

Deleting an Object Using the REST API

You can use the AWS SDKs to delete an object. However, if your application requires it, you can send
REST requests directly. For more information, go to DELETE Object in the Amazon Simple Storage Service
API Reference.

Deleting Multiple Objects Per Request
Topics

• Deleting Multiple Objects Using the AWS SDK for Java (p. 234)
• Deleting Multiple Objects Using the AWS SDK for .NET (p. 237)
• Deleting Multiple Objects Using the AWS SDK for PHP (p. 243)
• Deleting Multiple Objects Using the REST API (p. 245)

Amazon S3 provides the Multi-Object Delete API (see Delete - Multi-Object Delete), which enables you
to delete multiple objects in a single request. The API supports two modes for the response: verbose and
quiet. By default, the operation uses verbose mode. In verbose mode, the response includes the result
of the deletion of each key that is specified in your request. In quiet mode, the response includes only
keys for which the delete operation encountered an error. If all keys are successfully deleted when you're
using quiet mode, Amazon S3 returns an empty response.

To learn more about object deletion, see Deleting Objects (p. 227).

You can use the REST API directly or use the AWS SDKs.

Deleting Multiple Objects Using the AWS SDK for Java

The AWS SDK for Java provides the AmazonS3Client.deleteObjects() method for deleting multiple
objects. For each object that you want to delete, you specify the key name. If the bucket is versioning-
enabled, you have the following options:

• Specify only the object's key name. Amazon S3 will add a delete marker to the object.
• Specify both the object's key name and a version ID to be deleted. Amazon S3 will delete the specified

version of the object.

Example

The following example uses the Multi-Object Delete API to delete objects from a bucket that
is not version-enabled. The example uploads sample objects to the bucket and then uses the
AmazonS3Client.deleteObjects() method to delete the objects in a single request. In the
DeleteObjectsRequest, the example specifies only the object key names because the objects do not
have version IDs.

For more information about deleting objects, see Deleting Objects (p. 227). For instructions on creating
and testing a working sample, see Testing the Amazon S3 Java Code Examples (p. 677).

API Version 2006-03-01
234

https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.S3.S3Client.html
http://aws.amazon.com/documentation/sdk-for-php/
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html
https://docs.aws.amazon.com/AmazonS3/latest/API/multiobjectdeleteapi.html

Amazon Simple Storage Service Developer Guide
Deleting Objects

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.DeleteObjectRequest;

import java.io.IOException;

public class DeleteObjectNonVersionedBucket {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String keyName = "*** Key name ****";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 s3Client.deleteObject(new DeleteObjectRequest(bucketName, keyName));
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Example

The following example uses the Multi-Object Delete API to delete objects from a version-enabled bucket.
It does the following:

1. Creates sample objects and then deletes them, specifying the key name and version ID for each object
to delete. The operation deletes only the specified object versions.

2. Creates sample objects and then deletes them by specifying only the key names. Because the example
doesn't specify version IDs, the operation adds a delete marker to each object, without deleting any
specific object versions. After the delete markers are added, these objects will not appear in the AWS
Management Console.

3. Remove the delete markers by specifying the object keys and version IDs of the delete markers.
The operation deletes the delete markers, which results in the objects reappearing in the AWS
Management Console.

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.BucketVersioningConfiguration;

API Version 2006-03-01
235

Amazon Simple Storage Service Developer Guide
Deleting Objects

import com.amazonaws.services.s3.model.DeleteObjectsRequest;
import com.amazonaws.services.s3.model.DeleteObjectsRequest.KeyVersion;
import com.amazonaws.services.s3.model.DeleteObjectsResult;
import com.amazonaws.services.s3.model.DeleteObjectsResult.DeletedObject;
import com.amazonaws.services.s3.model.PutObjectResult;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DeleteMultipleObjectsVersionEnabledBucket {
 private static AmazonS3 S3_CLIENT;
 private static String VERSIONED_BUCKET_NAME;

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 VERSIONED_BUCKET_NAME = "*** Bucket name ***";

 try {
 S3_CLIENT = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 // Check to make sure that the bucket is versioning-enabled.
 String bucketVersionStatus =
 S3_CLIENT.getBucketVersioningConfiguration(VERSIONED_BUCKET_NAME).getStatus();
 if (!bucketVersionStatus.equals(BucketVersioningConfiguration.ENABLED)) {
 System.out.printf("Bucket %s is not versioning-enabled.",
 VERSIONED_BUCKET_NAME);
 } else {
 // Upload and delete sample objects, using specific object versions.
 uploadAndDeleteObjectsWithVersions();

 // Upload and delete sample objects without specifying version IDs.
 // Amazon S3 creates a delete marker for each object rather than deleting
 // specific versions.
 DeleteObjectsResult unversionedDeleteResult =
 uploadAndDeleteObjectsWithoutVersions();

 // Remove the delete markers placed on objects in the non-versioned create/
delete method.
 multiObjectVersionedDeleteRemoveDeleteMarkers(unversionedDeleteResult);
 }
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }

 private static void uploadAndDeleteObjectsWithVersions() {
 System.out.println("Uploading and deleting objects with versions specified.");

 // Upload three sample objects.
 ArrayList<KeyVersion> keys = new ArrayList<KeyVersion>();
 for (int i = 0; i < 3; i++) {
 String keyName = "delete object without version ID example " + i;
 PutObjectResult putResult = S3_CLIENT.putObject(VERSIONED_BUCKET_NAME, keyName,
 "Object number " + i + " to be deleted.");
 // Gather the new object keys with version IDs.
 keys.add(new KeyVersion(keyName, putResult.getVersionId()));

API Version 2006-03-01
236

Amazon Simple Storage Service Developer Guide
Deleting Objects

 }

 // Delete the specified versions of the sample objects.
 DeleteObjectsRequest multiObjectDeleteRequest = new
 DeleteObjectsRequest(VERSIONED_BUCKET_NAME)
 .withKeys(keys)
 .withQuiet(false);

 // Verify that the object versions were successfully deleted.
 DeleteObjectsResult delObjRes = S3_CLIENT.deleteObjects(multiObjectDeleteRequest);
 int successfulDeletes = delObjRes.getDeletedObjects().size();
 System.out.println(successfulDeletes + " objects successfully deleted");
 }

 private static DeleteObjectsResult uploadAndDeleteObjectsWithoutVersions() {
 System.out.println("Uploading and deleting objects with no versions specified.");

 // Upload three sample objects.
 ArrayList<KeyVersion> keys = new ArrayList<KeyVersion>();
 for (int i = 0; i < 3; i++) {
 String keyName = "delete object with version ID example " + i;
 S3_CLIENT.putObject(VERSIONED_BUCKET_NAME, keyName, "Object number " + i + " to
 be deleted.");
 // Gather the new object keys without version IDs.
 keys.add(new KeyVersion(keyName));
 }

 // Delete the sample objects without specifying versions.
 DeleteObjectsRequest multiObjectDeleteRequest = new
 DeleteObjectsRequest(VERSIONED_BUCKET_NAME).withKeys(keys)
 .withQuiet(false);

 // Verify that delete markers were successfully added to the objects.
 DeleteObjectsResult delObjRes = S3_CLIENT.deleteObjects(multiObjectDeleteRequest);
 int successfulDeletes = delObjRes.getDeletedObjects().size();
 System.out.println(successfulDeletes + " objects successfully marked for deletion
 without versions.");
 return delObjRes;
 }

 private static void multiObjectVersionedDeleteRemoveDeleteMarkers(DeleteObjectsResult
 response) {
 List<KeyVersion> keyList = new ArrayList<KeyVersion>();
 for (DeletedObject deletedObject : response.getDeletedObjects()) {
 // Note that the specified version ID is the version ID for the delete marker.
 keyList.add(new KeyVersion(deletedObject.getKey(),
 deletedObject.getDeleteMarkerVersionId()));
 }
 // Create a request to delete the delete markers.
 DeleteObjectsRequest deleteRequest = new
 DeleteObjectsRequest(VERSIONED_BUCKET_NAME).withKeys(keyList);

 // Delete the delete markers, leaving the objects intact in the bucket.
 DeleteObjectsResult delObjRes = S3_CLIENT.deleteObjects(deleteRequest);
 int successfulDeletes = delObjRes.getDeletedObjects().size();
 System.out.println(successfulDeletes + " delete markers successfully deleted");
 }
}

Deleting Multiple Objects Using the AWS SDK for .NET

The AWS SDK for .NET provides a convenient method for deleting multiple objects: DeleteObjects.
For each object that you want to delete, you specify the key name and the version of the object. If the

API Version 2006-03-01
237

Amazon Simple Storage Service Developer Guide
Deleting Objects

bucket is not versioning-enabled, you specify null for the version ID. If an exception occurs, review the
DeleteObjectsException response to determine which objects were not deleted and why.

Example Deleting Multiple Objects from a Non-Versioning Bucket

The following C# example uses the multi-object delete API to delete objects from a bucket that
is not version-enabled. The example uploads the sample objects to the bucket, and then uses the
DeleteObjects method to delete the objects in a single request. In the DeleteObjectsRequest, the
example specifies only the object key names because the version IDs are null.

For information about creating and testing a working sample, see Running the Amazon S3 .NET Code
Examples (p. 678).

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class DeleteMultipleObjectsNonVersionedBucketTest
 {
 private const string bucketName = "*** versioning-enabled bucket name ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 s3Client;

 public static void Main()
 {
 s3Client = new AmazonS3Client(bucketRegion);
 MultiObjectDeleteAsync().Wait();
 }

 static async Task MultiObjectDeleteAsync()
 {
 // Create sample objects (for subsequent deletion).
 var keysAndVersions = await PutObjectsAsync(3);

 // a. multi-object delete by specifying the key names and version IDs.
 DeleteObjectsRequest multiObjectDeleteRequest = new DeleteObjectsRequest
 {
 BucketName = bucketName,
 Objects = keysAndVersions // This includes the object keys and null version
 IDs.
 };
 // You can add specific object key to the delete request using the .AddKey.
 // multiObjectDeleteRequest.AddKey("TickerReference.csv", null);
 try
 {
 DeleteObjectsResponse response = await
 s3Client.DeleteObjectsAsync(multiObjectDeleteRequest);
 Console.WriteLine("Successfully deleted all the {0} items",
 response.DeletedObjects.Count);
 }
 catch (DeleteObjectsException e)
 {
 PrintDeletionErrorStatus(e);
 }
 }

 private static void PrintDeletionErrorStatus(DeleteObjectsException e)
 {

API Version 2006-03-01
238

Amazon Simple Storage Service Developer Guide
Deleting Objects

 // var errorResponse = e.ErrorResponse;
 DeleteObjectsResponse errorResponse = e.Response;
 Console.WriteLine("x {0}", errorResponse.DeletedObjects.Count);

 Console.WriteLine("No. of objects successfully deleted = {0}",
 errorResponse.DeletedObjects.Count);
 Console.WriteLine("No. of objects failed to delete = {0}",
 errorResponse.DeleteErrors.Count);

 Console.WriteLine("Printing error data...");
 foreach (DeleteError deleteError in errorResponse.DeleteErrors)
 {
 Console.WriteLine("Object Key: {0}\t{1}\t{2}", deleteError.Key,
 deleteError.Code, deleteError.Message);
 }
 }

 static async Task<List<KeyVersion>> PutObjectsAsync(int number)
 {
 List<KeyVersion> keys = new List<KeyVersion>();
 for (int i = 0; i < number; i++)
 {
 string key = "ExampleObject-" + new System.Random().Next();
 PutObjectRequest request = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = key,
 ContentBody = "This is the content body!",
 };

 PutObjectResponse response = await s3Client.PutObjectAsync(request);
 KeyVersion keyVersion = new KeyVersion
 {
 Key = key,
 // For non-versioned bucket operations, we only need object key.
 // VersionId = response.VersionId
 };
 keys.Add(keyVersion);
 }
 return keys;
 }
 }
}

Example Multi-Object Deletion for a Version-Enabled Bucket

The following C# example uses the multi-object delete API to delete objects from a version-enabled
bucket. The example performs the following actions:

1. Creates sample objects and deletes them by specifying the key name and version ID for each object.
The operation deletes specific versions of the objects.

2. Creates sample objects and deletes them by specifying only the key names. Because the example
doesn't specify version IDs, the operation only adds delete markers. It doesn't delete any specific
versions of the objects. After deletion, these objects don't appear in the Amazon S3 console.

3. Deletes the delete markers by specifying the object keys and version IDs of the delete markers. When
the operation deletes the delete markers, the objects reappear in the console.

For information about creating and testing a working sample, see Running the Amazon S3 .NET Code
Examples (p. 678).

using Amazon.S3;

API Version 2006-03-01
239

Amazon Simple Storage Service Developer Guide
Deleting Objects

using Amazon.S3.Model;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class DeleteMultipleObjVersionedBucketTest
 {
 private const string bucketName = "*** versioning-enabled bucket name ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 s3Client;

 public static void Main()
 {
 s3Client = new AmazonS3Client(bucketRegion);
 DeleteMultipleObjectsFromVersionedBucketAsync().Wait();
 }

 private static async Task DeleteMultipleObjectsFromVersionedBucketAsync()
 {

 // Delete objects (specifying object version in the request).
 await DeleteObjectVersionsAsync();

 // Delete objects (without specifying object version in the request).
 var deletedObjects = await DeleteObjectsAsync();

 // Additional exercise - remove the delete markers S3 returned in the preceding
 response.
 // This results in the objects reappearing in the bucket (you can
 // verify the appearance/disappearance of objects in the console).
 await RemoveDeleteMarkersAsync(deletedObjects);
 }

 private static async Task<List<DeletedObject>> DeleteObjectsAsync()
 {
 // Upload the sample objects.
 var keysAndVersions2 = await PutObjectsAsync(3);

 // Delete objects using only keys. Amazon S3 creates a delete marker and
 // returns its version ID in the response.
 List<DeletedObject> deletedObjects = await
 NonVersionedDeleteAsync(keysAndVersions2);
 return deletedObjects;
 }

 private static async Task DeleteObjectVersionsAsync()
 {
 // Upload the sample objects.
 var keysAndVersions1 = await PutObjectsAsync(3);

 // Delete the specific object versions.
 await VersionedDeleteAsync(keysAndVersions1);
 }

 private static void PrintDeletionReport(DeleteObjectsException e)
 {
 var errorResponse = e.Response;
 Console.WriteLine("No. of objects successfully deleted = {0}",
 errorResponse.DeletedObjects.Count);
 Console.WriteLine("No. of objects failed to delete = {0}",
 errorResponse.DeleteErrors.Count);
 Console.WriteLine("Printing error data...");
 foreach (var deleteError in errorResponse.DeleteErrors)

API Version 2006-03-01
240

Amazon Simple Storage Service Developer Guide
Deleting Objects

 {
 Console.WriteLine("Object Key: {0}\t{1}\t{2}", deleteError.Key,
 deleteError.Code, deleteError.Message);
 }
 }

 static async Task VersionedDeleteAsync(List<KeyVersion> keys)
 {
 // a. Perform a multi-object delete by specifying the key names and version
 IDs.
 var multiObjectDeleteRequest = new DeleteObjectsRequest
 {
 BucketName = bucketName,
 Objects = keys // This includes the object keys and specific version IDs.
 };
 try
 {
 Console.WriteLine("Executing VersionedDelete...");
 DeleteObjectsResponse response = await
 s3Client.DeleteObjectsAsync(multiObjectDeleteRequest);
 Console.WriteLine("Successfully deleted all the {0} items",
 response.DeletedObjects.Count);
 }
 catch (DeleteObjectsException e)
 {
 PrintDeletionReport(e);
 }
 }

 static async Task<List<DeletedObject>> NonVersionedDeleteAsync(List<KeyVersion>
 keys)
 {
 // Create a request that includes only the object key names.
 DeleteObjectsRequest multiObjectDeleteRequest = new DeleteObjectsRequest();
 multiObjectDeleteRequest.BucketName = bucketName;

 foreach (var key in keys)
 {
 multiObjectDeleteRequest.AddKey(key.Key);
 }
 // Execute DeleteObjects - Amazon S3 add delete marker for each object
 // deletion. The objects disappear from your bucket.
 // You can verify that using the Amazon S3 console.
 DeleteObjectsResponse response;
 try
 {
 Console.WriteLine("Executing NonVersionedDelete...");
 response = await s3Client.DeleteObjectsAsync(multiObjectDeleteRequest);
 Console.WriteLine("Successfully deleted all the {0} items",
 response.DeletedObjects.Count);
 }
 catch (DeleteObjectsException e)
 {
 PrintDeletionReport(e);
 throw; // Some deletes failed. Investigate before continuing.
 }
 // This response contains the DeletedObjects list which we use to delete the
 delete markers.
 return response.DeletedObjects;
 }

 private static async Task RemoveDeleteMarkersAsync(List<DeletedObject>
 deletedObjects)
 {
 var keyVersionList = new List<KeyVersion>();

API Version 2006-03-01
241

Amazon Simple Storage Service Developer Guide
Deleting Objects

 foreach (var deletedObject in deletedObjects)
 {
 KeyVersion keyVersion = new KeyVersion
 {
 Key = deletedObject.Key,
 VersionId = deletedObject.DeleteMarkerVersionId
 };
 keyVersionList.Add(keyVersion);
 }
 // Create another request to delete the delete markers.
 var multiObjectDeleteRequest = new DeleteObjectsRequest
 {
 BucketName = bucketName,
 Objects = keyVersionList
 };

 // Now, delete the delete marker to bring your objects back to the bucket.
 try
 {
 Console.WriteLine("Removing the delete markers");
 var deleteObjectResponse = await
 s3Client.DeleteObjectsAsync(multiObjectDeleteRequest);
 Console.WriteLine("Successfully deleted all the {0} delete markers",
 deleteObjectResponse.DeletedObjects.Count);
 }
 catch (DeleteObjectsException e)
 {
 PrintDeletionReport(e);
 }
 }

 static async Task<List<KeyVersion>> PutObjectsAsync(int number)
 {
 var keys = new List<KeyVersion>();

 for (var i = 0; i < number; i++)
 {
 string key = "ObjectToDelete-" + new System.Random().Next();
 PutObjectRequest request = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = key,
 ContentBody = "This is the content body!",

 };

 var response = await s3Client.PutObjectAsync(request);
 KeyVersion keyVersion = new KeyVersion
 {
 Key = key,
 VersionId = response.VersionId
 };

 keys.Add(keyVersion);
 }
 return keys;
 }
 }
}

API Version 2006-03-01
242

Amazon Simple Storage Service Developer Guide
Deleting Objects

Deleting Multiple Objects Using the AWS SDK for PHP

This topic shows how to use classes from version 3 of the AWS SDK for PHP to delete multiple objects
from versioned and non-versioned Amazon S3 buckets. For more information about versioning, see
Using Versioning (p. 432).

This topic assumes that you are already following the instructions for Using the AWS SDK for PHP and
Running PHP Examples (p. 678) and have the AWS SDK for PHP properly installed.

Example Deleting Multiple Objects from a Non-Versioned Bucket

The following PHP example uses the deleteObjects() method to delete multiple objects from a
bucket that is not version-enabled.

For information about running the PHP examples in this guide, see Running PHP Examples (p. 679).

<?php

require 'vendor/autoload.php';

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';

$s3 = new S3Client([
 'version' => 'latest',
 'region' => 'us-east-1'
]);

// 1. Create a few objects.
for ($i = 1; $i <= 3; $i++) {
 $s3->putObject([
 'Bucket' => $bucket,
 'Key' => "key{$i}",
 'Body' => "content {$i}",
]);
}

// 2. List the objects and get the keys.
$keys = $s3->listObjects([
 'Bucket' => $bucket
]) ->getPath('Contents/*/Key');

// 3. Delete the objects.
$s3->deleteObjects([
 'Bucket' => $bucket,
 'Delete' => [
 'Objects' => array_map(function ($key) {
 return ['Key' => $key];
 }, $keys)
],
]);

Example Deleting Multiple Objects from a Version-enabled Bucket

The following PHP example uses the deleteObjects() method to delete multiple objects from a
version-enabled bucket.

For information about running the PHP examples in this guide, see Running PHP Examples (p. 679).

<?php

API Version 2006-03-01
243

Amazon Simple Storage Service Developer Guide
Deleting Objects

require 'vendor/autoload.php';

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';

$s3 = new S3Client([
 'version' => 'latest',
 'region' => 'us-east-1'
]);

// 1. Enable object versioning for the bucket.
$s3->putBucketVersioning([
 'Bucket' => $bucket,
 'Status' => 'Enabled',
]);

// 2. Create a few versions of an object.
for ($i = 1; $i <= 3; $i++) {
 $s3->putObject([
 'Bucket' => $bucket,
 'Key' => $keyname,
 'Body' => "content {$i}",
]);
}

// 3. List the objects versions and get the keys and version IDs.
$versions = $s3->listObjectVersions(['Bucket' => $bucket])
 ->getPath('Versions');

// 4. Delete the object versions.
$s3->deleteObjects([
 'Bucket' => $bucket,
 'Delete' => [
 'Objects' => array_map(function ($version) {
 return [
 'Key' => $version['Key'],
 'VersionId' => $version['VersionId']
 }, $versions),
],
]);

echo "The following objects were deleted successfully:". PHP_EOL;
foreach ($result['Deleted'] as $object) {
 echo "Key: {$object['Key']}, VersionId: {$object['VersionId']}" . PHP_EOL;
}

echo PHP_EOL . "The following objects could not be deleted:" . PHP_EOL;
foreach ($result['Errors'] as $object) {
 echo "Key: {$object['Key']}, VersionId: {$object['VersionId']}" . PHP_EOL;
}

// 5. Suspend object versioning for the bucket.
$s3->putBucketVersioning([
 'Bucket' => $bucket,
 'Status' => 'Suspended',
]);

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class

• AWS SDK for PHP Documentation

API Version 2006-03-01
244

https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.S3.S3Client.html
http://aws.amazon.com/documentation/sdk-for-php/

Amazon Simple Storage Service Developer Guide
Selecting Content from Objects

Deleting Multiple Objects Using the REST API

You can use the AWS SDKs to delete multiple objects using the Multi-Object Delete API. However, if your
application requires it, you can send REST requests directly. For more information, go to Delete Multiple
Objects in the Amazon Simple Storage Service API Reference.

Selecting Content from Objects
With Amazon S3 Select, you can use simple structured query language (SQL) statements to filter the
contents of Amazon S3 objects and retrieve just the subset of data that you need. By using Amazon S3
Select to filter this data, you can reduce the amount of data that Amazon S3 transfers, which reduces the
cost and latency to retrieve this data.

Amazon S3 Select works on objects stored in CSV, JSON, or Apache Parquet format. It also works
with objects that are compressed with GZIP or BZIP2 (for CSV and JSON objects only), and server-
side encrypted objects. You can specify the format of the results as either CSV or JSON, and you can
determine how the records in the result are delimited.

You pass SQL expressions to Amazon S3 in the request. Amazon S3 Select supports a subset of SQL. For
more information about the SQL elements that are supported by Amazon S3 Select, see SQL Reference
for Amazon S3 Select and Glacier Select (p. 714).

You can perform SQL queries using AWS SDKs, the SELECT Object Content REST API, the AWS Command
Line Interface (AWS CLI), or the Amazon S3 console. The Amazon S3 console limits the amount of data
returned to 40 MB. To retrieve more data, use the AWS CLI or the API.

Requirements and Limits
The following are requirements for using Amazon S3 Select:

• You must have s3:GetObject permission for the object you are querying.
• If the object you are querying is encrypted with a customer-provided encryption key (SSE-C), you must

use https, and you must provide the encryption key in the request.

The following limits apply when using Amazon S3 Select:

• The maximum length of a SQL expression is 256 KB.
• The maximum length of a record in the result is 1 MB.

Additional limitations apply when using Amazon S3 Select with Parquet objects:

• Amazon S3 Select supports only columnar compression using GZIP or Snappy. Amazon S3 Select
doesn't support whole-object compression for Parquet objects.

• Amazon S3 Select doesn't support Parquet output. You must specify the output format as CSV or
JSON.

• The maximum uncompressed block size is 256 MB.
• The maximum number of columns is 100.
• You must use the data types specified in the object's schema.
• Selecting on a repeated field returns only the last value.

Constructing a Request
When you construct a request, you provide details of the object that is being queried using an
InputSerialization object. You provide details of how the results are to be returned using an

API Version 2006-03-01
245

https://docs.aws.amazon.com/AmazonS3/latest/API/multiobjectdeleteapi.html
https://docs.aws.amazon.com/AmazonS3/latest/API/multiobjectdeleteapi.html

Amazon Simple Storage Service Developer Guide
Selecting Content from Objects

OutputSerialization object. You also include the SQL expression that Amazon S3 uses to filter the
request.

For more information about constructing an Amazon S3 Select request, see SELECT Object Content in
the Amazon Simple Storage Service API Reference. You can also see one of the SDK code examples in the
following sections.

Errors

Amazon S3 Select returns an error code and associated error message when an issue is encountered
while attempting to execute a query. For a list of error codes and descriptions, see the Special Errors
section of the SELECT Object Content page in the Amazon Simple Storage Service API Reference.

Topics

• Related Resources (p. 246)

• Selecting Content from Objects Using the SDK for Java (p. 246)

• Selecting Content from Objects Using the REST API (p. 248)

• Selecting Content from Objects Using Other SDKs (p. 248)

Related Resources
• Using the AWS SDKs, CLI, and Explorers (p. 669)

Selecting Content from Objects Using the SDK for Java

You use Amazon S3 Select to select contents of an object with Java using the selectObjectContent
method, which on success returns the results of the SQL expression. The specified bucket and object key
must exist, or an error results.

Example Example

The following Java code returns the value of the first column for each record that is stored in an object
that contains data stored in CSV format. It also requests Progress and Stats messages to be returned.
You must provide a valid bucket name and an object that contains data in CSV format.

For instructions on creating and testing a working sample, see Testing the Amazon S3 Java Code
Examples (p. 677).

package com.amazonaws;

import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.CSVInput;
import com.amazonaws.services.s3.model.CSVOutput;
import com.amazonaws.services.s3.model.CompressionType;
import com.amazonaws.services.s3.model.ExpressionType;
import com.amazonaws.services.s3.model.InputSerialization;
import com.amazonaws.services.s3.model.OutputSerialization;
import com.amazonaws.services.s3.model.SelectObjectContentEvent;
import com.amazonaws.services.s3.model.SelectObjectContentEventVisitor;
import com.amazonaws.services.s3.model.SelectObjectContentRequest;
import com.amazonaws.services.s3.model.SelectObjectContentResult;

import java.io.File;
import java.io.FileOutputStream;

API Version 2006-03-01
246

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectSELECTContent.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectSELECTContent.html#RESTObjectSELECTContent-responses-special-errors

Amazon Simple Storage Service Developer Guide
Selecting Content from Objects

import java.io.InputStream;
import java.io.OutputStream;
import java.util.concurrent.atomic.AtomicBoolean;

import static com.amazonaws.util.IOUtils.copy;

/**
 * This example shows how to query data from S3Select and consume the response in the form
 of an
 * InputStream of records and write it to a file.
 */

public class RecordInputStreamExample {

 private static final String BUCKET_NAME = "${my-s3-bucket}";
 private static final String CSV_OBJECT_KEY = "${my-csv-object-key}";
 private static final String S3_SELECT_RESULTS_PATH = "${my-s3-select-results-path}";
 private static final String QUERY = "select s._1 from S3Object s";

 public static void main(String[] args) throws Exception {
 final AmazonS3 s3Client = AmazonS3ClientBuilder.defaultClient();

 SelectObjectContentRequest request = generateBaseCSVRequest(BUCKET_NAME,
 CSV_OBJECT_KEY, QUERY);
 final AtomicBoolean isResultComplete = new AtomicBoolean(false);

 try (OutputStream fileOutputStream = new FileOutputStream(new File
 (S3_SELECT_RESULTS_PATH));
 SelectObjectContentResult result = s3Client.selectObjectContent(request)) {
 InputStream resultInputStream = result.getPayload().getRecordsInputStream(
 new SelectObjectContentEventVisitor() {
 @Override
 public void visit(SelectObjectContentEvent.StatsEvent event)
 {
 System.out.println(
 "Received Stats, Bytes Scanned: " +
 event.getDetails().getBytesScanned()
 + " Bytes Processed: " +
 event.getDetails().getBytesProcessed());
 }

 /*
 * An End Event informs that the request has finished successfully.
 */
 @Override
 public void visit(SelectObjectContentEvent.EndEvent event)
 {
 isResultComplete.set(true);
 System.out.println("Received End Event. Result is complete.");
 }
 }
);

 copy(resultInputStream, fileOutputStream);
 }

 /*
 * The End Event indicates all matching records have been transmitted.
 * If the End Event is not received, the results may be incomplete.
 */
 if (!isResultComplete.get()) {
 throw new Exception("S3 Select request was incomplete as End Event was not
 received.");
 }
 }

API Version 2006-03-01
247

Amazon Simple Storage Service Developer Guide
Restoring Archived Objects

 private static SelectObjectContentRequest generateBaseCSVRequest(String bucket, String
 key, String query) {
 SelectObjectContentRequest request = new SelectObjectContentRequest();
 request.setBucketName(bucket);
 request.setKey(key);
 request.setExpression(query);
 request.setExpressionType(ExpressionType.SQL);

 InputSerialization inputSerialization = new InputSerialization();
 inputSerialization.setCsv(new CSVInput());
 inputSerialization.setCompressionType(CompressionType.NONE);
 request.setInputSerialization(inputSerialization);

 OutputSerialization outputSerialization = new OutputSerialization();
 outputSerialization.setCsv(new CSVOutput());
 request.setOutputSerialization(outputSerialization);

 return request;
 }
}

Selecting Content from Objects Using the REST API
You can use the AWS SDK to select content from objects. However, if your application requires it, you can
send REST requests directly. For more information about the request and response format, see SELECT
Object Content.

Selecting Content from Objects Using Other SDKs
You can select the contents of an object using Amazon S3 Select using other SDKs. For more
information, see the following:

• Python: Using the AWS SDK for Python (Boto) (p. 681).

Restoring Archived Objects
Objects that you archive to the GLACIER or DEEP_ARCHIVE storage classes are not accessible in real time.
You must first initiate a restore request, and then wait until a temporary copy of the object is available
for the duration (number of days) that you specify in the request. For more information about how
the GLACIER, DEEP_ARCHIVE, and other Amazon S3 storage classes compare, see Amazon S3 Storage
Classes (p. 103).

Amazon S3 restores a temporary copy of the object only for the specified duration. After that, it deletes
the restored object copy. You can modify the expiration period of a restored copy by reissuing a restore.
In this case, Amazon S3 updates the expiration period relative to the current time.

Amazon S3 calculates the expiration time of the restored object copy by adding the number of days
specified in the restoration request to the current time. It then rounds the resulting time to the next
day at midnight Universal Coordinated Time (UTC). For example, suppose that an object was created on
October 15, 2012 10:30 AM UTC, and the restoration period was specified as three days. In this case, the
restored copy expires on October 19, 2012 00:00 UTC, at which time Amazon S3 deletes the object copy.

After you receive a temporary copy of the restored object, the object's storage class remains GLACIER
or DEEP_ARCHIVE. (A HEAD Object or the GET Object API operations request returns GLACIER or
DEEP_ARCHIVE as the storage class.)

The time it takes a restore job to finish depends on which archive storage class you use and which
retrieval option you specify: Expedited (only available for GLACIER), Standard, or Bulk. You can be

API Version 2006-03-01
248

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectSELECTContent.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectSELECTContent.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html

Amazon Simple Storage Service Developer Guide
Restoring Archived Objects

notified when your restore is complete using Amazon S3 event notifications. For more information, see
Configuring Amazon S3 Event Notifications (p. 530).

You can restore an object copy for any number of days. However you should restore objects only for
the duration that you need because of the storage costs associated with the object copy. When you
restore an archive, you pay for both the archive (at the GLACIER or DEEP_ARCHIVE rate) and a copy that
you restored temporarily (Reduced Redundancy Storage (RRS) rate). For information about pricing, see
Amazon S3 Pricing.

When required, you can restore large segments of the data stored in the GLACIER and DEEP_ARCHIVE
storage classes. For example, you might want to restore data for a secondary copy. However, if you need
to restore a large amount of data, keep in mind that the GLACIER and DEEP_ARCHIVE storage classes are
designed for 35 random restore requests per pebibyte (PiB) stored per day.

For information about using lifecycle transitions to move objects to the GLACIER or DEEP_ARCHIVE
storage classes, see Transitioning to the GLACIER and DEEP ARCHIVE Storage Classes (Object
Archival) (p. 123).

To restore more than one Amazon S3 object with a single request, you can use Amazon S3 batch
operations. You provide Amazon S3 batch operations with a list of objects to operate on. Amazon S3
batch operations call the respective API to perform the specified operation. A single Amazon S3 batch
operations job can perform the specified operation on billions of objects containing exabytes of data.

Amazon S3 batch operations track progress, send notifications, and store a detailed completion report
of all actions, providing a fully managed, auditable, serverless experience. You can use Amazon S3
batch operations through the AWS Management Console, AWS CLI, AWS SDKs, or REST API. For more
information, see the section called “The Basics: Jobs” (p. 468).

The following sections provide more information about restoring objects.

Topics
• Archive Retrieval Options (p. 249)
• Upgrading the Speed of an In-Progress Restore (p. 250)
• Restore an Archived Object Using the Amazon S3 Console (p. 250)
• Restore an Archived Object Using the AWS SDK for Java (p. 251)
• Restore an Archived Object Using the AWS SDK for .NET (p. 252)
• Restore an Archived Object Using the REST API (p. 253)

Archive Retrieval Options
The following are the available retrieval options when restoring an archived object:

• Expedited - Expedited retrievals allow you to quickly access your data stored in the GLACIER storage
class when occasional urgent requests for a subset of archives are required. For all but the largest
archived objects (250 MB+), data accessed using Expedited retrievals is typically made available within
1–5 minutes. Provisioned capacity ensures that retrieval capacity for Expedited retrievals is available
when you need it. For more information, see Provisioned Capacity (p. 250). Expedited retrievals and
provisioned capacity are not available for objects stored in the DEEP_ARCHIVE storage class.

• Standard - Standard retrievals allow you to access any of your archived objects within several hours.
This is the default option for the GLACIER and DEEP_ARCHIVE retrieval requests that do not specify
the retrieval option. Standard retrievals typically finish within 3–5 hours for objects stored in the
GLACIER storage class. They typically finish within 12 hours for objects stored in the DEEP_ARCHIVE
storage class.

• Bulk - Bulk retrievals are the lowest-cost retrieval option in Amazon S3 Glacier, enabling you to
retrieve large amounts, even petabytes, of data inexpensively. Bulk retrievals typically finish within

API Version 2006-03-01
249

https://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Restoring Archived Objects

5–12 hours for objects stored in the GLACIER storage class. They typically finish within 48 hours for
objects stored in the DEEP_ARCHIVE storage class.

The following table summarizes the archival retrieval options.

To make an Expedited, Standard, or Bulk retrieval, set the Tier request element in the POST Object
restore REST API request to the option you want, or the equivalent in the AWS CLI or AWS SDKs. If
you purchased provisioned capacity, all Expedited retrievals are automatically served through your
provisioned capacity.

You can restore an archived object programmatically or by using the Amazon S3 console. Amazon S3
processes only one restore request at a time per object. You can use both the console and the Amazon S3
API to check the restoration status and to find out when Amazon S3 will delete the restored copy.

Provisioned Capacity

Provisioned capacity ensures that your retrieval capacity for expedited retrievals is available when you
need it. Each unit of capacity provides that at least three expedited retrievals can be performed every 5
minutes, and it provides up to 150 MB/s of retrieval throughput.

If your workload requires highly reliable and predictable access to a subset of your data in minutes, you
should purchase provisioned retrieval capacity. Without provisioned capacity, Expedited retrievals might
not be accepted during periods of high demand. If you require access to Expedited retrievals under all
circumstances, we recommend that you purchase provisioned retrieval capacity.

You can purchase provisioned capacity using the Amazon S3 console, the Amazon S3 Glacier console, the
Purchase Provisioned Capacity REST API, the AWS SDKs, or the AWS CLI. For provisioned capacity pricing
information, see Amazon S3 Pricing.

Expedited retrievals using provisioned capacity still incur request and retrieval charges, and are not
available for the DEEP_ARCHIVE storage class.

Upgrading the Speed of an In-Progress Restore
Using Amazon S3 restore speed upgrade, you can change the restore speed to a faster speed while the
restore is in progress. A restore speed upgrade overrides an in-progress restore with a faster restore tier.
You cannot slow down an in-progress restore.

To upgrade the speed of an in-progress restoration, issue another restore request to the same object that
sets a new Tier request element in the POST Object restore REST API, or the equivalent in the AWS CLI
or AWS SDKs. When issuing a request to upgrade the restore tier, you must choose a tier that is faster
than the tier that the in-progress restore is using. You must not change any other parameters, such as
the Days request element.

You can be notified of the completion of the restore by using Amazon S3 event notifications. Restores
are charged at the price of the upgraded tier. For information about restore pricing, see Amazon S3
Pricing.

Restore an Archived Object Using the Amazon S3 Console
You can use the Amazon S3 console to restore a copy of an object that has been archived to Amazon S3
Glacier. For instructions on how to restore an archive using the AWS Management Console, see How Do I
Restore an S3 Object that has been Archived to Amazon S3 Glacier? in the Amazon Simple Storage Service
Console User Guide.

When you restore an archive, you are paying for both the archive and a copy you restored temporarily.
For information about pricing, see Amazon S3 Pricing.

API Version 2006-03-01
250

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/api-PurchaseProvisionedCapacity.html
https://aws.amazon.com/s3/pricing/
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/restore-archived-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/restore-archived-objects.html
https://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Restoring Archived Objects

Restore an Archived Object Using the AWS SDK for Java

Example

The following example shows how to restore an object archived to Amazon S3 Glacier using the AWS
SDK for Java. The example initiates a restoration request for the specified archived object and checks
its restoration status. For more information about restoring archived objects, see Restoring Archived
Objects (p. 248). For instructions on creating and testing a working sample, see Testing the Amazon S3
Java Code Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.ObjectMetadata;
import com.amazonaws.services.s3.model.RestoreObjectRequest;

import java.io.IOException;

public class RestoreArchivedObject {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String keyName = "*** Object key ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 // Create and submit a request to restore an object from Glacier for two days.
 RestoreObjectRequest requestRestore = new RestoreObjectRequest(bucketName,
 keyName, 2);
 s3Client.restoreObjectV2(requestRestore);

 // Check the restoration status of the object.
 ObjectMetadata response = s3Client.getObjectMetadata(bucketName, keyName);
 Boolean restoreFlag = response.getOngoingRestore();
 System.out.format("Restoration status: %s.\n",
 restoreFlag ? "in progress" : "not in progress (finished or failed)");
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

API Version 2006-03-01
251

Amazon Simple Storage Service Developer Guide
Restoring Archived Objects

Restore an Archived Object Using the AWS SDK for .NET
Example

The following C# example initiates a request to restore an archived object for 2 days. Amazon S3
maintains the restoration status in the object metadata. After initiating the request, the example
retrieves the object metadata and checks the value of the RestoreInProgress property. For
instructions on creating and testing a working sample, see Running the Amazon S3 .NET Code
Examples (p. 678).

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class RestoreArchivedObjectTest
 {
 private const string bucketName = "*** bucket name ***";
 private const string objectKey = "** archived object key name ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 client;

 public static void Main()
 {
 client = new AmazonS3Client(bucketRegion);
 RestoreObjectAsync(client, bucketName, objectKey).Wait();
 }

 static async Task RestoreObjectAsync(IAmazonS3 client, string bucketName, string
 objectKey)
 {
 try
 {
 var restoreRequest = new RestoreObjectRequest
 {
 BucketName = bucketName,
 Key = objectKey,
 Days = 2
 };
 RestoreObjectResponse response = await
 client.RestoreObjectAsync(restoreRequest);

 // Check the status of the restoration.
 await CheckRestorationStatusAsync(client, bucketName, objectKey);
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 Console.WriteLine("An AmazonS3Exception was thrown. Exception: " +
 amazonS3Exception.ToString());
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: " + e.ToString());
 }
 }

 static async Task CheckRestorationStatusAsync(IAmazonS3 client, string bucketName,
 string objectKey)
 {
 GetObjectMetadataRequest metadataRequest = new GetObjectMetadataRequest

API Version 2006-03-01
252

Amazon Simple Storage Service Developer Guide
Querying Archived Objects

 {
 BucketName = bucketName,
 Key = objectKey
 };
 GetObjectMetadataResponse response = await
 client.GetObjectMetadataAsync(metadataRequest);
 Console.WriteLine("restoration status: {0}", response.RestoreInProgress ? "in-
progress" : "finished or failed");
 }
 }
}

Restore an Archived Object Using the REST API
Amazon S3 provides an API for you to initiate an archive restoration. For more information, see POST
Object restore in the Amazon Simple Storage Service API Reference.

Querying Archived Objects
With the select type of POST Object restore, you can perform filtering operations using simple
Structured Query Language (SQL) statements directly on your data that is archived by Amazon S3 to
Glacier. When you provide an SQL query for an archived object, select runs the query in place and writes
the output results to an S3 bucket. You can run queries and custom analytics on your data that is stored
in Glacier, without having to restore your entire object to Amazon S3.

When you perform select queries, Glacier provides three data access tiers—expedited, standard, and bulk.
All of these tiers provide different data access times and costs, and you can choose any one of them
depending on how quickly you want your data to be available. For more information, see Data Access
Tiers (p. 255).

You can use the select type of restore with the AWS SDKs, the Glacier REST API, and the AWS Command
Line Interface (AWS CLI).

Topics
• Select Requirements and Limits (p. 253)
• How Do I Query Data Using Select? (p. 254)
• Error Handling (p. 255)
• Data Access Tiers (p. 255)
• More Info (p. 256)

Select Requirements and Limits
The following are requirements for using select:

• Archive objects that are queried by select must be formatted as uncompressed comma-separated
values (CSV).

• An S3 bucket for output. The AWS account that you use to initiate an Glacier select job must have
write permissions for the S3 bucket. The Amazon S3 bucket must be in the same AWS Region as the
bucket that contains the archived object that is being queried.

• The requesting AWS account must have permissions to perform the s3:RestoreObject and
s3:GetObject actions. For more information about these permissions, see Permissions Related to
Bucket Subresource Operations (p. 347).

• The archive must not be encrypted with SSE-C or client-side encryption.

The following limits apply when using select:

API Version 2006-03-01
253

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html

Amazon Simple Storage Service Developer Guide
Querying Archived Objects

• There are no limits on the number of records that select can process. An input or output record must
not exceed 1 MB; otherwise, the query fails. There is a limit of 1,048,576 columns per record.

• There is no limit on the size of your final result. However, your results are broken into multiple parts.
• An SQL expression is limited to 128 KB.

How Do I Query Data Using Select?
Using select, you can use SQL commands to query Glacier archive objects that are in encrypted
uncompressed CSV format. With this restriction, you can perform simple query operations on your text-
based data in Glacier. For example, you might look for a specific name or ID among a set of archived text
files.

To query your Glacier data, create a select request using the POST Object restore operation. When
performing a select request, you provide the SQL expression, the archive to query, and the location to
store the results.

The following example expression returns all records from the archived object specified in POST Object
restore.

SELECT * FROM object

Glacier Select supports a subset of the ANSI SQL language. It supports common filtering SQL clauses
like SELECT, FROM, and WHERE. It does not support SUM, COUNT, GROUP BY, JOINS, DISTINCT, UNION,
ORDER BY, and LIMIT. For more information about support for SQL, see SQL Reference for Amazon S3
Select and Glacier Select in the Amazon Simple Storage Service Developer Guide.

Select Output

When you initiate a select request, you define an output location for the results of your select query. This
location must be an Amazon S3 bucket in the same AWS Region as the bucket that contains the archived
object that is being queried. The AWS account that initiates the job must have permissions to write to the
S3 bucket.

You can specify the Amazon S3 storage class and encryption for the output objects stored in Amazon
S3. Select supports SSE-KMS and SSE-S3 encryption. Select doesn't support SSE-C and client-side
encryption. For more information about Amazon S3 storage classes and encryption, see Amazon S3
Storage Classes (p. 103) and Protecting Data Using Server-Side Encryption (p. 265).

Glacier Select results are stored in the S3 bucket using the prefix provided in the output location
specified in POST Object restore. From this information, select creates a unique prefix referring to the job
ID. (Prefixes are used to group Amazon S3 objects together by beginning object names with a common
string.) Under this unique prefix, there are two new prefixes created, results for results and errors for
logs and errors. Upon completion of the job, a result manifest is written which contains the location of
all results.

There is also a placeholder file named job.txt that is written to the output location. After it is written it
is never updated. The placeholder file is used for the following:

• Validation of the write permission and majority of SQL syntax errors synchronously.
• Providing a static output about your select request that you can easily reference whenever you want.

For example, suppose that you make a select request with the output location for the results
specified as s3://example-bucket/my-prefix, and the job response returns the job ID as
examplekne1209ualkdjh812elkassdu9012e. After the select job finishes, you can see the following
Amazon S3 objects in your bucket:

API Version 2006-03-01
254

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-glacier-select-sql-reference.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-glacier-select-sql-reference.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html

Amazon Simple Storage Service Developer Guide
Querying Archived Objects

s3://example-bucket/my-prefix/examplekne1209ualkdjh812elkassdu9012e/job.txt
s3://example-bucket/my-prefix/examplekne1209ualkdjh812elkassdu9012e/results/abc
s3://example-bucket/my-prefix/examplekne1209ualkdjh812elkassdu9012e/results/def
s3://example-bucket/my-prefix/examplekne1209ualkdjh812elkassdu9012e/results/ghi
s3://example-bucket/my-prefix/examplekne1209ualkdjh812elkassdu9012e/result_manifest.txt

The select query results are broken into multiple parts. In the example, select uses the prefix that you
specified when setting the output location and appends the job ID and the results prefix. It then
writes the results in three parts, with the object names ending in abc, def, and ghi. The result manifest
contains all three files to allow programmatic retrieval. If the job fails with any error, then a file is visible
under the error prefix and an error_manifest.txt is produced.

Presence of a result_manifest.txt file along with the absence of error_manifest.txt
guarantees that the job finished successfully. There is no guarantee provided on how results are ordered.

Note
The length of an Amazon S3 object name, also referred to as the key, can be no more than 1,024
bytes. Glacier select reserves 128 bytes for prefixes. And, the length of your Amazon S3 location
path cannot be more than 512 bytes. A request with a length greater than 512 bytes returns an
exception, and the request is not accepted.

Error Handling
Select notifies you of two kinds of errors. The first set of errors is sent to you synchronously when you
submit the query in POST Object restore. These errors are sent to you as part of the HTTP response.
Another set of errors can occur after the query has been accepted successfully, but they happen during
query execution. In this case, the errors are written to the specified output location under the errors
prefix.

Select stops executing the query after encountering an error. To execute the query successfully, you must
resolve all errors. You can check the logs to identify which records caused a failure.

Because queries run in parallel across multiple compute nodes, the errors that you get are not in
sequential order. For example, if your query fails with an error in row 6,234, it does not mean that all
rows before row 6,234 were successfully processed. The next run of the query might show an error in a
different row.

Data Access Tiers
You can specify one of the following data access tiers when querying an archived object:

• Expedited – Allows you to quickly access your data when occasional urgent requests for a subset
of archives are required. For all but the largest archived object (250 MB+), data accessed using
Expedited retrievals are typically made available within 1–5 minutes. There are two types of
Expedited data access: On-Demand and Provisioned. On-Demand requests are similar to EC2 On-
Demand instances and are available most of the time. Provisioned requests are guaranteed to be
available when you need them. For more information, see Provisioned Capacity (p. 256).

• Standard – Allows you to access any of your archived objects within several hours. Standard retrievals
typically finish within 3–5 hours. This is the default tier.

• Bulk – The lowest-cost data access option in Glacier, enabling you to retrieve large amounts, even
petabytes, of data inexpensively in a day. Bulk access typically finishes within 5–12 hours.

To make an Expedited, Standard, or Bulk request, set the Tier request element in the POST Object
restore REST API request to the option you want, or the equivalent in the AWS CLI or AWS SDKs. For
Expedited access, there is no need to designate whether an expedited retrieval is On-Demand or
Provisioned. If you purchased provisioned capacity, all Expedited retrievals are automatically served
through your provisioned capacity. For information about tier pricing, see Glacier Pricing.

API Version 2006-03-01
255

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html
http://aws.amazon.com/glacier/pricing/

Amazon Simple Storage Service Developer Guide
Querying Archived Objects

Provisioned Capacity

Provisioned capacity guarantees that your retrieval capacity for expedited retrievals is available when
you need it. Each unit of capacity ensures that at least three expedited retrievals can be performed every
five minutes and provides up to 150 MB/s of retrieval throughput.

You should purchase provisioned retrieval capacity if your workload requires highly reliable and
predictable access to a subset of your data in minutes. Without provisioned capacity, Expedited
retrievals are accepted, except for rare situations of unusually high demand. However, if you require
access to Expedited retrievals under all circumstances, you must purchase provisioned retrieval
capacity. You can purchase provisioned capacity using the Amazon S3 console, the Glacier console, the
Purchase Provisioned Capacity REST API, the AWS SDKs, or the AWS CLI. For provisioned capacity pricing
information, see the Glacier Pricing.

More Info
• POST Object restore in the Amazon Simple Storage Service API Reference
• SQL Reference for Amazon S3 Select and Glacier Select in the Amazon Simple Storage Service

Developer Guide

API Version 2006-03-01
256

https://docs.aws.amazon.com/amazonglacier/latest/dev/api-PurchaseProvisionedCapacity.html
https://aws.amazon.com/glacier/pricing/
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-glacier-select-sql-reference.html

Amazon Simple Storage Service Developer Guide
How to Set Up Storage Class Analysis

Amazon S3 Analytics – Storage Class
Analysis

By using Amazon S3 analytics storage class analysis you can analyze storage access patterns to help
you decide when to transition the right data to the right storage class. This new Amazon S3 analytics
feature observes data access patterns to help you determine when to transition less frequently accessed
STANDARD storage to the STANDARD_IA (IA, for infrequent access) storage class. For more information
about storage classes, see Amazon S3 Storage Classes (p. 103).

After storage class analysis observes the infrequent access patterns of a filtered set of data over a period
of time, you can use the analysis results to help you improve your lifecycle policies. You can configure
storage class analysis to analyze all the objects in a bucket. Or, you can configure filters to group objects
together for analysis by common prefix (that is, objects that have names that begin with a common
string), by object tags, or by both prefix and tags. You'll most likely find that filtering by object groups is
the best way to benefit from storage class analysis.

Important
Storage class analysis does not give recommendations for transitions to the ONEZONE_IA or
GLACIER storage classes.

You can have multiple storage class analysis filters per bucket, up to 1,000, and will receive a separate
analysis for each filter. Multiple filter configurations allow you analyze specific groups of objects to
improve your lifecycle policies that transition objects to STANDARD_IA.

Storage class analysis shows storage usage visualizations in the Amazon S3 console that are updated
daily. The storage usage data can also be exported daily to a file in an S3 bucket. You can open the
exported usage report file in a spreadsheet application or use it with the business intelligence tools of
your choice such as Amazon QuickSight.

Topics
• How Do I Set Up Storage Class Analysis? (p. 257)
• How Do I Use Storage Class Analysis? (p. 258)
• How Can I Export Storage Class Analysis Data? (p. 260)
• Amazon S3 Analytics REST APIs (p. 262)

How Do I Set Up Storage Class Analysis?
You set up storage class analysis by configuring what object data you want to analyze. You can configure
storage class analysis to do the following:

• Analyze the entire contents of a bucket.

You'll receive an analysis for all the objects in the bucket.
• Analyze objects grouped together by prefix and tags.

You can configure filters that group objects together for analysis by prefix, or by object tags, or by a
combination of prefix and tags. You receive a separate analysis for each filter you configure. You can
have multiple filter configurations per bucket, up to 1,000.

• Export analysis data.

API Version 2006-03-01
257

Amazon Simple Storage Service Developer Guide
Storage Class Analysis

When you configure storage class analysis for a bucket or filter, you can choose to have the analysis
data exported to a file each day. The analysis for the day is added to the file to form a historic analysis
log for the configured filter. The file is updated daily at the destination of your choice. When selecting
data to export, you specify a destination bucket and optional destination prefix where the file is
written.

You can use the Amazon S3 console, the REST API, or the AWS CLI or AWS SDKs to configure storage
class analysis.

• For information about how to configure storage class analysis in the Amazon S3 console, see How Do I
Configure Storage Class Analysis?.

• To use the Amazon S3 API, use the PutBucketAnalyticsConfiguration REST API, or the equivalent, from
the AWS CLI or AWS SDKs.

How Do I Use Storage Class Analysis?
You use storage class analysis to observe your data access patterns over time to gather information to
help you improve the lifecycle management of your STANDARD_IA storage. After you configure a filter,
you'll start seeing data analysis based on the filter in the Amazon S3 console in 24 to 48 hours. However,
storage class analysis observes the access patterns of a filtered data set for 30 days or longer to gather
information for analysis before giving a result. The analysis continues to run after the initial result and
updates the result as the access patterns change

When you first configure a filter the Amazon S3 console shows a message similar to the following.

Storage class analysis observes the access patterns of a filtered object data set for 30 days or longer
to gather enough information for the analysis. After storage class analysis has gathered sufficient
information, you'll see a message in the Amazon S3 console similar to the following.

When performing the analysis for infrequently accessed objects storage class analysis looks at the
filtered set of objects grouped together based on age since they were uploaded to Amazon S3. Storage
class analysis determines if the age group is infrequently accessed by looking at the following factors for
the filtered data set:

• Objects in the STANDARD storage class that are larger than 128K.
• How much average total storage you have per age group.
• Average number of bytes transferred out (not frequency) per age group.
• Analytics export data only includes requests with data relevant to storage class analysis. This might

cause differences in the number of requests, and the total upload and request bytes compared to what
are shown in storage metrics or tracked by your own internal systems.

API Version 2006-03-01
258

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/configure-analytics-storage-class.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/configure-analytics-storage-class.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTAnalyticsConfig.html

Amazon Simple Storage Service Developer Guide
Storage Class Analysis

• Failed GET and PUT requests are not counted for the analysis. However, you will see failed requests in
storage metrics.

How Much of My Storage did I Retrieve?

The Amazon S3 console graphs how much of the storage in the filtered data set has been retrieved for
the observation period as shown in the following example.

What Percentage of My Storage did I Retrieve?

The Amazon S3 console also graphs what percentage of the storage in the filtered data set has been
retrieved for the observation period as shown in the following example.

As stated earlier in this topic, when you are performing the analysis for infrequently accessed objects,
storage class analysis looks at the filtered set of objects grouped together based on the age since they
were uploaded to Amazon S3. The storage class analysis uses the following predefined object age
groups:

• Amazon S3 Objects less than 15 days old
• Amazon S3 Objects 15-29 days old
• Amazon S3 Objects 30-44 days old
• Amazon S3 Objects 45-59 days old
• Amazon S3 Objects 60-74 days old

API Version 2006-03-01
259

Amazon Simple Storage Service Developer Guide
How Can I Export Storage Class Analysis Data?

• Amazon S3 Objects 75-89 days old

• Amazon S3 Objects 90-119 days old

• Amazon S3 Objects 120-149 days old

• Amazon S3 Objects 150-179 days old

• Amazon S3 Objects 180-364 days old

• Amazon S3 Objects 365-729 days old

• Amazon S3 Objects 730 days and older

Usually it takes about 30 days of observing access patterns to gather enough information for an analysis
result. It might take longer than 30 days, depending on the unique access pattern of your data. However,
after you configure a filter you'll start seeing data analysis based on the filter in the Amazon S3 console
in 24 to 48 hours. You can see analysis on a daily basis of object access broken down by object age group
in the Amazon S3 console.

How Much of My Storage is Infrequently Accessed?

The Amazon S3 console shows the access patterns grouped by the predefined object age groups as
shown in the following example.

The Frequently accessed or Infrequently accessed text shown at the bottom of each age group is based
on the same logic as the lifecycle policy recommendation being prepared. After a recommended age for
a lifecycle policy is ready (RecommendedObjectAge), all of the age tiers younger than that recommended
age are marked as infrequently accessed, regardless of the current cumulative access ratio. This text is
meant as a visual aid to help you in the lifecycle creation process.

How Can I Export Storage Class Analysis Data?
You can choose to have storage class analysis export analysis reports to a comma-separated values (CSV)
flat file. Reports are updated daily and are based on the object age group filters you configure. When
using the Amazon S3 console you can choose the export report option when you create a filter. When

API Version 2006-03-01
260

Amazon Simple Storage Service Developer Guide
Storage Class Analysis Export File Layout

selecting data export you specify a destination bucket and optional destination prefix where the file is
written. You can export the data to a destination bucket in a different account. The destination bucket
must be in the same region as the bucket that you configure to be analyzed.

You must create a bucket policy on the destination bucket to grant permissions to Amazon S3 to verify
what AWS account owns the bucket and to write objects to the bucket in the defined location. For an
example policy, see Granting Permissions for Amazon S3 Inventory and Amazon S3 Analytics (p. 377).

After you configure storage class analysis reports, you start getting the exported report daily after 24
hours. After that, Amazon S3 continues monitoring and providing daily exports.

You can open the CSV file in a spreadsheet application or import the file into other applications like
Amazon QuickSight. For information on using Amazon S3 files with Amazon QuickSight, see Create a
Data Set Using Amazon S3 Files in the Amazon QuickSight User Guide.

Data in the exported file is sorted by date within object age group as shown in following examples. If the
storage class is STANDARD the row also contains data for the columns ObjectAgeForSIATransition
and RecommendedObjectAgeForSIATransition.

At the end of the report the object age group is ALL. The ALL rows contain cumulative totals for all the
age groups for that day as shown in the following example.

The next section describes the columns used in the report.

Exported File Layout
The following table describe the layout of the exported file.

API Version 2006-03-01
261

https://docs.aws.amazon.com/quicksight/latest/user/welcome.html
https://docs.aws.amazon.com/quicksight/latest/user/create-a-data-set-s3.html
https://docs.aws.amazon.com/quicksight/latest/user/create-a-data-set-s3.html

Amazon Simple Storage Service Developer Guide
Amazon S3 Analytics REST APIs

Amazon S3 Analytics REST APIs
The following are the REST operations used for storage inventory.

• DELETE Bucket analytics configuration
• GET Bucket analytics configuration
• List Bucket Analytics Configuration
• PUT Bucket analytics configuration

API Version 2006-03-01
262

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEAnalyticsConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETAnalyticsConfig.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketListAnalyticsConfigs.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTAnalyticsConfig.html

Amazon Simple Storage Service Developer Guide
Data Protection

Amazon S3 Security
Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes this
as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS services
in the AWS Cloud. AWS also provides you with services that you can use securely. The effectiveness
of our security is regularly tested and verified by third-party auditors as part of the AWS compliance
programs. To learn about the compliance programs that apply to Amazon S3, see AWS Services in
Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You are also
responsible for other factors including the sensitivity of your data, your organization’s requirements,
and applicable laws and regulations.

This documentation will help you understand how to apply the shared responsibility model when using
Amazon S3. The following topics show you how to configure Amazon S3 to meet your security and
compliance objectives. You'll also learn how to use other AWS services that can help you monitor and
secure your Amazon S3 resources.

Topics

• Data Protection in Amazon S3 (p. 263)

• Identity and Access Management in Amazon S3 (p. 301)

• Logging and Monitoring in Amazon S3 (p. 421)

• Compliance Validation for Amazon S3 (p. 422)

• Resilience in Amazon S3 (p. 431)

• Infrastructure Security in Amazon S3 (p. 461)

• Configuration and Vulnerability Analysis in Amazon S3 (p. 462)

• Security Best Practices for Amazon S3 (p. 463)

Data Protection in Amazon S3
Amazon S3 provides a highly durable storage infrastructure designed for mission-critical and primary
data storage. Objects are redundantly stored on multiple devices across multiple facilities in an Amazon
S3 Region. To help better ensure data durability, Amazon S3 PUT and PUT Object copy operations
synchronously store your data across multiple facilities. After the objects are stored, Amazon S3
maintains their durability by quickly detecting and repairing any lost redundancy.

Amazon S3 standard storage offers the following features:

• Backed with the Amazon S3 Service Level Agreement

• Designed to provide 99.999999999% durability and 99.99% availability of objects over a given year

API Version 2006-03-01
263

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/s3/sla/

Amazon Simple Storage Service Developer Guide
Internetwork Privacy

• Designed to sustain the concurrent loss of data in two facilities

Amazon S3 further protects your data using versioning. You can use versioning to preserve, retrieve, and
restore every version of every object that is stored in your Amazon S3 bucket. With versioning, you can
easily recover from both unintended user actions and application failures. By default, requests retrieve
the most recently written version. You can retrieve older versions of an object by specifying a version of
the object in a request.

The following security best practices also address data protection in Amazon S3:

• Implement server-side encryption

• Enforce encryption of data in transit

• Consider using Amazon Macie with Amazon S3

• Identify and audit all your Amazon S3 buckets

• Monitor AWS security advisories

Internetwork Traffic Privacy
This topic describes how Amazon S3 secures connections from the service to other locations.

Traffic Between Service and On-Premises Clients and
Applications

You have two connectivity options between your private network and AWS:

• An AWS Site-to-Site VPN connection. For more information, see What is AWS Site-to-Site VPN?

• An AWS Direct Connect connection. For more information, see What is AWS Direct Connect?

Access to Amazon S3 via the network is through AWS published APIs. Clients must support Transport
Layer Security (TLS) 1.0. We recommend TLS 1.2 or above. Clients must also support cipher suites
with Perfect Forward Secrecy (PFS), such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Diffie-
Hellman Ephemeral (ECDHE). Most modern systems such as Java 7 and later support these modes.
Additionally, you must sign requests using an access key ID and a secret access key that are associated
with an IAM principal, or you can use the AWS Security Token Service (STS) to generate temporary
security credentials to sign requests.

Traffic Between AWS Resources in the Same Region

An Amazon Virtual Private Cloud (Amazon VPC) endpoint for Amazon S3 is a logical entity within a VPC
that allows connectivity only to Amazon S3. The Amazon VPC routes requests to Amazon S3 and routes
responses back to the VPC. For more information, see VPC Endpoints in the Amazon VPC User Guide. For
example bucket policies that you can use to control S3 bucket access from VPC endpoints, see Example
Bucket Policies for VPC Endpoints for Amazon S3 (p. 378).

Protecting Data Using Encryption
Data protection refers to protecting data while in-transit (as it travels to and from Amazon S3) and at
rest (while it is stored on disks in Amazon S3 data centers). You can protect data in transit using Secure
Sockets Layer (SSL) or client-side encryption. You have the following options for protecting data at rest
in Amazon S3:

API Version 2006-03-01
264

https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html

Amazon Simple Storage Service Developer Guide
Data Encryption

• Server-Side Encryption – Request Amazon S3 to encrypt your object before saving it on disks in its
data centers and then decrypt it when you download the objects.

• Client-Side Encryption – Encrypt data client-side and upload the encrypted data to Amazon S3. In this
case, you manage the encryption process, the encryption keys, and related tools.

Protecting Data Using Server-Side Encryption
Server-side encryption is about data encryption at rest—that is, Amazon S3 encrypts your data at the
object level as it writes it to disks in its data centers and decrypts it for you when you access it. As long
as you authenticate your request and you have access permissions, there is no difference in the way you
access encrypted or unencrypted objects. For example, if you share your objects using a presigned URL,
that URL works the same way for both encrypted and unencrypted objects.

Note
You can't apply different types of server-side encryption to the same object simultaneously.

You have three mutually exclusive options depending on how you choose to manage the encryption
keys:

• Use Server-Side Encryption with Amazon S3-Managed Keys (SSE-S3) – Each object is encrypted with
a unique key. As an additional safeguard, it encrypts the key itself with a master key that it regularly
rotates. Amazon S3 server-side encryption uses one of the strongest block ciphers available, 256-bit
Advanced Encryption Standard (AES-256), to encrypt your data. For more information, see Protecting
Data Using Server-Side Encryption with Amazon S3-Managed Encryption Keys (SSE-S3) (p. 270).

• Use Server-Side Encryption with Keys Stored in AWS KMS (SSE-KMS) – Similar to SSE-S3, but with
some additional benefits along with some additional charges for using this service. There are separate
permissions for the use of an envelope key (that is, a key that protects your data's encryption key)
that provides added protection against unauthorized access of your objects in Amazon S3. SSE-KMS
also provides you with an audit trail of when your key was used and by whom. Additionally, you have
the option to create and manage encryption keys yourself, or use a default key that is unique to you,
the service you're using, and the Region you're working in. For more information, see Protecting Data
Using Server-Side Encryption with keys stored in AWS KMS(SSE-KMS) (p. 265).

• Use Server-Side Encryption with Customer-Provided Keys (SSE-C) – You manage the encryption
keys and Amazon S3 manages the encryption, as it writes to disks, and decryption, when you access
your objects. For more information, see Protecting Data Using Server-Side Encryption with Customer-
Provided Encryption Keys (SSE-C) (p. 279).

Note
When you list objects in your bucket, the list API returns a list of all objects, regardless of
whether they are encrypted.

Protecting Data Using Server-Side Encryption with keys stored in AWS KMS(SSE-
KMS)

Server-side encryption is about protecting data at rest. AWS Key Management Service (AWS KMS) is a
service that combines secure, highly available hardware and software to provide a key management
system scaled for the cloud. AWS KMS uses customer master keys (CMKs) to encrypt your Amazon S3
objects. You use AWS KMS via the AWS Management Console or AWS KMS APIs to centrally create
encryption keys, define the policies that control how keys can be used, and audit key usage to prove they
are being used correctly. You can use these keys to protect your data in Amazon S3 buckets.

The first time you add an SSE-KMS–encrypted object to a bucket in a Region, a default CMK is created
for you automatically. This key is used for SSE-KMS encryption unless you select a CMK that you created
separately using AWS Key Management Service. Creating your own CMK gives you more flexibility,
including the ability to create, rotate, disable, and define access controls, and to audit the encryption
keys used to protect your data.

API Version 2006-03-01
265

https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/kms/latest/APIReference/

Amazon Simple Storage Service Developer Guide
Data Encryption

For more information, see What is AWS Key Management Service? in the AWS Key Management Service
Developer Guide. If you use AWS KMS, there are additional charges for using AWS KMS keys. For more
information, see AWS Key Management Service Pricing.

Note

• If you are uploading or accessing objects encrypted by SSE-KMS, you need to use AWS
Signature Version 4 for added security. For more information on how to do this using an AWS
SDK, see Specifying Signature Version in Request Authentication.

• When using SSE-KMS encryption with an S3 bucket, the KMS key must be in the same Region
as the bucket.

The highlights of SSE-KMS are:

• You can choose to create and manage encryption keys yourself, or you can choose to use your default
service key uniquely generated on a customer by service by Region level.

• The ETag in the response is not the MD5 of the object data.
• The data keys used to encrypt your data are also encrypted and stored alongside the data they

protect.
• Auditable master keys can be created, rotated, and disabled from the AWS KMS console.
• The security controls in AWS KMS can help you meet encryption-related compliance requirements.

Amazon S3 supports bucket policies that you can use if you require server-side encryption for all
objects that are stored in your bucket. For example, the following bucket policy denies upload object
(s3:PutObject) permission to everyone if the request does not include the x-amz-server-side-
encryption header requesting server-side encryption with SSE-KMS.

{
 "Version":"2012-10-17",
 "Id":"PutObjPolicy",
 "Statement":[{
 "Sid":"DenyUnEncryptedObjectUploads",
 "Effect":"Deny",
 "Principal":"*",
 "Action":"s3:PutObject",
 "Resource":"arn:aws:s3:::YourBucket/*",
 "Condition":{
 "StringNotEquals":{
 "s3:x-amz-server-side-encryption":"aws:kms"
 }
 }
 }
]
}

Amazon S3 also supports the s3:x-amz-server-side-encryption-aws-kms-key-id condition key,
which you can use to require a specific KMS key for object encryption. The KMS key you specify in the
policy must use the "arn:aws:kms:region:acct-id:key/key-id" format.

Note
When you upload an object, you can specify the KMS key using the x-amz-server-side-
encryption-aws-kms-key-id header. If the header is not present in the request, Amazon
S3 assumes the default KMS key. Regardless, the KMS key ID that Amazon S3 uses for object
encryption must match the KMS key ID in the policy, otherwise Amazon S3 denies the request.

Important
All GET and PUT requests for an object protected by AWS KMS will fail if they are not made via
SSL or if they are not made using SigV4.

API Version 2006-03-01
266

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://aws.amazon.com/kms/pricing
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingAWSSDK.html#specify-signature-version

Amazon Simple Storage Service Developer Guide
Data Encryption

SSE-KMS encrypts only the object data. Any object metadata is not encrypted.

Using AWS Key Management Service in the Amazon S3 Console

For more information about using the Amazon S3 console with encryption keys stored in AWS KMS, see
How Do I Upload Files and Folders to an S3 Bucket? in the Amazon Simple Storage Service Console User
Guide.

API Support for AWS Key Management Service in Amazon S3

The object creation REST APIs (see Specifying the AWS Key Management Service in Amazon S3 Using the
REST API (p. 270)) provide a request header, x-amz-server-side-encryption that you can use to
request SSE-KMS with the value of aws:kms. There's also x-amz-server-side-encryption-aws-
kms-key-id, which specifies the ID of the AWS KMS master encryption key that was used for the object.
The Amazon S3 API also supports encryption context, with the x-amz-server-side-encryption-
context header.

The encryption context can be any value that you want, provided that the header adheres to the Base64-
encoded JSON format. However, because the encryption context is not encrypted and because it is
logged if AWS CloudTrail logging is turned on, the encryption context should not include sensitive
information. We further recommend that your context describe the data being encrypted or decrypted
so that you can better understand the CloudTrail events produced by AWS KMS. For more information,
see Encryption Context in the AWS Key Management Service Developer Guide.

Also, Amazon S3 may append a predefined key of aws:s3:arn with the value equal to the object's ARN
for the encryption context that you provide. This only happens if the key aws:s3:arn is not already in the
encryption context that you provided, in which case this predefined key is appended when Amazon S3
processes your Put requests. If this aws:s3:arn key is already present in your encryption context, the key is
not appended a second time to your encryption context.

Having this predefined key as a part of your encryption context means that you can track relevant
requests in CloudTrail, so you’ll always be able to see which Amazon S3 object's ARN was used with
which encryption key. In addition, this predefined key as a part of your encryption context guarantees
that the encryption context is not identical between different Amazon S3 objects, which provides
additional security for your objects. Your full encryption context will be validated to have the value equal
to the object's ARN.

The following Amazon S3 APIs support these request headers.

• PUT operation — When uploading data using the PUT API (see PUT Object), you can specify these
request headers.

• Initiate Multipart Upload — When uploading large objects using the multipart upload API, you can
specify these headers. You specify these headers in the initiate request (see Initiate Multipart Upload).

• POST operation — When using a POST operation to upload an object (see POST Object), instead of the
request headers, you provide the same information in the form fields.

• COPY operation — When you copy an object (see PUT Object - Copy), you have both a source object
and a target object. When you pass SSE-KMS headers with the COPY operation, they will be applied
only to the target object.

The AWS SDKs also provide wrapper APIs for you to request SSE-KMS with Amazon S3.

Specifying the AWS Key Management Service in Amazon S3 Using the AWS SDKs

When using AWS SDKs, you can request Amazon S3 to use AWS Key Management Service (AWS KMS)–
managed encryption keys. This section provides examples of using the AWS SDKs for Java and .NET. For
information about other SDKs, go to Sample Code and Libraries.

API Version 2006-03-01
267

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-objects.html
https://docs.aws.amazon.com/kms/latest/developerguide/encryption-context.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
https://aws.amazon.com/code

Amazon Simple Storage Service Developer Guide
Data Encryption

AWS SDK for Java

This section explains various Amazon S3 operations using the AWS SDK for Java and how you use the
AWS KMS–managed encryption keys.

Put Operation

When uploading an object using the AWS SDK for Java, you can request Amazon S3 to use an AWS
KMS–managed encryption key by adding the SSEAwsKeyManagementParams property as shown in the
following request:

PutObjectRequest putRequest = new PutObjectRequest(bucketName,
 keyName, file).withSSEAwsKeyManagementParams(new SSEAwsKeyManagementParams());

In this case, Amazon S3 uses the default master key (see Protecting Data Using Server-Side Encryption
with keys stored in AWS KMS(SSE-KMS) (p. 265)). You can optionally create your own key and specify
that in the request.

PutObjectRequest putRequest = new PutObjectRequest(bucketName,
 keyName, file).withSSEAwsKeyManagementParams(new SSEAwsKeyManagementParams(keyID));

For more information about creating keys, see Programming the AWS KMS API in the AWS Key
Management Service Developer Guide.

For working code examples of uploading an object, see the following topics. You will need to update
those code examples and provide encryption information as shown in the preceding code fragment.

• For uploading an object in a single operation, see Upload an Object Using the AWS SDK for
Java (p. 170).

• For a multipart upload, see the following topics:
• Using high-level multipart upload API, see Upload a File (p. 182).
• If you are using the low-level multipart upload API, see Upload a File (p. 186).

Copy Operation

When copying objects, you add the same request properties (ServerSideEncryptionMethod and
ServerSideEncryptionKeyManagementServiceKeyId) to request Amazon S3 to use an AWS KMS–
managed encryption key. For more information about copying objects, see Copying Objects (p. 210).

Presigned URLs

When creating a presigned URL for an object encrypted using an AWS KMS–managed encryption key, you
must explicitly specify Signature Version 4:

ClientConfiguration clientConfiguration = new ClientConfiguration();
clientConfiguration.setSignerOverride("AWSS3V4SignerType");
AmazonS3Client s3client = new AmazonS3Client(
 new ProfileCredentialsProvider(), clientConfiguration);
...

For a code example, see Generate a presigned Object URL Using the AWS SDK for Java (p. 167).

AWS SDK for .NET

This section explains various Amazon S3 operations using the AWS SDK for .NET and how you use the
AWS KMS–managed encryption keys.

API Version 2006-03-01
268

https://docs.aws.amazon.com/kms/latest/developerguide/programming-top.html

Amazon Simple Storage Service Developer Guide
Data Encryption

Put Operation

When uploading an object using the AWS SDK for .NET, you can request Amazon S3 to use an AWS KMS–
managed encryption key by adding the ServerSideEncryptionMethod property as shown in the
following request.

PutObjectRequest putRequest = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = keyName,
 // other properties.
 ServerSideEncryptionMethod = ServerSideEncryptionMethod.AWSKMS
 };

In this case, Amazon S3 uses the default master key (see Protecting Data Using Server-Side Encryption
with keys stored in AWS KMS(SSE-KMS) (p. 265)). You can optionally create your own key and specify
that in the request.

PutObjectRequest putRequest1 = new PutObjectRequest
{
 BucketName = bucketName,
 Key = keyName,
 // other properties.
 ServerSideEncryptionMethod = ServerSideEncryptionMethod.AWSKMS,
 ServerSideEncryptionKeyManagementServiceKeyId = keyId
};

For more information about creating keys, see Programming the AWS KMS API in the AWS Key
Management Service Developer Guide.

For working code examples of uploading an object, see the following topics. You will need to update
these code examples and provide encryption information as shown in the preceding code fragment.

• For uploading an object in a single operation, see Upload an Object Using the AWS SDK
for .NET (p. 171).

• For multipart upload see the following topics:

• Using high-level multipart upload API, see Upload a File to an S3 Bucket Using the AWS SDK
for .NET (High-Level API) (p. 191).

• Using low-level multipart upload API, see Upload a File to an S3 Bucket Using the AWS SDK for .NET
(Low-Level API) (p. 197).

Copy Operation

When copying objects, you add the same request properties (ServerSideEncryptionMethod and
ServerSideEncryptionKeyManagementServiceKeyId) to request Amazon S3 to use an AWS KMS–
managed encryption key. For more information about copying objects, see Copying Objects (p. 210).

Presigned URLs

When creating a presigned URL for an object encrypted using an AWS KMS–managed encryption key, you
must explicitly specify Signature Version 4:

AWSConfigs.S3Config.UseSignatureVersion4 = true;

For a code example, see Generate a Presigned Object URL Using AWS SDK for .NET (p. 168).

API Version 2006-03-01
269

https://docs.aws.amazon.com/kms/latest/developerguide/programming-top.html

Amazon Simple Storage Service Developer Guide
Data Encryption

Specifying the AWS Key Management Service in Amazon S3 Using the REST API

At the time of object creation—that is, when you are uploading a new object or making a copy of an
existing object—you can specify the use of server-side encryption with AWS KMS–managed encryption
keys (SSE-KMS) to encrypt your data by adding the x-amz-server-side-encryption header to
the request. Set the value of the header to the encryption algorithm aws:kms. Amazon S3 confirms
that your object is stored using SSE-KMS by returning the response header x-amz-server-side-
encryption.

The following REST upload APIs accept the x-amz-server-side-encryption request header.

• PUT Object
• PUT Object - Copy
• POST Object
• Initiate Multipart Upload

When uploading large objects using the multipart upload API, you can specify SSE-KMS by adding the
x-amz-server-side-encryption header to the Initiate Multipart Upload request with the value of
aws:kms. When copying an existing object, regardless of whether the source object is encrypted or not,
the destination object is not encrypted unless you explicitly request server-side encryption.

The response headers of the following REST APIs return the x-amz-server-side-encryption header
when an object is stored using server-side encryption.

• PUT Object
• PUT Object - Copy
• POST Object
• Initiate Multipart Upload
• Upload Part
• Upload Part - Copy
• Complete Multipart Upload
• Get Object
• Head Object

Note
Encryption request headers should not be sent for GET requests and HEAD requests if your
object uses SSE-KMS or you’ll get an HTTP 400 BadRequest error.

Protecting Data Using Server-Side Encryption with Amazon S3-Managed
Encryption Keys (SSE-S3)

Server-side encryption protects data at rest. Amazon S3 encrypts each object with a unique key. As an
additional safeguard, it encrypts the key itself with a master key that it rotates regularly. Amazon S3
server-side encryption uses one of the strongest block ciphers available, 256-bit Advanced Encryption
Standard (AES-256), to encrypt your data.

If you need server-side encryption for all of the objects that are stored in a bucket, use a bucket policy.
For example, the following bucket policy denies permissions to upload an object unless the request
includes the x-amz-server-side-encryption header to request server-side encryption:

{
 "Version": "2012-10-17",
 "Id": "PutObjPolicy",
 "Statement": [
 {

API Version 2006-03-01
270

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPart.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPartCopy.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadComplete.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html

Amazon Simple Storage Service Developer Guide
Data Encryption

 "Sid": "DenyIncorrectEncryptionHeader",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::YourBucket/*",
 "Condition": {
 "StringNotEquals": {
 "s3:x-amz-server-side-encryption": "AES256"
 }
 }
 },
 {
 "Sid": "DenyUnEncryptedObjectUploads",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::YourBucket/*",
 "Condition": {
 "Null": {
 "s3:x-amz-server-side-encryption": "true"
 }
 }
 }
]
}

Note

• Server-side encryption encrypts only the object data, not object metadata.
• You need the kms:Decrypt permission when you upload or download an Amazon S3

object encrypted with an AWS KMS key, and that is in addition to kms:ReEncrypt,
kms:GenerateDataKey, and kms:DescribeKey. For more information, see Failures
uploading a large file to Amazon S3 with encryption using an AWS KMS key.

API Support for Server-Side Encryption

To request server-side encryption using the object creation REST APIs, provide the x-amz-server-
side-encryption request header. For information about the REST APIs, see Specifying Server-Side
Encryption Using the REST API (p. 278).

The following Amazon S3 APIs support this header:

• PUT operations—Specify the request header when uploading data using the PUT API. For more
information, see PUT Object.

• Initiate Multipart Upload—Specify the header in the initiate request when uploading large objects
using the multipart upload API . For more information, see Initiate Multipart Upload.

• COPY operations—When you copy an object, you have both a source object and a target object. For
more information, see PUT Object - Copy.

Note
When using a POST operation to upload an object, instead of providing the request header, you
provide the same information in the form fields. For more information, see POST Object.

The AWS SDKs also provide wrapper APIs that you can use to request server-side encryption. You can
also use the AWS Management Console to upload objects and request server-side encryption.

Specifying Server-Side Encryption Using the AWS SDK for Java

When you use the AWS SDK for Java to upload an object, you can use server-side encryption to encrypt
it. To request server-side encryption, use the ObjectMetadata property of the PutObjectRequest to

API Version 2006-03-01
271

https://aws.amazon.com/premiumsupport/knowledge-center/s3-large-file-encryption-kms-key/
https://aws.amazon.com/premiumsupport/knowledge-center/s3-large-file-encryption-kms-key/
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html

Amazon Simple Storage Service Developer Guide
Data Encryption

set the x-amz-server-side-encryption request header. When you call the putObject() method
of the AmazonS3Client, Amazon S3 encrypts and saves the data.

You can also request server-side encryption when uploading objects with the multipart upload API:

• When using the high-level multipart upload API, you use the TransferManager methods to apply
server-side encryption to objects as you upload them. You can use any of the upload methods that
take ObjectMetadata as a parameter. For more information, see Using the AWS Java SDK for
Multipart Upload (High-Level API) (p. 182).

• When using the low-level multipart upload API, you specify server-side encryption when
you initiate the multipart upload. You add the ObjectMetadata property by calling the
InitiateMultipartUploadRequest.setObjectMetadata() method. For more information, see
Upload a File (p. 186).

You can't directly change the encryption state of an object (encrypting an unencrypted object or
decrypting an encrypted object). To change an object's encryption state, you make a copy of the object,
specifying the desired encryption state for the copy, and then delete the original object. Amazon S3
encrypts the copied object only if you explicitly request server-side encryption. To request encryption
of the copied object through the Java API, use the ObjectMetadata property to specify server-side
encryption in the CopyObjectRequest.

Example Example

The following example shows how to set server-side encryption using the AWS SDK for Java. It shows
how to perform the following tasks:

• Upload a new object using server-side encryption.
• Change an object's encryption state (in this example, encrypting a previously unencrypted object) by

making a copy of the object.
• Check the encryption state of the object.

For more information about server-side encryption, see Specifying Server-Side Encryption Using the
REST API (p. 278). For instructions on creating and testing a working sample, see Testing the Amazon
S3 Java Code Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.internal.SSEResultBase;
import com.amazonaws.services.s3.model.*;

import java.io.ByteArrayInputStream;

public class SpecifyServerSideEncryption {

 public static void main(String[] args) {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String keyNameToEncrypt = "*** Key name for an object to upload and encrypt ***";
 String keyNameToCopyAndEncrypt = "*** Key name for an unencrypted object to be
 encrypted by copying ***";
 String copiedObjectKeyName = "*** Key name for the encrypted copy of the
 unencrypted object ***";

 try {

API Version 2006-03-01
272

Amazon Simple Storage Service Developer Guide
Data Encryption

 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(clientRegion)
 .withCredentials(new ProfileCredentialsProvider())
 .build();

 // Upload an object and encrypt it with SSE.
 uploadObjectWithSSEEncryption(s3Client, bucketName, keyNameToEncrypt);

 // Upload a new unencrypted object, then change its encryption state
 // to encrypted by making a copy.
 changeSSEEncryptionStatusByCopying(s3Client,
 bucketName,
 keyNameToCopyAndEncrypt,
 copiedObjectKeyName);
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }

 private static void uploadObjectWithSSEEncryption(AmazonS3 s3Client, String bucketName,
 String keyName) {
 String objectContent = "Test object encrypted with SSE";
 byte[] objectBytes = objectContent.getBytes();

 // Specify server-side encryption.
 ObjectMetadata objectMetadata = new ObjectMetadata();
 objectMetadata.setContentLength(objectBytes.length);
 objectMetadata.setSSEAlgorithm(ObjectMetadata.AES_256_SERVER_SIDE_ENCRYPTION);
 PutObjectRequest putRequest = new PutObjectRequest(bucketName,
 keyName,
 new ByteArrayInputStream(objectBytes),
 objectMetadata);

 // Upload the object and check its encryption status.
 PutObjectResult putResult = s3Client.putObject(putRequest);
 System.out.println("Object \"" + keyName + "\" uploaded with SSE.");
 printEncryptionStatus(putResult);
 }

 private static void changeSSEEncryptionStatusByCopying(AmazonS3 s3Client,
 String bucketName,
 String sourceKey,
 String destKey) {
 // Upload a new, unencrypted object.
 PutObjectResult putResult = s3Client.putObject(bucketName, sourceKey, "Object
 example to encrypt by copying");
 System.out.println("Unencrypted object \"" + sourceKey + "\" uploaded.");
 printEncryptionStatus(putResult);

 // Make a copy of the object and use server-side encryption when storing the copy.
 CopyObjectRequest request = new CopyObjectRequest(bucketName,
 sourceKey,
 bucketName,
 destKey);
 ObjectMetadata objectMetadata = new ObjectMetadata();
 objectMetadata.setSSEAlgorithm(ObjectMetadata.AES_256_SERVER_SIDE_ENCRYPTION);
 request.setNewObjectMetadata(objectMetadata);

 // Perform the copy operation and display the copy's encryption status.
 CopyObjectResult response = s3Client.copyObject(request);

API Version 2006-03-01
273

Amazon Simple Storage Service Developer Guide
Data Encryption

 System.out.println("Object \"" + destKey + "\" uploaded with SSE.");
 printEncryptionStatus(response);

 // Delete the original, unencrypted object, leaving only the encrypted copy in
 Amazon S3.
 s3Client.deleteObject(bucketName, sourceKey);
 System.out.println("Unencrypted object \"" + sourceKey + "\" deleted.");
 }

 private static void printEncryptionStatus(SSEResultBase response) {
 String encryptionStatus = response.getSSEAlgorithm();
 if (encryptionStatus == null) {
 encryptionStatus = "Not encrypted with SSE";
 }
 System.out.println("Object encryption status is: " + encryptionStatus);
 }
}

Specifying Server-Side Encryption Using the AWS SDK for .NET

When you upload an object, you can direct Amazon S3 to encrypt it. To change the encryption state
of an existing object, you make a copy of the object and delete the source object. By default, the copy
operation encrypts the target only if you explicitly request server-side encryption of the target object. To
specify server-side encryption in the CopyObjectRequest, add the following:

 ServerSideEncryptionMethod = ServerSideEncryptionMethod.AES256

For a working sample of how to copy an object, see Copy an Amazon S3 Object in a Single Operation
Using the AWS SDK for .NET (p. 212).

The following example uploads an object. In the request, the example directs Amazon S3 to encrypt the
object. The example then retrieves object metadata and verifies the encryption method that was used.
For information about creating and testing a working sample, see Running the Amazon S3 .NET Code
Examples (p. 678).

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class SpecifyServerSideEncryptionTest
 {
 private const string bucketName = "*** bucket name ***";
 private const string keyName = "*** key name for object created ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 client;

 public static void Main()
 {
 client = new AmazonS3Client(bucketRegion);
 WritingAnObjectAsync().Wait();
 }

 static async Task WritingAnObjectAsync()
 {
 try
 {

API Version 2006-03-01
274

Amazon Simple Storage Service Developer Guide
Data Encryption

 var putRequest = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = keyName,
 ContentBody = "sample text",
 ServerSideEncryptionMethod = ServerSideEncryptionMethod.AES256
 };

 var putResponse = await client.PutObjectAsync(putRequest);

 // Determine the encryption state of an object.
 GetObjectMetadataRequest metadataRequest = new GetObjectMetadataRequest
 {
 BucketName = bucketName,
 Key = keyName
 };
 GetObjectMetadataResponse response = await
 client.GetObjectMetadataAsync(metadataRequest);
 ServerSideEncryptionMethod objectEncryption =
 response.ServerSideEncryptionMethod;

 Console.WriteLine("Encryption method used: {0}",
 objectEncryption.ToString());
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Error encountered ***. Message:'{0}' when writing an
 object", e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown encountered on server. Message:'{0}' when
 writing an object", e.Message);
 }
 }
 }
}

Specifying Server-Side Encryption Using the AWS SDK for PHP

This topic shows how to use classes from version 3 of the AWS SDK for PHP to add server-side
encryption to objects that you upload to Amazon Simple Storage Service (Amazon S3). It assumes
that you are already following the instructions for Using the AWS SDK for PHP and Running PHP
Examples (p. 678) and have the AWS SDK for PHP properly installed.

To upload an object to Amazon S3, use the Aws\S3\S3Client::putObject() method. To add
the x-amz-server-side-encryption request header to your upload request, specify the
ServerSideEncryption parameter with the value AES256, as shown in the following code example.
For information about server-side encryption requests, see Specifying Server-Side Encryption Using the
REST API (p. 278).

 require 'vendor/autoload.php';

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';

// $filepath should be an absolute path to a file on disk.
$filepath = '*** Your File Path ***';

$s3 = new S3Client([
 'version' => 'latest',

API Version 2006-03-01
275

https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-s3-2006-03-01.html#putobject

Amazon Simple Storage Service Developer Guide
Data Encryption

 'region' => 'us-east-1'
]);

// Upload a file with server-side encryption.
$result = $s3->putObject([
 'Bucket' => $bucket,
 'Key' => $keyname,
 'SourceFile' => $filepath,
 'ServerSideEncryption' => 'AES256',
]);

In response, Amazon S3 returns the x-amz-server-side-encryption header with the value of the
encryption algorithm that was used to encrypt your object's data.

When you upload large objects using the multipart upload API, you can specify server-side encryption
for the objects that you are uploading, as follows:

• When using the low-level multipart upload API, specify server-side encryption when you call the
Aws\S3\S3Client::createMultipartUpload() method. To add the x-amz-server-side-encryption
request header to your request, specify the array parameter's ServerSideEncryption key with the
value AES256. For more information about the low-level multipart upload API, see Using the AWS PHP
SDK for Multipart Upload (Low-Level API) (p. 203).

• When using the high-level multipart upload API, specify server-side encryption using the
ServerSideEncryption parameter of the CreateMultipartUpload method. For an example of using
the setOption() method with the high-level multipart upload API, see Using the AWS PHP SDK for
Multipart Upload (p. 201).

Determining Encryption Algorithm Used

To determine the encryption state of an existing object, retrieve the object metadata by calling the Aws
\S3\S3Client::headObject() method as shown in the following PHP code example.

 require 'vendor/autoload.php';

use Aws\S3\S3Client;

$bucket = '*** Your Bucket Name ***';
$keyname = '*** Your Object Key ***';

$s3 = new S3Client([
 'version' => 'latest',
 'region' => 'us-east-1'
]);

// Check which server-side encryption algorithm is used.
$result = $s3->headObject([
 'Bucket' => $bucket,
 'Key' => $keyname,
]);
echo $result['ServerSideEncryption'];

Changing Server-Side Encryption of an Existing Object (Copy Operation)

To change the encryption state of an existing object, make a copy of the object using the Aws
\S3\S3Client::copyObject() method and delete the source object. By default, copyObject() does not
encrypt the target unless you explicitly request server-side encryption of the destination object using the
ServerSideEncryption parameter with the value AES256. The following PHP code example makes a
copy of an object and adds server-side encryption to the copied object.

 require 'vendor/autoload.php';

API Version 2006-03-01
276

https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-s3-2006-03-01.html#createmultipartupload
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-s3-2006-03-01.html#createmultipartupload
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-s3-2006-03-01.html#createmultipartupload
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-s3-2006-03-01.html#headobject
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-s3-2006-03-01.html#headobject
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-s3-2006-03-01.html#copyobject
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-s3-2006-03-01.html#copyobject

Amazon Simple Storage Service Developer Guide
Data Encryption

use Aws\S3\S3Client;

$sourceBucket = '*** Your Source Bucket Name ***';
$sourceKeyname = '*** Your Source Object Key ***';

$targetBucket = '*** Your Target Bucket Name ***';
$targetKeyname = '*** Your Target Object Key ***';

$s3 = new S3Client([
 'version' => 'latest',
 'region' => 'us-east-1'
]);

// Copy an object and add server-side encryption.
$s3->copyObject([
 'Bucket' => $targetBucket,
 'Key' => $targetKeyname,
 'CopySource' => "{$sourceBucket}/{$sourceKeyname}",
 'ServerSideEncryption' => 'AES256',
]);

Related Resources

• AWS SDK for PHP for Amazon S3 Aws\S3\S3Client Class
• AWS SDK for PHP Documentation

Specifying Server-Side Encryption Using the AWS SDK for Ruby

When using the AWS SDK for Ruby to upload an object, you can specify that the object be stored
encrypted at rest with server-side encryption (SSE). When you read the object back, it is automatically
decrypted.

The following AWS SDK for Ruby – Version 3 example demonstrates how to specify that a file uploaded
to Amazon S3 be encrypted at rest.

The following example demonstrates how to specify that a file uploaded to Amazon S3 be
 encrypted at rest.
require 'aws-sdk-s3'

regionName = 'us-west-2'
bucketName = 'my-bucket'
key = 'key'
filePath = 'local/path/to/file'
encryptionType = 'AES256'

s3 = Aws::S3::Resource.new(region:regionName)
obj = s3.bucket(bucketName).object(key)
obj.upload_file(filePath, :server_side_encryption => encryptionType)

For an example that shows how to upload an object without SSE, see Upload an Object Using the AWS
SDK for Ruby (p. 173).

Determining the Encryption Algorithm Used

The following code example demonstrates how to determine the encryption state of an existing object.

Determine server-side encryption of an object.
require 'aws-sdk-s3'

regionName = 'us-west-2'

API Version 2006-03-01
277

https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.S3.S3Client.html
http://aws.amazon.com/documentation/sdk-for-php/

Amazon Simple Storage Service Developer Guide
Data Encryption

bucketName='bucket-name'
key = 'key'

s3 = Aws::S3::Resource.new(region:regionName)
enc = s3.bucket(bucketName).object(key).server_side_encryption
enc_state = (enc != nil) ? enc : "not set"
puts "Encryption state is #{enc_state}."

If server-side encryption is not used for the object that is stored in Amazon S3, the method returns null.

Changing Server-Side Encryption of an Existing Object (Copy Operation)

To change the encryption state of an existing object, make a copy of the object and delete the
source object. By default, the copy methods do not encrypt the target unless you explicitly request
server-side encryption. You can request the encryption of the target object by specifying the
server_side_encryption value in the options hash argument as shown in the following Ruby code
example. The code example demonstrates how to copy an object and encrypt the copy.

require 'aws-sdk-s3'

regionName = 'us-west-2'
encryptionType = 'AES256'

s3 = Aws::S3::Resource.new(region:regionName)
bucket1 = s3.bucket('source-bucket-name')
bucket2 = s3.bucket('target-bucket-name')
obj1 = bucket1.object('Bucket1Key')
obj2 = bucket2.object('Bucket2Key')

obj1.copy_to(obj2, :server_side_encryption => encryptionType)

For a sample of how to copy an object without encryption, see Copy an Object Using the AWS SDK for
Ruby (p. 215).

Specifying Server-Side Encryption Using the REST API

At the time of object creation—that is, when you are uploading a new object or making a copy of an
existing object—you can specify if you want Amazon S3 to encrypt your data by adding the x-amz-
server-side-encryption header to the request. Set the value of the header to the encryption
algorithm AES256 that Amazon S3 supports. Amazon S3 confirms that your object is stored using
server-side encryption by returning the response header x-amz-server-side-encryption.

The following REST upload APIs accept the x-amz-server-side-encryption request header.

• PUT Object
• PUT Object - Copy
• POST Object
• Initiate Multipart Upload

When uploading large objects using the multipart upload API, you can specify server-side encryption
by adding the x-amz-server-side-encryption header to the Initiate Multipart Upload request.
When you are copying an existing object, regardless of whether the source object is encrypted or not, the
destination object is not encrypted unless you explicitly request server-side encryption.

The response headers of the following REST APIs return the x-amz-server-side-encryption header
when an object is stored using server-side encryption.

• PUT Object
• PUT Object - Copy

API Version 2006-03-01
278

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html

Amazon Simple Storage Service Developer Guide
Data Encryption

• POST Object
• Initiate Multipart Upload
• Upload Part
• Upload Part - Copy
• Complete Multipart Upload
• Get Object
• Head Object

Note
Encryption request headers should not be sent for GET requests and HEAD requests if your
object uses SSE-S3 or you’ll get an HTTP 400 BadRequest error.

Specifying Server-Side Encryption Using the AWS Management Console

When uploading an object using the AWS Management Console, you can specify server-side encryption.
For an example of how to upload an object, see Uploading S3 Objects.

When you copy an object using the AWS Management Console, the console copies the object as is. That
is, if the copy source is encrypted, the target object is encrypted.The console also allows you to add
encryption to an object. For more information, see How Do I Add Encryption to an S3 Object?.

More Info

• Amazon S3 Default Encryption for S3 Buckets (p. 66)

Protecting Data Using Server-Side Encryption with Customer-Provided
Encryption Keys (SSE-C)

Server-side encryption is about protecting data at rest. Using server-side encryption with customer-
provided encryption keys (SSE-C) allows you to set your own encryption keys. With the encryption key
you provide as part of your request, Amazon S3 manages both the encryption, as it writes to disks, and
decryption, when you access your objects. Therefore, you don't need to maintain any code to perform
data encryption and decryption. The only thing you do is manage the encryption keys you provide.

When you upload an object, Amazon S3 uses the encryption key you provide to apply AES-256
encryption to your data and removes the encryption key from memory.

Important
Amazon S3 does not store the encryption key you provide. Instead, it stores a randomly salted
HMAC value of the encryption key to validate future requests. The salted HMAC value cannot
be used to derive the value of the encryption key or to decrypt the contents of the encrypted
object. That means if you lose the encryption key, you lose the object.

Note
Server-side encryption encrypts only the object data, not object metadata.

When you retrieve an object, you must provide the same encryption key as part of your request. Amazon
S3 first verifies that the encryption key you provided matches, and then decrypts the object before
returning the object data to you.

The highlights of SSE-C are:

• You must use HTTPS.

Important
Amazon S3 rejects any requests made over HTTP when using SSE-C. For security
considerations, we recommend that you consider any key you send erroneously using HTTP to
be compromised. You should discard the key, and rotate as appropriate.

API Version 2006-03-01
279

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPart.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPartCopy.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadComplete.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-object-encryption.html

Amazon Simple Storage Service Developer Guide
Data Encryption

• The ETag in the response is not the MD5 of the object data.

• You manage a mapping of which encryption key was used to encrypt which object. Amazon S3 does
not store encryption keys. You are responsible for tracking which encryption key you provided for
which object.

• If your bucket is versioning-enabled, each object version you upload using this feature can have its
own encryption key. You are responsible for tracking which encryption key was used for which object
version.

• Because you manage encryption keys on the client side, you manage any additional safeguards, such
as key rotation, on the client side.

Warning
If you lose the encryption key, any GET request for an object without its encryption key fails,
and you lose the object.

Using SSE-C

When using server-side encryption with customer-provided encryption keys (SSE-C), you must provide
encryption key information using the following request headers.

Name Description

x-amz-server-side-
encryption-customer-
algorithm

Use this header to specify the encryption algorithm. The header value
must be "AES256".

x-amz-server-side-
encryption-customer-
key

Use this header to provide the 256-bit, base64-encoded encryption key
for Amazon S3 to use to encrypt or decrypt your data.

x-amz-server-side-
encryption-customer-
key-MD5

Use this header to provide the base64-encoded 128-bit MD5 digest of
the encryption key according to RFC 1321. Amazon S3 uses this header
for a message integrity check to ensure that the encryption key was
transmitted without error.

You can use AWS SDK wrapper libraries to add these headers to your request. If you need to, you can
make the Amazon S3 REST API calls directly in your application.

Note
You cannot use the Amazon S3 console to upload an object and request SSE-C. You also cannot
use the console to update (for example, change the storage class or add metadata) an existing
object stored using SSE-C.

The following Amazon S3 APIs support these headers.

• GET operation — When retrieving objects using the GET API (see GET Object), you can specify the
request headers. Torrents are not supported for objects encrypted using SSE-C.

• HEAD operation — To retrieve object metadata using the HEAD API (see HEAD Object), you can specify
these request headers.

• PUT operation — When uploading data using the PUT API (see PUT Object), you can specify these
request headers.

• Multipart Upload — When uploading large objects using the multipart upload API, you can specify
these headers. You specify these headers in the initiate request (see Initiate Multipart Upload) and
each subsequent part upload request (Upload Part). For each part upload request, the encryption
information must be the same as what you provided in the initiate multipart upload request.

API Version 2006-03-01
280

http://tools.ietf.org/html/rfc1321
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPart.html

Amazon Simple Storage Service Developer Guide
Data Encryption

• POST operation — When using a POST operation to upload an object (see POST Object), instead of the
request headers, you provide the same information in the form fields.

• Copy operation — When you copy an object (see PUT Object - Copy), you have both a source object
and a target object. Accordingly, you have the following to consider:

• If you want the target object encrypted using server-side encryption with AWS managed keys, you
must provide the x-amz-server-side-encryption request header.

• If you want the target object encrypted using SSE-C, you must provide encryption information using
the three headers described in the preceding table.

• If the source object is encrypted using SSE-C, you must provide encryption key information using the
following headers so that Amazon S3 can decrypt the object for copying.

Name Description

x-amz-copy-source
-server-side
-encryption-
customer-algorithm

Include this header to specify the algorithm Amazon S3 should use to
decrypt the source object. This value must be AES256.

x-amz-copy-source
-server-side
-encryption-
customer-key

Include this header to provide the base64-encoded encryption key for
Amazon S3 to use to decrypt the source object. This encryption key
must be the one that you provided Amazon S3 when you created the
source object. Otherwise, Amazon S3 cannot decrypt the object.

x-amz-copy-
source-server-
side-encryption-
customer-key-MD5

Include this header to provide the base64-encoded 128-bit MD5 digest
of the encryption key according to RFC 1321.

Presigned URL and SSE-C

You can generate a presigned URL that can be used for operations such as upload a new object, retrieve
an existing object, or object metadata. Presigned URLs support the SSE-C as follows:

• When creating a presigned URL, you must specify the algorithm using the x-amz-server-side-
encryption-customer-algorithm in the signature calculation.

• When using the presigned URL to upload a new object, retrieve an existing object, or retrieve only
object metadata, you must provide all the encryption headers in your client application.

Note
For non-SSE-C objects, you can generate a presigned URL and directly paste that into a
browser, for example to access the data.
However, this is not true for SSE-C objects because in addition to the presigned URL, you also
need to include HTTP headers that are specific to SSE-C objects. Therefore, you can use the
presigned URL for SSE-C objects only programmatically.

For more information, see the following topics:

• Specifying Server-Side Encryption with Customer-Provided Encryption Keys Using the AWS SDK for
Java (p. 282)

• Specifying Server-Side Encryption with Customer-Provided Encryption Keys Using the AWS SDK
for .NET (p. 286)

• Specifying Server-Side Encryption with Customer-Provided Encryption Keys Using the REST
API (p. 293)

API Version 2006-03-01
281

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
http://tools.ietf.org/html/rfc1321

Amazon Simple Storage Service Developer Guide
Data Encryption

Specifying Server-Side Encryption with Customer-Provided Encryption Keys Using the AWS SDK
for Java

The following example shows how to request server-side encryption with customer-provided keys (SSE-
C) for objects. The example performs the following operations. Each operation shows how to specify
SSE-C-related headers in the request:

• Put object—Uploads an object and requests server-side encryption using a customer-provided
encryption key.

• Get object—Downloads the object uploaded in the previous step. In the request, you provide the
same encryption information that you provided when you uploaded the object. Amazon S3 needs this
information to decrypt the object so that it can return it to you.

• Get object metadata—Retrieves the object's metadata. You provide the same encryption information
used when the object was created.

• Copy object—Makes a copy of the previously uploaded object. Because the source object is stored
using SSE-C, you must provide its encryption information in your copy request. By default, Amazon
S3 encrypts the copy of the object only if you explicitly request it. This example directs Amazon S3 to
store an encrypted copy of the object using a new SSE-C key.

Note
This example shows how to upload an object in a single operation. When using the Multipart
Upload API to upload large objects, you provide encryption information in the same way shown
in this example. For examples of multipart uploads that use the AWS SDK for Java, see Using the
AWS Java SDK for Multipart Upload (High-Level API) (p. 182) and Using the AWS Java SDK for a
Multipart Upload (Low-Level API) (p. 186).

To add the required encryption information, you include an SSECustomerKey in your request. For more
information about the SSECustomerKey class, see Using SSE-C (p. 280).

For information about SSE-C, see Protecting Data Using Server-Side Encryption with Customer-Provided
Encryption Keys (SSE-C) (p. 279). For instructions on creating and testing a working sample, see Testing
the Amazon S3 Java Code Examples (p. 677).

Example

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import javax.crypto.KeyGenerator;
import java.io.BufferedReader;
import java.io.File;
import java.io.IOException;
import java.io.InputStreamReader;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;

public class ServerSideEncryptionUsingClientSideEncryptionKey {
 private static SSECustomerKey SSE_KEY;
 private static AmazonS3 S3_CLIENT;
 private static KeyGenerator KEY_GENERATOR;

 public static void main(String[] args) throws IOException, NoSuchAlgorithmException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";

API Version 2006-03-01
282

Amazon Simple Storage Service Developer Guide
Data Encryption

 String keyName = "*** Key name ***";
 String uploadFileName = "*** File path ***";
 String targetKeyName = "*** Target key name ***";

 // Create an encryption key.
 KEY_GENERATOR = KeyGenerator.getInstance("AES");
 KEY_GENERATOR.init(256, new SecureRandom());
 SSE_KEY = new SSECustomerKey(KEY_GENERATOR.generateKey());

 try {
 S3_CLIENT = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 // Upload an object.
 uploadObject(bucketName, keyName, new File(uploadFileName));

 // Download the object.
 downloadObject(bucketName, keyName);

 // Verify that the object is properly encrypted by attempting to retrieve it
 // using the encryption key.
 retrieveObjectMetadata(bucketName, keyName);

 // Copy the object into a new object that also uses SSE-C.
 copyObject(bucketName, keyName, targetKeyName);
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }

 private static void uploadObject(String bucketName, String keyName, File file) {
 PutObjectRequest putRequest = new PutObjectRequest(bucketName, keyName,
 file).withSSECustomerKey(SSE_KEY);
 S3_CLIENT.putObject(putRequest);
 System.out.println("Object uploaded");
 }

 private static void downloadObject(String bucketName, String keyName) throws
 IOException {
 GetObjectRequest getObjectRequest = new GetObjectRequest(bucketName,
 keyName).withSSECustomerKey(SSE_KEY);
 S3Object object = S3_CLIENT.getObject(getObjectRequest);

 System.out.println("Object content: ");
 displayTextInputStream(object.getObjectContent());
 }

 private static void retrieveObjectMetadata(String bucketName, String keyName) {
 GetObjectMetadataRequest getMetadataRequest = new
 GetObjectMetadataRequest(bucketName, keyName)
 .withSSECustomerKey(SSE_KEY);
 ObjectMetadata objectMetadata = S3_CLIENT.getObjectMetadata(getMetadataRequest);
 System.out.println("Metadata retrieved. Object size: " +
 objectMetadata.getContentLength());
 }

 private static void copyObject(String bucketName, String keyName, String targetKeyName)
 throws NoSuchAlgorithmException {

API Version 2006-03-01
283

Amazon Simple Storage Service Developer Guide
Data Encryption

 // Create a new encryption key for target so that the target is saved using SSE-C.
 SSECustomerKey newSSEKey = new SSECustomerKey(KEY_GENERATOR.generateKey());

 CopyObjectRequest copyRequest = new CopyObjectRequest(bucketName, keyName,
 bucketName, targetKeyName)
 .withSourceSSECustomerKey(SSE_KEY)
 .withDestinationSSECustomerKey(newSSEKey);

 S3_CLIENT.copyObject(copyRequest);
 System.out.println("Object copied");
 }

 private static void displayTextInputStream(S3ObjectInputStream input) throws
 IOException {
 // Read one line at a time from the input stream and display each line.
 BufferedReader reader = new BufferedReader(new InputStreamReader(input));
 String line;
 while ((line = reader.readLine()) != null) {
 System.out.println(line);
 }
 System.out.println();
 }
}

Other Amazon S3 Operations with SSE-C Using the AWS SDK for Java

The example in the preceding section shows how to request server-side encryption with customer-
provided keys (SSE-C) in the PUT, GET, Head, and Copy operations. This section describes other APIs that
support SSE-C.

To upload large objects, you can use multipart upload API (see Uploading Objects Using Multipart
Upload API (p. 175)). You can use either high-level or low-level APIs to upload large objects. These APIs
support encryption-related headers in the request.

• When using the high-level TransferManager API, you provide the encryption-specific headers in the
PutObjectRequest (see Using the AWS Java SDK for Multipart Upload (High-Level API) (p. 182)).

• When using the low-level API, you provide encryption-related information in the
InitiateMultipartUploadRequest, followed by identical encryption information in each
UploadPartRequest. You do not need to provide any encryption-specific headers in your
CompleteMultipartUploadRequest. For examples, see Using the AWS Java SDK for a Multipart
Upload (Low-Level API) (p. 186).

The following example uses TransferManager to create objects and shows how to provide SSE-C
related information. The example does the following:

• Creates an object using the TransferManager.upload() method. In the PutObjectRequest
instance, you provide encryption key information to request. Amazon S3 encrypts the object using the
customer-provided encryption key.

• Makes a copy of the object by calling the TransferManager.copy() method. The example directs
Amazon S3 to encrypt the object copy using a new SSECustomerKey. Because the source object is
encrypted using SSE-C, the CopyObjectRequest also provides the encryption key of the source
object so that Amazon S3 can decrypt the object before copying it.

Example

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;

API Version 2006-03-01
284

Amazon Simple Storage Service Developer Guide
Data Encryption

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.CopyObjectRequest;
import com.amazonaws.services.s3.model.PutObjectRequest;
import com.amazonaws.services.s3.model.SSECustomerKey;
import com.amazonaws.services.s3.transfer.Copy;
import com.amazonaws.services.s3.transfer.TransferManager;
import com.amazonaws.services.s3.transfer.TransferManagerBuilder;
import com.amazonaws.services.s3.transfer.Upload;

import javax.crypto.KeyGenerator;
import java.io.File;
import java.security.SecureRandom;

public class ServerSideEncryptionCopyObjectUsingHLwithSSEC {

 public static void main(String[] args) throws Exception {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String fileToUpload = "*** File path ***";
 String keyName = "*** New object key name ***";
 String targetKeyName = "*** Key name for object copy ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(clientRegion)
 .withCredentials(new ProfileCredentialsProvider())
 .build();
 TransferManager tm = TransferManagerBuilder.standard()
 .withS3Client(s3Client)
 .build();

 // Create an object from a file.
 PutObjectRequest putObjectRequest = new PutObjectRequest(bucketName, keyName,
 new File(fileToUpload));

 // Create an encryption key.
 KeyGenerator keyGenerator = KeyGenerator.getInstance("AES");
 keyGenerator.init(256, new SecureRandom());
 SSECustomerKey sseCustomerEncryptionKey = new
 SSECustomerKey(keyGenerator.generateKey());

 // Upload the object. TransferManager uploads asynchronously, so this call
 returns immediately.
 putObjectRequest.setSSECustomerKey(sseCustomerEncryptionKey);
 Upload upload = tm.upload(putObjectRequest);

 // Optionally, wait for the upload to finish before continuing.
 upload.waitForCompletion();
 System.out.println("Object created.");

 // Copy the object and store the copy using SSE-C with a new key.
 CopyObjectRequest copyObjectRequest = new CopyObjectRequest(bucketName,
 keyName, bucketName, targetKeyName);
 SSECustomerKey sseTargetObjectEncryptionKey = new
 SSECustomerKey(keyGenerator.generateKey());
 copyObjectRequest.setSourceSSECustomerKey(sseCustomerEncryptionKey);
 copyObjectRequest.setDestinationSSECustomerKey(sseTargetObjectEncryptionKey);

 // Copy the object. TransferManager copies asynchronously, so this call returns
 immediately.
 Copy copy = tm.copy(copyObjectRequest);

 // Optionally, wait for the upload to finish before continuing.

API Version 2006-03-01
285

Amazon Simple Storage Service Developer Guide
Data Encryption

 copy.waitForCompletion();
 System.out.println("Copy complete.");
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Specifying Server-Side Encryption with Customer-Provided Encryption Keys Using the AWS SDK
for .NET

The following C# example shows how server-side encryption with customer-provided keys (SSE-C) works.
The example performs the following operations. Each operation shows how to specify SSE-C–related
headers in the request.

• Put object—Uploads an object and requests server-side encryption using customer-provided
encryption keys.

• Get object—Downloads the object that was uploaded in the previous step. The request provides the
same encryption information that was provided when the object was uploaded. Amazon S3 needs this
information to decrypt the object and return it to you.

• Get object metadata—Provides the same encryption information used when the object was created to
retrieve the object's metadata.

• Copy object—Makes a copy of the uploaded object. Because the source object is stored using SSE-
C, the copy request must provide encryption information. By default, Amazon S3 does not encrypt a
copy of an object. The code directs Amazon S3 to encrypt the copied object using SSE-C by providing
encryption-related information for the target. It also stores the target.

Note
For examples of uploading large objects using the multipart upload API, see Using the AWS
SDK for .NET for Multipart Upload (High-Level API) (p. 191) and Using the AWS SDK for .NET for
Multipart Upload (Low-Level API) (p. 197).

For information about SSE-C, see Protecting Data Using Server-Side Encryption with Customer-Provided
Encryption Keys (SSE-C) (p. 279)). For information about creating and testing a working sample, see
Running the Amazon S3 .NET Code Examples (p. 678).

Example

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.IO;
using System.Security.Cryptography;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class SSEClientEncryptionKeyObjectOperationsTest
 {
 private const string bucketName = "*** bucket name ***";
 private const string keyName = "*** key name for new object created ***";

API Version 2006-03-01
286

Amazon Simple Storage Service Developer Guide
Data Encryption

 private const string copyTargetKeyName = "*** key name for object copy ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 client;

 public static void Main()
 {
 client = new AmazonS3Client(bucketRegion);
 ObjectOpsUsingClientEncryptionKeyAsync().Wait();
 }
 private static async Task ObjectOpsUsingClientEncryptionKeyAsync()
 {
 try
 {
 // Create an encryption key.
 Aes aesEncryption = Aes.Create();
 aesEncryption.KeySize = 256;
 aesEncryption.GenerateKey();
 string base64Key = Convert.ToBase64String(aesEncryption.Key);

 // 1. Upload the object.
 PutObjectRequest putObjectRequest = await UploadObjectAsync(base64Key);
 // 2. Download the object and verify that its contents matches what you
 uploaded.
 await DownloadObjectAsync(base64Key, putObjectRequest);
 // 3. Get object metadata and verify that the object uses AES-256
 encryption.
 await GetObjectMetadataAsync(base64Key);
 // 4. Copy both the source and target objects using server-side encryption
 with
 // a customer-provided encryption key.
 await CopyObjectAsync(aesEncryption, base64Key);
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Error encountered ***. Message:'{0}' when writing an
 object", e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown encountered on server. Message:'{0}' when
 writing an object", e.Message);
 }
 }

 private static async Task<PutObjectRequest> UploadObjectAsync(string base64Key)
 {
 PutObjectRequest putObjectRequest = new PutObjectRequest
 {
 BucketName = bucketName,
 Key = keyName,
 ContentBody = "sample text",
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = base64Key
 };
 PutObjectResponse putObjectResponse = await
 client.PutObjectAsync(putObjectRequest);
 return putObjectRequest;
 }
 private static async Task DownloadObjectAsync(string base64Key, PutObjectRequest
 putObjectRequest)
 {
 GetObjectRequest getObjectRequest = new GetObjectRequest
 {
 BucketName = bucketName,

API Version 2006-03-01
287

Amazon Simple Storage Service Developer Guide
Data Encryption

 Key = keyName,
 // Provide encryption information for the object stored in Amazon S3.
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = base64Key
 };

 using (GetObjectResponse getResponse = await
 client.GetObjectAsync(getObjectRequest))
 using (StreamReader reader = new StreamReader(getResponse.ResponseStream))
 {
 string content = reader.ReadToEnd();
 if (String.Compare(putObjectRequest.ContentBody, content) == 0)
 Console.WriteLine("Object content is same as we uploaded");
 else
 Console.WriteLine("Error...Object content is not same.");

 if (getResponse.ServerSideEncryptionCustomerMethod ==
 ServerSideEncryptionCustomerMethod.AES256)
 Console.WriteLine("Object encryption method is AES256, same as we
 set");
 else
 Console.WriteLine("Error...Object encryption method is not the same as
 AES256 we set");

 // Assert.AreEqual(putObjectRequest.ContentBody, content);
 // Assert.AreEqual(ServerSideEncryptionCustomerMethod.AES256,
 getResponse.ServerSideEncryptionCustomerMethod);
 }
 }
 private static async Task GetObjectMetadataAsync(string base64Key)
 {
 GetObjectMetadataRequest getObjectMetadataRequest = new
 GetObjectMetadataRequest
 {
 BucketName = bucketName,
 Key = keyName,

 // The object stored in Amazon S3 is encrypted, so provide the necessary
 encryption information.
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = base64Key
 };

 GetObjectMetadataResponse getObjectMetadataResponse = await
 client.GetObjectMetadataAsync(getObjectMetadataRequest);
 Console.WriteLine("The object metadata show encryption method used is: {0}",
 getObjectMetadataResponse.ServerSideEncryptionCustomerMethod);
 // Assert.AreEqual(ServerSideEncryptionCustomerMethod.AES256,
 getObjectMetadataResponse.ServerSideEncryptionCustomerMethod);
 }
 private static async Task CopyObjectAsync(Aes aesEncryption, string base64Key)
 {
 aesEncryption.GenerateKey();
 string copyBase64Key = Convert.ToBase64String(aesEncryption.Key);

 CopyObjectRequest copyRequest = new CopyObjectRequest
 {
 SourceBucket = bucketName,
 SourceKey = keyName,
 DestinationBucket = bucketName,
 DestinationKey = copyTargetKeyName,
 // Information about the source object's encryption.
 CopySourceServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,

API Version 2006-03-01
288

Amazon Simple Storage Service Developer Guide
Data Encryption

 CopySourceServerSideEncryptionCustomerProvidedKey = base64Key,
 // Information about the target object's encryption.
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = copyBase64Key
 };
 await client.CopyObjectAsync(copyRequest);
 }
 }
}

Other Amazon S3 Operations and SSE-C

The example in the preceding section shows how to request server-side encryption with customer-
provided key (SSE-C) in the PUT, GET, Head, and Copy operations. This section describes other Amazon
S3 APIs that support SSE-C.

To upload large objects, you can use multipart upload API (see Uploading Objects Using Multipart
Upload API (p. 175)). AWS SDK for .NET provides both high-level or low-level APIs to upload large
objects. These APIs support encryption-related headers in the request.

• When using high-level Transfer-Utility API, you provide the encryption-specific headers in the
TransferUtilityUploadRequest as shown. For code examples, see Using the AWS SDK for .NET
for Multipart Upload (High-Level API) (p. 191).

TransferUtilityUploadRequest request = new TransferUtilityUploadRequest()
{
 FilePath = filePath,
 BucketName = existingBucketName,
 Key = keyName,
 // Provide encryption information.
 ServerSideEncryptionCustomerMethod = ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = base64Key,
};

• When using the low-level API, you provide encryption-related information in the initiate multipart
upload request, followed by identical encryption information in the subsequent upload part requests.
You do not need to provide any encryption-specific headers in your complete multipart upload
request. For examples, see Using the AWS SDK for .NET for Multipart Upload (Low-Level API) (p. 197).

The following is a low-level multipart upload example that makes a copy of an existing large object.
In the example, the object to be copied is stored in Amazon S3 using SSE-C, and you want to save the
target object also using SSE-C. In the example, you do the following:
• Initiate a multipart upload request by providing an encryption key and related information.
• Provide source and target object encryption keys and related information in the CopyPartRequest.
• Obtain the size of the source object to be copied by retrieving the object metadata.
• Upload the objects in 5 MB parts.

Example

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Collections.Generic;
using System.IO;
using System.Security.Cryptography;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3

API Version 2006-03-01
289

Amazon Simple Storage Service Developer Guide
Data Encryption

{
 class SSECLowLevelMPUcopyObjectTest
 {
 private const string existingBucketName = "*** bucket name ***";
 private const string sourceKeyName = "*** source object key name ***";
 private const string targetKeyName = "*** key name for the target object
 ***";
 private const string filePath = @"*** file path ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 s3Client;
 static void Main()
 {
 s3Client = new AmazonS3Client(bucketRegion);
 CopyObjClientEncryptionKeyAsync().Wait();
 }

 private static async Task CopyObjClientEncryptionKeyAsync()
 {
 Aes aesEncryption = Aes.Create();
 aesEncryption.KeySize = 256;
 aesEncryption.GenerateKey();
 string base64Key = Convert.ToBase64String(aesEncryption.Key);

 await CreateSampleObjUsingClientEncryptionKeyAsync(base64Key, s3Client);

 await CopyObjectAsync(s3Client, base64Key);
 }
 private static async Task CopyObjectAsync(IAmazonS3 s3Client, string base64Key)
 {
 List<CopyPartResponse> uploadResponses = new List<CopyPartResponse>();

 // 1. Initialize.
 InitiateMultipartUploadRequest initiateRequest = new
 InitiateMultipartUploadRequest
 {
 BucketName = existingBucketName,
 Key = targetKeyName,
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = base64Key,
 };

 InitiateMultipartUploadResponse initResponse =
 await s3Client.InitiateMultipartUploadAsync(initiateRequest);

 // 2. Upload Parts.
 long partSize = 5 * (long)Math.Pow(2, 20); // 5 MB
 long firstByte = 0;
 long lastByte = partSize;

 try
 {
 // First find source object size. Because object is stored encrypted with
 // customer provided key you need to provide encryption information in
 your request.
 GetObjectMetadataRequest getObjectMetadataRequest = new
 GetObjectMetadataRequest()
 {
 BucketName = existingBucketName,
 Key = sourceKeyName,
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = base64Key // " * **source
 object encryption key ***"
 };

API Version 2006-03-01
290

Amazon Simple Storage Service Developer Guide
Data Encryption

 GetObjectMetadataResponse getObjectMetadataResponse = await
 s3Client.GetObjectMetadataAsync(getObjectMetadataRequest);

 long filePosition = 0;
 for (int i = 1; filePosition < getObjectMetadataResponse.ContentLength; i
++)
 {
 CopyPartRequest copyPartRequest = new CopyPartRequest
 {
 UploadId = initResponse.UploadId,
 // Source.
 SourceBucket = existingBucketName,
 SourceKey = sourceKeyName,
 // Source object is stored using SSE-C. Provide encryption
 information.
 CopySourceServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 CopySourceServerSideEncryptionCustomerProvidedKey =
 base64Key, //"***source object encryption key ***",
 FirstByte = firstByte,
 // If the last part is smaller then our normal part size then use
 the remaining size.
 LastByte = lastByte > getObjectMetadataResponse.ContentLength ?
 getObjectMetadataResponse.ContentLength - 1 : lastByte,

 // Target.
 DestinationBucket = existingBucketName,
 DestinationKey = targetKeyName,
 PartNumber = i,
 // Encryption information for the target object.
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = base64Key
 };
 uploadResponses.Add(await s3Client.CopyPartAsync(copyPartRequest));
 filePosition += partSize;
 firstByte += partSize;
 lastByte += partSize;
 }

 // Step 3: complete.
 CompleteMultipartUploadRequest completeRequest = new
 CompleteMultipartUploadRequest
 {
 BucketName = existingBucketName,
 Key = targetKeyName,
 UploadId = initResponse.UploadId,
 };
 completeRequest.AddPartETags(uploadResponses);

 CompleteMultipartUploadResponse completeUploadResponse =
 await s3Client.CompleteMultipartUploadAsync(completeRequest);
 }
 catch (Exception exception)
 {
 Console.WriteLine("Exception occurred: {0}", exception.Message);
 AbortMultipartUploadRequest abortMPURequest = new
 AbortMultipartUploadRequest
 {
 BucketName = existingBucketName,
 Key = targetKeyName,
 UploadId = initResponse.UploadId
 };
 s3Client.AbortMultipartUpload(abortMPURequest);
 }

API Version 2006-03-01
291

Amazon Simple Storage Service Developer Guide
Data Encryption

 }
 private static async Task CreateSampleObjUsingClientEncryptionKeyAsync(string
 base64Key, IAmazonS3 s3Client)
 {
 // List to store upload part responses.
 List<UploadPartResponse> uploadResponses = new List<UploadPartResponse>();

 // 1. Initialize.
 InitiateMultipartUploadRequest initiateRequest = new
 InitiateMultipartUploadRequest
 {
 BucketName = existingBucketName,
 Key = sourceKeyName,
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = base64Key
 };

 InitiateMultipartUploadResponse initResponse =
 await s3Client.InitiateMultipartUploadAsync(initiateRequest);

 // 2. Upload Parts.
 long contentLength = new FileInfo(filePath).Length;
 long partSize = 5 * (long)Math.Pow(2, 20); // 5 MB

 try
 {
 long filePosition = 0;
 for (int i = 1; filePosition < contentLength; i++)
 {
 UploadPartRequest uploadRequest = new UploadPartRequest
 {
 BucketName = existingBucketName,
 Key = sourceKeyName,
 UploadId = initResponse.UploadId,
 PartNumber = i,
 PartSize = partSize,
 FilePosition = filePosition,
 FilePath = filePath,
 ServerSideEncryptionCustomerMethod =
 ServerSideEncryptionCustomerMethod.AES256,
 ServerSideEncryptionCustomerProvidedKey = base64Key
 };

 // Upload part and add response to our list.
 uploadResponses.Add(await s3Client.UploadPartAsync(uploadRequest));

 filePosition += partSize;
 }

 // Step 3: complete.
 CompleteMultipartUploadRequest completeRequest = new
 CompleteMultipartUploadRequest
 {
 BucketName = existingBucketName,
 Key = sourceKeyName,
 UploadId = initResponse.UploadId,
 //PartETags = new List<PartETag>(uploadResponses)

 };
 completeRequest.AddPartETags(uploadResponses);

 CompleteMultipartUploadResponse completeUploadResponse =
 await s3Client.CompleteMultipartUploadAsync(completeRequest);

 }

API Version 2006-03-01
292

Amazon Simple Storage Service Developer Guide
Data Encryption

 catch (Exception exception)
 {
 Console.WriteLine("Exception occurred: {0}", exception.Message);
 AbortMultipartUploadRequest abortMPURequest = new
 AbortMultipartUploadRequest
 {
 BucketName = existingBucketName,
 Key = sourceKeyName,
 UploadId = initResponse.UploadId
 };
 await s3Client.AbortMultipartUploadAsync(abortMPURequest);
 }
 }
 }
}

Specifying Server-Side Encryption with Customer-Provided Encryption Keys Using the REST API

The following Amazon S3 REST APIs support headers related to server-side encryption with customer-
provided encryption keys. For more information about these headers, see Using SSE-C (p. 280).

• GET Object
• HEAD Object
• PUT Object
• PUT Object - Copy
• POST Object
• Initiate Multipart Upload
• Upload Part
• Upload Part - Copy

Protecting Data Using Client-Side Encryption
Client-side encryption is the act of encrypting data before sending it to Amazon S3. To enable client-side
encryption, you have the following options:

• Use a master key stored in AWS KMS.
• Use a master key you store within your application.

The following AWS SDKs support client-side encryption:

• AWS SDK for .NET
• AWS SDK for Go
• AWS SDK for Java
• AWS SDK for PHP
• AWS SDK for Ruby
• AWS SDK for C++

Option 1: Using a Master Key stored in AWS KMS

• When uploading an object—Using the Customer Master Key (CMK) ID, the client first sends a request
to the AWS Key Management Service (AWS KMS) for a key that it can use to encrypt your object data.
AWS KMS returns two versions of a randomly generated data encryption key:

API Version 2006-03-01
293

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPart.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPartCopy.html
https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/sdk-for-go/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-php/
https://aws.amazon.com/sdk-for-ruby/
https://aws.amazon.com/sdk-for-cpp/

Amazon Simple Storage Service Developer Guide
Data Encryption

• A plaintext version that the client uses to encrypt the object data
• A cipher blob of the same data encryption key that the client uploads to Amazon S3 as object

metadata

Note
The client obtains a unique data encryption key for each object that it uploads.

• When downloading an object—The client downloads the encrypted object from Amazon S3 along
with the cipher blob version of the data encryption key stored as object metadata. The client then
sends the cipher blob to AWS KMS to get the plaintext version of the key so that it can decrypt the
object data.

For more information about AWS KMS, see What is the AWS Key Management Service? in the AWS Key
Management Service Developer Guide.

Example

The following example uploads an object to Amazon S3 using AWS KMS with the AWS SDK for Java.
The example uses a AWS-managed customer master key (CMK) to encrypt data on the client side before
uploading it to Amazon S3. If you already have a CMK, you can use that by specifying the value of the
kms_cmk_id variable in the sample code. If you don't have a CMK, or you need another one, you can
generate one through the Java API. The example shows how to generate a CMK.

For more information about key material, see Importing Key Material in AWS Key Management Service
(AWS KMS). For instructions on creating and testing a working sample, see Testing the Amazon S3 Java
Code Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.RegionUtils;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.kms.AWSKMS;
import com.amazonaws.services.kms.AWSKMSClientBuilder;
import com.amazonaws.services.kms.model.CreateKeyResult;
import com.amazonaws.services.s3.AmazonS3Encryption;
import com.amazonaws.services.s3.AmazonS3EncryptionClientBuilder;
import com.amazonaws.services.s3.model.CryptoConfiguration;
import com.amazonaws.services.s3.model.KMSEncryptionMaterialsProvider;
import com.amazonaws.services.s3.model.S3Object;
import com.amazonaws.services.s3.model.S3ObjectInputStream;

import java.io.ByteArrayOutputStream;
import java.io.IOException;

public class UploadObjectKMSKey {

 public static void main(String[] args) throws IOException {
 String bucketName = "*** Bucket name ***";
 String keyName = "*** Object key name ***";
 Regions clientRegion = Regions.DEFAULT_REGION;
 String kms_cmk_id = "*** AWS KMS customer master key ID ***";
 int readChunkSize = 4096;

 try {
 // Optional: If you don't have a KMS key (or need another one),
 // create one. This example creates a key with AWS-created
 // key material.
 AWSKMS kmsClient = AWSKMSClientBuilder.standard()
 .withRegion(clientRegion)
 .build();

API Version 2006-03-01
294

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/importing-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/importing-keys.html

Amazon Simple Storage Service Developer Guide
Data Encryption

 CreateKeyResult keyResult = kmsClient.createKey();
 kms_cmk_id = keyResult.getKeyMetadata().getKeyId();

 // Create the encryption client.
 KMSEncryptionMaterialsProvider materialProvider = new
 KMSEncryptionMaterialsProvider(kms_cmk_id);
 CryptoConfiguration cryptoConfig = new CryptoConfiguration()
 .withAwsKmsRegion(RegionUtils.getRegion(clientRegion.toString()));
 AmazonS3Encryption encryptionClient =
 AmazonS3EncryptionClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withEncryptionMaterials(materialProvider)
 .withCryptoConfiguration(cryptoConfig)
 .withRegion(clientRegion).build();

 // Upload an object using the encryption client.
 String origContent = "S3 Encrypted Object Using KMS-Managed Customer Master
 Key.";
 int origContentLength = origContent.length();
 encryptionClient.putObject(bucketName, keyName, origContent);

 // Download the object. The downloaded object is still encrypted.
 S3Object downloadedObject = encryptionClient.getObject(bucketName, keyName);
 S3ObjectInputStream input = downloadedObject.getObjectContent();

 // Decrypt and read the object and close the input stream.
 byte[] readBuffer = new byte[readChunkSize];
 ByteArrayOutputStream baos = new ByteArrayOutputStream(readChunkSize);
 int bytesRead = 0;
 int decryptedContentLength = 0;

 while ((bytesRead = input.read(readBuffer)) != -1) {
 baos.write(readBuffer, 0, bytesRead);
 decryptedContentLength += bytesRead;
 }
 input.close();

 // Verify that the original and decrypted contents are the same size.
 System.out.println("Original content length: " + origContentLength);
 System.out.println("Decrypted content length: " + decryptedContentLength);
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Option 2: Using a Master Key Stored Within Your Application

This section shows how to use a master key stored within your application for client-side data
encryption.

Important
Your client-side master keys and your unencrypted data are never sent to AWS. It's important
that you safely manage your encryption keys. If you lose them, you can't decrypt your data.

This is how it works:

API Version 2006-03-01
295

Amazon Simple Storage Service Developer Guide
Data Encryption

• When uploading an object—You provide a client-side master key to the Amazon S3 encryption client.
The client uses the master key only to encrypt the data encryption key that it generates randomly. The
process works like this:
1. The Amazon S3 encryption client generates a one-time-use symmetric key (also known as a data

encryption key or data key) locally. It uses the data key to encrypt the data of a single Amazon S3
object. The client generates a separate data key for each object.

2. The client encrypts the data encryption key using the master key that you provide. The client
uploads the encrypted data key and its material description as part of the object metadata. The
client uses the material description to determine which client-side master key to use for decryption.

3. The client uploads the encrypted data to Amazon S3 and saves the encrypted data key as object
metadata (x-amz-meta-x-amz-key) in Amazon S3.

• When downloading an object—The client downloads the encrypted object from Amazon S3. Using
the material description from the object's metadata, the client determines which master key to use to
decrypt the data key. The client uses that master key to decrypt the data key and then uses the data
key to decrypt the object.

The client-side master key that you provide can be either a symmetric key or a public/private key pair.
The following examples show how to use both types of keys.

For more information, see Client-Side Data Encryption with the AWS SDK for Java and Amazon S3 .

Note
If you get a cipher-encryption error message when you use the encryption API for the first time,
your version of the JDK may have a Java Cryptography Extension (JCE) jurisdiction policy file
that limits the maximum key length for encryption and decryption transformations to 128
bits. The AWS SDK requires a maximum key length of 256 bits. To check your maximum key
length, use the getMaxAllowedKeyLength() method of the javax.crypto.Cipher class.
To remove the key-length restriction, install the Java Cryptography Extension (JCE) Unlimited
Strength Jurisdiction Policy Files at the Java SE download page.

Example

The following example shows how to do these tasks:

• Generate a 256-bit AES key
• Save and load the AES key to and from the file system
• Use the AES key to encrypt data on the client side before sending it to Amazon S3
• Use the AES key to decrypt data received from Amazon S3
• Verify that the decrypted data is the same as the original data

For instructions on creating and testing a working sample, see Testing the Amazon S3 Java Code
Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3EncryptionClientBuilder;
import com.amazonaws.services.s3.model.*;

import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;
import java.io.*;
import java.security.InvalidKeyException;

API Version 2006-03-01
296

https://aws.amazon.com/articles/2850096021478074
http://docs.oracle.com/javase/8/

Amazon Simple Storage Service Developer Guide
Data Encryption

import java.security.NoSuchAlgorithmException;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.X509EncodedKeySpec;

public class S3ClientSideEncryptionSymMasterKey {

 public static void main(String[] args) throws Exception {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String objectKeyName = "*** Object key name ***";
 String masterKeyDir = System.getProperty("java.io.tmpdir");
 String masterKeyName = "secret.key";

 // Generate a symmetric 256-bit AES key.
 KeyGenerator symKeyGenerator = KeyGenerator.getInstance("AES");
 symKeyGenerator.init(256);
 SecretKey symKey = symKeyGenerator.generateKey();

 // To see how it works, save and load the key to and from the file system.
 saveSymmetricKey(masterKeyDir, masterKeyName, symKey);
 symKey = loadSymmetricAESKey(masterKeyDir, masterKeyName, "AES");

 try {
 // Create the Amazon S3 encryption client.
 EncryptionMaterials encryptionMaterials = new EncryptionMaterials(symKey);
 AmazonS3 s3EncryptionClient = AmazonS3EncryptionClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withEncryptionMaterials(new
 StaticEncryptionMaterialsProvider(encryptionMaterials))
 .withRegion(clientRegion)
 .build();

 // Upload a new object. The encryption client automatically encrypts it.
 byte[] plaintext = "S3 Object Encrypted Using Client-Side Symmetric Master
 Key.".getBytes();
 s3EncryptionClient.putObject(new PutObjectRequest(bucketName,
 objectKeyName,
 new ByteArrayInputStream(plaintext),
 new ObjectMetadata()));

 // Download and decrypt the object.
 S3Object downloadedObject = s3EncryptionClient.getObject(bucketName,
 objectKeyName);
 byte[] decrypted =
 com.amazonaws.util.IOUtils.toByteArray(downloadedObject.getObjectContent());

 // Verify that the data that you downloaded is the same as the original data.
 System.out.println("Plaintext: " + new String(plaintext));
 System.out.println("Decrypted text: " + new String(decrypted));
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }

 private static void saveSymmetricKey(String masterKeyDir, String masterKeyName,
 SecretKey secretKey) throws IOException {
 X509EncodedKeySpec x509EncodedKeySpec = new
 X509EncodedKeySpec(secretKey.getEncoded());
 FileOutputStream keyOutputStream = new FileOutputStream(masterKeyDir +
 File.separator + masterKeyName);

API Version 2006-03-01
297

Amazon Simple Storage Service Developer Guide
Data Encryption

 keyOutputStream.write(x509EncodedKeySpec.getEncoded());
 keyOutputStream.close();
 }

 private static SecretKey loadSymmetricAESKey(String masterKeyDir, String masterKeyName,
 String algorithm)
 throws IOException, NoSuchAlgorithmException, InvalidKeySpecException,
 InvalidKeyException {
 // Read the key from the specified file.
 File keyFile = new File(masterKeyDir + File.separator + masterKeyName);
 FileInputStream keyInputStream = new FileInputStream(keyFile);
 byte[] encodedPrivateKey = new byte[(int) keyFile.length()];
 keyInputStream.read(encodedPrivateKey);
 keyInputStream.close();

 // Reconstruct and return the master key.
 return new SecretKeySpec(encodedPrivateKey, "AES");
 }
}

The following example shows how to do these tasks:

• Generate a 1024-bit RSA key pair.

• Save and load the RSA keys to and from the file system.

• Use the RSA keys to encrypt data on the client side before sending it to Amazon S3.

• Use the RSA keys to decrypt data received from Amazon S3.

• Verify that the decrypted data is the same as the original data.

For instructions on creating and testing a working sample, see Testing the Amazon S3 Java Code
Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3EncryptionClientBuilder;
import com.amazonaws.services.s3.model.*;
import com.amazonaws.util.IOUtils;

import java.io.*;
import java.security.*;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;

public class S3ClientSideEncryptionAsymmetricMasterKey {

 public static void main(String[] args) throws Exception {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String objectKeyName = "*** Key name ***";
 String rsaKeyDir = System.getProperty("java.io.tmpdir");
 String publicKeyName = "public.key";
 String privateKeyName = "private.key";

 // Generate a 1024-bit RSA key pair.
 KeyPairGenerator keyGenerator = KeyPairGenerator.getInstance("RSA");
 keyGenerator.initialize(1024, new SecureRandom());

API Version 2006-03-01
298

Amazon Simple Storage Service Developer Guide
Data Encryption

 KeyPair origKeyPair = keyGenerator.generateKeyPair();

 // To see how it works, save and load the key pair to and from the file system.
 saveKeyPair(rsaKeyDir, publicKeyName, privateKeyName, origKeyPair);
 KeyPair keyPair = loadKeyPair(rsaKeyDir, publicKeyName, privateKeyName, "RSA");

 try {
 // Create the encryption client.
 EncryptionMaterials encryptionMaterials = new EncryptionMaterials(keyPair);
 AmazonS3 s3EncryptionClient = AmazonS3EncryptionClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withEncryptionMaterials(new
 StaticEncryptionMaterialsProvider(encryptionMaterials))
 .withRegion(clientRegion)
 .build();

 // Create a new object.
 byte[] plaintext = "S3 Object Encrypted Using Client-Side Asymmetric Master
 Key.".getBytes();
 S3Object object = new S3Object();
 object.setKey(objectKeyName);
 object.setObjectContent(new ByteArrayInputStream(plaintext));
 ObjectMetadata metadata = new ObjectMetadata();
 metadata.setContentLength(plaintext.length);

 // Upload the object. The encryption client automatically encrypts it.
 PutObjectRequest putRequest = new PutObjectRequest(bucketName,
 object.getKey(),
 object.getObjectContent(),
 metadata);
 s3EncryptionClient.putObject(putRequest);

 // Download and decrypt the object.
 S3Object downloadedObject = s3EncryptionClient.getObject(bucketName,
 object.getKey());
 byte[] decrypted = IOUtils.toByteArray(downloadedObject.getObjectContent());

 // Verify that the data that you downloaded is the same as the original data.
 System.out.println("Plaintext: " + new String(plaintext));
 System.out.println("Decrypted text: " + new String(decrypted));
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }

 private static void saveKeyPair(String dir,
 String publicKeyName,
 String privateKeyName,
 KeyPair keyPair) throws IOException {
 PrivateKey privateKey = keyPair.getPrivate();
 PublicKey publicKey = keyPair.getPublic();

 // Write the public key to the specified file.
 X509EncodedKeySpec x509EncodedKeySpec = new
 X509EncodedKeySpec(publicKey.getEncoded());
 FileOutputStream publicKeyOutputStream = new FileOutputStream(dir + File.separator
 + publicKeyName);
 publicKeyOutputStream.write(x509EncodedKeySpec.getEncoded());
 publicKeyOutputStream.close();

API Version 2006-03-01
299

Amazon Simple Storage Service Developer Guide
Data Encryption

 // Write the private key to the specified file.
 PKCS8EncodedKeySpec pkcs8EncodedKeySpec = new
 PKCS8EncodedKeySpec(privateKey.getEncoded());
 FileOutputStream privateKeyOutputStream = new FileOutputStream(dir + File.separator
 + privateKeyName);
 privateKeyOutputStream.write(pkcs8EncodedKeySpec.getEncoded());
 privateKeyOutputStream.close();
 }

 private static KeyPair loadKeyPair(String dir,
 String publicKeyName,
 String privateKeyName,
 String algorithm)
 throws IOException, NoSuchAlgorithmException, InvalidKeySpecException {
 // Read the public key from the specified file.
 File publicKeyFile = new File(dir + File.separator + publicKeyName);
 FileInputStream publicKeyInputStream = new FileInputStream(publicKeyFile);
 byte[] encodedPublicKey = new byte[(int) publicKeyFile.length()];
 publicKeyInputStream.read(encodedPublicKey);
 publicKeyInputStream.close();

 // Read the private key from the specified file.
 File privateKeyFile = new File(dir + File.separator + privateKeyName);
 FileInputStream privateKeyInputStream = new FileInputStream(privateKeyFile);
 byte[] encodedPrivateKey = new byte[(int) privateKeyFile.length()];
 privateKeyInputStream.read(encodedPrivateKey);
 privateKeyInputStream.close();

 // Convert the keys into a key pair.
 KeyFactory keyFactory = KeyFactory.getInstance(algorithm);
 X509EncodedKeySpec publicKeySpec = new X509EncodedKeySpec(encodedPublicKey);
 PublicKey publicKey = keyFactory.generatePublic(publicKeySpec);

 PKCS8EncodedKeySpec privateKeySpec = new PKCS8EncodedKeySpec(encodedPrivateKey);
 PrivateKey privateKey = keyFactory.generatePrivate(privateKeySpec);

 return new KeyPair(publicKey, privateKey);
 }
}

API Version 2006-03-01
300

Amazon Simple Storage Service Developer Guide
Identity and Access Management

Identity and Access Management in Amazon S3
By default, all Amazon S3 resources—buckets, objects, and related subresources (for example,
lifecycle configuration and website configuration)—are private: only the resource owner, an
AWS account that created it, can access the resource. The resource owner can optionally grant access
permissions to others by writing an access policy.

Amazon S3 offers access policy options broadly categorized as resource-based policies and user policies.
Access policies you attach to your resources (buckets and objects) are referred to as resource-based
policies. For example, bucket policies and access control lists (ACLs) are resource-based policies. You can
also attach access policies to users in your account. These are called user policies. You may choose to
use resource-based policies, user policies, or some combination of these to manage permissions to your
Amazon S3 resources. The introductory topics provide general guidelines for managing permissions.

We recommend you first review the access control overview topics. For more information, see
Introduction to Managing Access Permissions to Your Amazon S3 Resources (p. 301). Then for more
information about specific access policy options, see the following topics:

• Using Bucket Policies and User Policies (p. 341)
• Managing Access with ACLs (p. 403)
• Using Amazon S3 Block Public Access (p. 414)

Introduction to Managing Access Permissions to Your
Amazon S3 Resources
Topics

• Overview of Managing Access (p. 302)
• How Amazon S3 Authorizes a Request (p. 307)
• Guidelines for Using the Available Access Policy Options (p. 312)
• Example Walkthroughs: Managing Access to Your Amazon S3 Resources (p. 315)

The topics in this section provide an overview of managing access permissions to your Amazon S3
resources and provides guidelines for when to use which access control method. The topics also provides
introductory example walkthroughs. We recommend you review these topics in order.

Several security best practices also address access control, including:

• Ensure Amazon S3 buckets are not publicly accessible
• Implement least privilege access
• Use IAM roles
• Enable MFA (Multi-Factor Authentication) Delete
• Identify and audit all your Amazon S3 buckets
• Monitor AWS security advisories

API Version 2006-03-01
301

Amazon Simple Storage Service Developer Guide
Introduction

Overview of Managing Access

When granting permissions, you decide who is getting them, which Amazon S3 resources they are
getting permissions for, and specific actions you want to allow on those resources.

Topics

• Amazon S3 Resources: Buckets and Objects (p. 302)

• Amazon S3 Bucket and Object Ownership (p. 302)

• Resource Operations (p. 303)

• Managing Access to Resources (Access Policy Options) (p. 303)

• Which Access Control Method Should I Use? (p. 306)

• More Info (p. 306)

Amazon S3 Resources: Buckets and Objects

In Amazon Web Services (AWS), a resource is an entity that you can work with. In Amazon S3, buckets
and objects are the resources, and both have associated subresources. For example, bucket subresources
include the following:

• lifecycle – Stores lifecycle configuration information (see Object Lifecycle Management (p. 119)).

• website – Stores website configuration information if you configure your bucket for website hosting
(see Hosting a Static Website on Amazon S3 (p. 503).

• versioning – Stores versioning configuration (see PUT Bucket versioning).

• policy and acl (access control list) – Store access permission information for the bucket.

• cors (cross-origin resource sharing) – Supports configuring your bucket to allow cross-origin requests
(see Cross-Origin Resource Sharing (CORS) (p. 151)).

• logging – Enables you to request Amazon S3 to save bucket access logs.

Object subresources include the following:

• acl – Stores a list of access permissions on the object. This topic discusses how to use this subresource
to manage object permissions (see Managing Access with ACLs (p. 403)).

• restore – Supports temporarily restoring an archived object (see POST Object restore). An object
in the Glacier storage class is an archived object. To access the object, you must first initiate a restore
request, which restores a copy of the archived object. In the request, you specify the number of days
that you want the restored copy to exist. For more information about archiving objects, see Object
Lifecycle Management (p. 119).

Amazon S3 Bucket and Object Ownership

Buckets and objects are Amazon S3 resources. By default, only the resource owner can access these
resources. The resource owner refers to the AWS account that creates the resource. For example:

• The AWS account that you use to create buckets and upload objects owns those resources.

• If you upload an object using AWS Identity and Access Management (IAM) user or role credentials, the
AWS account that the user or role belongs to owns the object.

API Version 2006-03-01
302

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTVersioningStatus.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html

Amazon Simple Storage Service Developer Guide
Introduction

• A bucket owner can grant cross-account permissions to another AWS account (or users in another
account) to upload objects. In this case, the AWS account that uploads objects owns those objects. The
bucket owner does not have permissions on the objects that other accounts own, with the following
exceptions:
• The bucket owner pays the bills. The bucket owner can deny access to any objects, or delete any

objects in the bucket, regardless of who owns them.
• The bucket owner can archive any objects or restore archived objects regardless of who owns them.

Archival refers to the storage class used to store the objects. For more information, see Object
Lifecycle Management (p. 119).

Ownership and Request Authentication

All requests to a bucket are either authenticated or unauthenticated. Authenticated requests must
include a signature value that authenticates the request sender, unauthenticated requests do not. For
more information on request authentication, see Making Requests (p. 10).

A bucket owner can allow unauthenticated requests. For example, unauthenticated PUT Object
requests are allowed when a bucket has a public bucket policy, or when a bucket ACL grants WRITE or
FULL_CONTROL access to the All Users group or the anonymous user specifically. For more information
about public bucket policies and public ACLs, see The Meaning of "Public" (p. 417).

All unauthenticated requests are made by the anonymous user. This user is represented in access control
lists (ACLs) by the specific canonical user ID 65a011a29cdf8ec533ec3d1ccaae921c. If an object is
uploaded to a bucket through an unauthenticated request, the anonymous user owns the object. The
default object ACL grants FULL_CONTROL to the anonymous user as the object's owner. Therefore,
Amazon S3 allows unauthenticated requests to retrieve the object or modify its ACL.

To prevent objects from being modified by the anonymous user, we recommend that you do not
implement bucket policies that allow anonymous public writes to your bucket or use ACLs that allow
the anonymous user write access to your bucket. You can enforce this recommended behavior by using
Amazon S3 Block Public Access.

For more information about blocking public access, see Using Amazon S3 Block Public Access (p. 414).
For more information about ACLs, see Access Control List (ACL) Overview (p. 403).

Important
AWS recommends that you don't use the AWS account root user credentials to make
authenticated requests. Instead, create an IAM user and grant that user full access. We refer to
these users as administrator users. You can use the administrator user credentials, instead of
AWS account root user credentials, to interact with AWS and perform tasks, such as create a
bucket, create users, and grant them permissions. For more information, see AWS Account Root
User Credentials vs. IAM User Credentials in the AWS General Reference and IAM Best Practices in
the IAM User Guide.

Resource Operations

Amazon S3 provides a set of operations to work with the Amazon S3 resources. For a list of available
operations, go to Operations on Buckets and Operations on Objects in the Amazon Simple Storage
Service API Reference.

Managing Access to Resources (Access Policy Options)

Managing access refers to granting others (AWS accounts and users) permission to perform the resource
operations by writing an access policy. For example, you can grant PUT Object permission to a user
in an AWS account so the user can upload objects to your bucket. In addition to granting permissions
to individual users and accounts, you can grant permissions to everyone (also referred as anonymous
access) or to all authenticated users (users with AWS credentials). For example, if you configure your

API Version 2006-03-01
303

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html
https://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketOps.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectOps.html

Amazon Simple Storage Service Developer Guide
Introduction

bucket as a website, you may want to make objects public by granting the GET Object permission to
everyone.

Access policy describes who has access to what. You can associate an access policy with a resource
(bucket and object) or a user. Accordingly, you can categorize the available Amazon S3 access policies as
follows:

• Resource-based policies – Bucket policies and access control lists (ACLs) are resource-based because
you attach them to your Amazon S3 resources.

• ACL – Each bucket and object has an ACL associated with it. An ACL is a list of grants identifying
grantee and permission granted. You use ACLs to grant basic read/write permissions to other AWS
accounts. ACLs use an Amazon S3–specific XML schema.

The following is an example bucket ACL. The grant in the ACL shows a bucket owner as having full
control permission.

<?xml version="1.0" encoding="UTF-8"?>
<AccessControlPolicy xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Owner>
 <ID>*** Owner-Canonical-User-ID ***</ID>
 <DisplayName>owner-display-name</DisplayName>
 </Owner>
 <AccessControlList>
 <Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="Canonical User">
 <ID>*** Owner-Canonical-User-ID ***</ID>
 <DisplayName>display-name</DisplayName>
 </Grantee>
 <Permission>FULL_CONTROL</Permission>
 </Grant>
 </AccessControlList>
</AccessControlPolicy>

Both bucket and object ACLs use the same XML schema.
• Bucket policy – For your bucket, you can add a bucket policy to grant other AWS accounts or IAM

users permissions for the bucket and the objects in it. Any object permissions apply only to the
objects that the bucket owner creates. Bucket policies supplement, and in many cases, replace ACL-
based access policies.

API Version 2006-03-01
304

Amazon Simple Storage Service Developer Guide
Introduction

The following is an example bucket policy. You express bucket policy (and user policy) using a JSON
file. The policy grants anonymous read permission on all objects in a bucket. The bucket policy has
one statement, which allows the s3:GetObject action (read permission) on objects in a bucket
named examplebucket. By specifying the principal with a wild card (*), the policy grants
anonymous accesss, and should be used carefully. For example, the following bucket policy would
make objects publicly accessible.

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect":"Allow",
 "Principal": "*",
 "Action":["s3:GetObject"],
 "Resource":["arn:aws:s3:::examplebucket/*"]
 }
]
}

• User policies – You can use IAM to manage access to your Amazon S3 resources. You can create IAM
users, groups, and roles in your account and attach access policies to them granting them access to
AWS resources, including Amazon S3.

For more information about IAM, see the AWS Identity and Access Management (IAM) product detail
page.

The following is an example of a user policy. You cannot grant anonymous permissions in an IAM user
policy, because the policy is attached to a user. The example policy allows the associated user that it's
attached to perform six different Amazon S3 actions on a bucket and the objects in it. You can attach
this policy to a specific IAM user, group, or role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ExampleStatement1",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:DeleteObject",
 "s3:GetBucketLocation"
],

API Version 2006-03-01
305

https://aws.amazon.com/iam/

Amazon Simple Storage Service Developer Guide
Introduction

 "Resource": [
 "arn:aws:s3:::examplebucket/*",
 "arn:aws:s3:::examplebucket"
]
 },
 {
 "Sid": "ExampleStatement2",
 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": "*"
 }
]
}

When Amazon S3 receives a request, it must evaluate all the access policies to determine whether to
authorize or deny the request. For more information about how Amazon S3 evaluates these policies, see
How Amazon S3 Authorizes a Request (p. 307).

Which Access Control Method Should I Use?

With the options available to write an access policy, the following questions arise:

• When should I use which access control method? For example, to grant bucket permissions, should
I use a bucket policy or bucket ACL? I own a bucket and the objects in the bucket. Should I use a
resource-based access policy or an IAM user policy? If I use a resource-based access policy, should I use
a bucket policy or an object ACL to manage object permissions?

• I own a bucket, but I don't own all of the objects in it. How are access permissions managed for the
objects that somebody else owns?

• If I grant access by using a combination of these access policy options, how does Amazon S3 determine
if a user has permission to perform a requested operation?

The following sections explain these access control alternatives, how Amazon S3 evaluates access control
mechanisms, and when to use which access control method. They also provide example walkthroughs.

How Amazon S3 Authorizes a Request (p. 307)

Guidelines for Using the Available Access Policy Options (p. 312)

Example Walkthroughs: Managing Access to Your Amazon S3 Resources (p. 315)

More Info

We recommend that you first review the introductory topics that explain the options available for you
to manage access to your Amazon S3 resources. For more information, see Introduction to Managing
Access Permissions to Your Amazon S3 Resources (p. 301). You can then use the following topics for
more information about specific access policy options.

• Using Bucket Policies and User Policies (p. 341)
• Managing Access with ACLs (p. 403)

API Version 2006-03-01
306

Amazon Simple Storage Service Developer Guide
Introduction

How Amazon S3 Authorizes a Request
Topics

• Related Topics (p. 308)

• How Amazon S3 Authorizes a Request for a Bucket Operation (p. 308)

• How Amazon S3 Authorizes a Request for an Object Operation (p. 310)

When Amazon S3 receives a request—for example, a bucket or an object operation—it first verifies
that the requester has the necessary permissions. Amazon S3 evaluates all the relevant access policies,
user policies, and resource-based policies (bucket policy, bucket ACL, object ACL) in deciding whether to
authorize the request. The following are some of the example scenarios:

• If the requester is an IAM principal, Amazon S3 must determine if the parent AWS account to which the
principal belongs has granted the principal necessary permission to perform the operation. In addition,
if the request is for a bucket operation, such as a request to list the bucket content, Amazon S3 must
verify that the bucket owner has granted permission for the requester to perform the operation.

Note
To perform a specific operation on a resource, an IAM principal needs permission from both
the parent AWS account to which it belongs and the AWS account that owns the resource.

• If the request is for an operation on an object that the bucket owner does not own, in addition to
making sure the requester has permissions from the object owner, Amazon S3 must also check the
bucket policy to ensure the bucket owner has not set explicit deny on the object.

Note
A bucket owner (who pays the bill) can explicitly deny access to objects in the bucket
regardless of who owns it. The bucket owner can also delete any object in the bucket

In order to determine whether the requester has permission to perform the specific operation, Amazon
S3 does the following, in order, when it receives a request:

1. Converts all the relevant access policies (user policy, bucket policy, ACLs) at run time into a set of
policies for evaluation.

2. Evaluates the resulting set of policies in the following steps. In each step, Amazon S3 evaluates a
subset of policies in a specific context, based on the context authority.

a. User context – In the user context, the parent account to which the user belongs is the context
authority.

Amazon S3 evaluates a subset of policies owned by the parent account. This subset includes the
user policy that the parent attaches to the user. If the parent also owns the resource in the request
(bucket, object), Amazon S3 also evaluates the corresponding resource policies (bucket policy,
bucket ACL, and object ACL) at the same time.

A user must have permission from the parent account to perform the operation.

This step applies only if the request is made by a user in an AWS account. If the request is made
using root credentials of an AWS account, Amazon S3 skips this step.

b. Bucket context – In the bucket context, Amazon S3 evaluates policies owned by the AWS account
that owns the bucket.

If the request is for a bucket operation, the requester must have permission from the bucket owner.
If the request is for an object, Amazon S3 evaluates all the policies owned by the bucket owner to
check if the bucket owner has not explicitly denied access to the object. If there is an explicit deny
set, Amazon S3 does not authorize the request.

API Version 2006-03-01
307

Amazon Simple Storage Service Developer Guide
Introduction

c. Object context – If the request is for an object, Amazon S3 evaluates the subset of policies owned
by the object owner.

The following sections describe in detail and provide examples:

• How Amazon S3 Authorizes a Request for a Bucket Operation (p. 308)
• How Amazon S3 Authorizes a Request for an Object Operation (p. 310)

Related Topics

We recommend you first review the introductory topics that explain the options for managing access to
your Amazon S3 resources. For more information, see Introduction to Managing Access Permissions to
Your Amazon S3 Resources (p. 301). You can then use the following topics for more information about
specific access policy options.

• Using Bucket Policies and User Policies (p. 341)
• Managing Access with ACLs (p. 403)

How Amazon S3 Authorizes a Request for a Bucket Operation

When Amazon S3 receives a request for a bucket operation, Amazon S3 converts all the relevant
permissions—resource-based permissions (bucket policy, bucket access control list (ACL)) and IAM user
policy if the request is from an IAM principal—into a set of policies to evaluate at run time. It then
evaluates the resulting set of policies in a series of steps according to a specific context—user context or
bucket context.

1. User context – If the requester is an IAM principal, the principal must have permission from the parent
AWS account to which it belongs. In this step, Amazon S3 evaluates a subset of policies owned by
the parent account (also referred to as the context authority). This subset of policies includes the
user policy that the parent account attaches to the principal. If the parent also owns the resource in
the request (in this case, the bucket), Amazon S3 also evaluates the corresponding resource policies
(bucket policy and bucket ACL) at the same time. Whenever a request for a bucket operation is made,
the server access logs record the canonical ID of the requester. For more information, see Amazon S3
Server Access Logging (p. 647).

2. Bucket context – The requester must have permissions from the bucket owner to perform a specific
bucket operation. In this step, Amazon S3 evaluates a subset of policies owned by the AWS account
that owns the bucket.

The bucket owner can grant permission by using a bucket policy or bucket ACL. Note that, if the AWS
account that owns the bucket is also the parent account of an IAM principal, then it can configure
bucket permissions in a user policy.

The following is a graphical illustration of the context-based evaluation for bucket operation.

API Version 2006-03-01
308

Amazon Simple Storage Service Developer Guide
Introduction

The following examples illustrate the evaluation logic.

Example 1: Bucket Operation Requested by Bucket Owner

In this example, the bucket owner sends a request for a bucket operation using the root credentials of
the AWS account.

Amazon S3 performs the context evaluation as follows:

1. Because the request is made by using root credentials of an AWS account, the user context is not
evaluated .

2. In the bucket context, Amazon S3 reviews the bucket policy to determine if the requester has
permission to perform the operation. Amazon S3 authorizes the request.

Example 2: Bucket Operation Requested by an AWS Account That Is Not the Bucket Owner

In this example, a request is made using root credentials of AWS account 1111-1111-1111 for a bucket
operation owned by AWS account 2222-2222-2222. No IAM users are involved in this request.

In this case, Amazon S3 evaluates the context as follows:

1. Because the request is made using root credentials of an AWS account, the user context is not
evaluated.

2. In the bucket context, Amazon S3 examines the bucket policy. If the bucket owner (AWS account
2222-2222-2222) has not authorized AWS account 1111-1111-1111 to perform the requested
operation, Amazon S3 denies the request. Otherwise, Amazon S3 grants the request and performs the
operation.

Example 3: Bucket Operation Requested by an IAM Principal Whose Parent AWS Account Is Also
the Bucket Owner

In the example, the request is sent by Jill, an IAM user in AWS account 1111-1111-1111, which also owns
the bucket.

API Version 2006-03-01
309

Amazon Simple Storage Service Developer Guide
Introduction

Amazon S3 performs the following context evaluation:

1. Because the request is from an IAM principal, in the user context, Amazon S3 evaluates all policies that
belong to the parent AWS account to determine if Jill has permission to perform the operation.

In this example, parent AWS account 1111-1111-1111, to which the principal belongs, is also the
bucket owner. As a result, in addition to the user policy, Amazon S3 also evaluates the bucket policy
and bucket ACL in the same context, because they belong to the same account.

2. Because Amazon S3 evaluated the bucket policy and bucket ACL as part of the user context, it does
not evaluate the bucket context.

Example 4: Bucket Operation Requested by an IAM Principal Whose Parent AWS Account Is Not
the Bucket Owner

In this example, the request is sent by Jill, an IAM user whose parent AWS account is 1111-1111-1111,
but the bucket is owned by another AWS account, 2222-2222-2222.

Jill will need permissions from both the parent AWS account and the bucket owner. Amazon S3 evaluates
the context as follows:

1. Because the request is from an IAM principal, Amazon S3 evaluates the user context by reviewing the
policies authored by the account to verify that Jill has the necessary permissions. If Jill has permission,
then Amazon S3 moves on to evaluate the bucket context; if not, it denies the request.

2. In the bucket context, Amazon S3 verifies that bucket owner 2222-2222-2222 has granted Jill (or
her parent AWS account) permission to perform the requested operation. If she has that permission,
Amazon S3 grants the request and performs the operation; otherwise, Amazon S3 denies the request.

How Amazon S3 Authorizes a Request for an Object Operation

When Amazon S3 receives a request for an object operation, it converts all the relevant permissions—
resource-based permissions (object access control list (ACL), bucket policy, bucket ACL) and IAM user
policies—into a set of policies to be evaluated at run time. It then evaluates the resulting set of policies
in a series of steps. In each step, it evaluates a subset of policies in three specific contexts—user context,
bucket context, and object context.

1. User context – If the requester is an IAM principal, the principal must have permission from the parent
AWS account to which it belongs. In this step, Amazon S3 evaluates a subset of policies owned by the
parent account (also referred as the context authority). This subset of policies includes the user policy
that the parent attaches to the principal. If the parent also owns the resource in the request (bucket,
object), Amazon S3 evaluates the corresponding resource policies (bucket policy, bucket ACL, and
object ACL) at the same time.

Note
If the parent AWS account owns the resource (bucket or object), it can grant resource
permissions to its IAM principal by using either the user policy or the resource policy.

API Version 2006-03-01
310

Amazon Simple Storage Service Developer Guide
Introduction

2. Bucket context – In this context, Amazon S3 evaluates policies owned by the AWS account that owns
the bucket.

If the AWS account that owns the object in the request is not same as the bucket owner, in the bucket
context Amazon S3 checks the policies if the bucket owner has explicitly denied access to the object. If
there is an explicit deny set on the object, Amazon S3 does not authorize the request.

3. Object context – The requester must have permissions from the object owner to perform a specific
object operation. In this step, Amazon S3 evaluates the object ACL.

Note
If bucket and object owners are the same, access to the object can be granted in the bucket
policy, which is evaluated at the bucket context. If the owners are different, the object
owners must use an object ACL to grant permissions. If the AWS account that owns the
object is also the parent account to which the IAM principal belongs, it can configure object
permissions in a user policy, which is evaluated at the user context. For more information
about using these access policy alternatives, see Guidelines for Using the Available Access
Policy Options (p. 312).

The following is an illustration of the context-based evaluation for an object operation.

Example 1: Object Operation Request

In this example, IAM user Jill, whose parent AWS account is 1111-1111-1111, sends an object operation
request (for example, Get object) for an object owned by AWS account 3333-3333-3333 in a bucket
owned by AWS account 2222-2222-2222.

Jill will need permission from the parent AWS account, the bucket owner, and the object owner. Amazon
S3 evaluates the context as follows:

1. Because the request is from an IAM principal, Amazon S3 evaluates the user context to verify that the
parent AWS account 1111-1111-1111 has given Jill permission to perform the requested operation. If
she has that permission, Amazon S3 evaluates the bucket context. Otherwise, Amazon S3 denies the
request.

API Version 2006-03-01
311

Amazon Simple Storage Service Developer Guide
Introduction

2. In the bucket context, the bucket owner, AWS account 2222-2222-2222, is the context authority.
Amazon S3 evaluates the bucket policy to determine if the bucket owner has explicitly denied Jill
access to the object.

3. In the object context, the context authority is AWS account 3333-3333-3333, the object owner.
Amazon S3 evaluates the object ACL to determine if Jill has permission to access the object. If she
does, Amazon S3 authorizes the request.

Guidelines for Using the Available Access Policy Options
Amazon S3 supports resource-based policies and user policies to manage access to your Amazon S3
resources (see Managing Access to Resources (Access Policy Options) (p. 303)). Resource-based policies
include bucket policies, bucket ACLs, and object ACLs. This section describes specific scenarios for using
resource-based access policies to manage access to your Amazon S3 resources.

When to Use an ACL-based Access Policy (Bucket and Object ACLs)

Both buckets and objects have associated ACLs that you can use to grant permissions. The following
sections describe scenarios for using object ACLs and bucket ACLs.

When to Use an Object ACL

In addition to an object ACL, there are other ways an object owner can manage object permissions. For
example:

• If the AWS account that owns the object also owns the bucket, then it can write a bucket policy to
manage the object permissions.

• If the AWS account that owns the object wants to grant permission to a user in its account, it can use a
user policy.

So when do you use object ACLs to manage object permissions? The following are the scenarios when
you use object ACLs to manage object permissions.

• An object ACL is the only way to manage access to objects not owned by the bucket owner – An
AWS account that owns the bucket can grant another AWS account permission to upload objects.
The bucket owner does not own these objects. The AWS account that created the object must grant
permissions using object ACLs.

Note
A bucket owner cannot grant permissions on objects it does not own. For example, a bucket
policy granting object permissions applies only to objects owned by the bucket owner.
However, the bucket owner, who pays the bills, can write a bucket policy to deny access to any
objects in the bucket, regardless of who owns it. The bucket owner can also delete any objects
in the bucket.

• Permissions vary by object and you need to manage permissions at the object level – You can
write a single policy statement granting an AWS account read permission on millions of objects with a
specific key name prefix. For example, grant read permission on objects starting with key name prefix
"logs". However, if your access permissions vary by object, granting permissions to individual objects
using a bucket policy may not be practical. Also the bucket policies are limited to 20 KB in size.

In this case, you may find using object ACLs a suitable alternative. Although, even an object ACL is also
limited to a maximum of 100 grants (see Access Control List (ACL) Overview (p. 403)).

• Object ACLs control only object-level permissions – There is a single bucket policy for the entire
bucket, but object ACLs are specified per object.

An AWS account that owns a bucket can grant another AWS account permission to manage access
policy. It allows that account to change anything in the policy. To better manage permissions, you

API Version 2006-03-01
312

Amazon Simple Storage Service Developer Guide
Introduction

may choose not to give such a broad permission, and instead grant only the READ-ACP and WRITE-
ACP permissions on a subset of objects. This limits the account to manage permissions only on specific
objects by updating individual object ACLs.

When to Use a Bucket ACL

The only recommended use case for the bucket ACL is to grant write permission to the Amazon
S3 Log Delivery group to write access log objects to your bucket (see Amazon S3 Server Access
Logging (p. 647)). If you want Amazon S3 to deliver access logs to your bucket, you will need to
grant write permission on the bucket to the Log Delivery group. The only way you can grant necessary
permissions to the Log Delivery group is via a bucket ACL, as shown in the following bucket ACL
fragment.

<?xml version="1.0" encoding="UTF-8"?>
<AccessControlPolicy xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Owner>
 ...
 </Owner>
 <AccessControlList>
 <Grant>
 ...
 </Grant>
 <Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="Group">
 <URI>http://acs.amazonaws.com/groups/s3/LogDelivery</URI>
 </Grantee>
 <Permission>WRITE</Permission>
 </Grant>
 </AccessControlList>
</AccessControlPolicy>

When to Use a Bucket Policy

If an AWS account that owns a bucket wants to grant permission to users in its account, it can use either
a bucket policy or a user policy. But in the following scenarios, you will need to use a bucket policy.

• You want to manage cross-account permissions for all Amazon S3 permissions – You can use ACLs
to grant cross-account permissions to other accounts, but ACLs support only a finite set of permission
(What Permissions Can I Grant? (p. 405)), these don't include all Amazon S3 permissions. For
example, you cannot grant permissions on bucket subresources (see Identity and Access Management
in Amazon S3 (p. 301)) using an ACL.

Although both bucket and user policies support granting permission for all Amazon S3 operations (see
Specifying Permissions in a Policy (p. 345)), the user policies are for managing permissions for users
in your account. For cross-account permissions to other AWS accounts or users in another account, you
must use a bucket policy.

When to Use a User Policy

In general, you can use either a user policy or a bucket policy to manage permissions. You may choose
to manage permissions by creating users and managing permissions individually by attaching policies to
users (or user groups), or you may find that resource-based policies, such as a bucket policy, work better
for your scenario.

Note that AWS Identity and Access Management (IAM) enables you to create multiple users within your
AWS account and manage their permissions via user policies. An IAM user must have permissions from
the parent account to which it belongs, and from the AWS account that owns the resource the user wants
to access. The permissions can be granted as follows:

API Version 2006-03-01
313

Amazon Simple Storage Service Developer Guide
Introduction

• Permission from the parent account – The parent account can grant permissions to its user by
attaching a user policy.

• Permission from the resource owner – The resource owner can grant permission to either the IAM
user (using a bucket policy) or the parent account (using a bucket policy, bucket ACL, or object ACL).

This is akin to a child who wants to play with a toy that belongs to someone else. In this case, the child
must get permission from a parent to play with the toy and permission from the toy owner.

Permission Delegation

If an AWS account owns a resource, it can grant those permissions to another AWS account. That account
can then delegate those permissions, or a subset of them, to users in the account. This is referred to as
permission delegation. But an account that receives permissions from another account cannot delegate
permission cross-account to another AWS account.

Related Topics

We recommend you first review all introductory topics that explain how you manage access to your
Amazon S3 resources and related guidelines. For more information, see Introduction to Managing Access
Permissions to Your Amazon S3 Resources (p. 301). You can then use the following topics for more
information about specific access policy options.

• Using Bucket Policies and User Policies (p. 341)
• Managing Access with ACLs (p. 403)

API Version 2006-03-01
314

Amazon Simple Storage Service Developer Guide
Introduction

Example Walkthroughs: Managing Access to Your Amazon S3
Resources

This topic provides the following introductory walkthrough examples for granting access to Amazon
S3 resources. These examples use the AWS Management Console to create resources (buckets, objects,
users) and grant them permissions. The examples then show you how to verify permissions using the
command line tools, so you don't have to write any code. We provide commands using both the AWS
Command Line Interface (CLI) and the AWS Tools for Windows PowerShell.

• Example 1: Bucket Owner Granting Its Users Bucket Permissions (p. 318)

The IAM users you create in your account have no permissions by default. In this exercise, you grant a
user permission to perform bucket and object operations.

• Example 2: Bucket Owner Granting Cross-Account Bucket Permissions (p. 322)

In this exercise, a bucket owner, Account A, grants cross-account permissions to another AWS account,
Account B. Account B then delegates those permissions to users in its account.

• Managing object permissions when the object and bucket owners are not the same

The example scenarios in this case are about a bucket owner granting object permissions to others, but
not all objects in the bucket are owned by the bucket owner. What permissions does the bucket owner
need, and how can it delegate those permissions?

The AWS account that creates a bucket is called the bucket owner. The owner can grant other AWS
accounts permission to upload objects, and the AWS accounts that create objects own them. The
bucket owner has no permissions on those objects created by other AWS accounts. If the bucket owner
writes a bucket policy granting access to objects, the policy does not apply to objects that are owned
by other accounts.

In this case, the object owner must first grant permissions to the bucket owner using an object ACL.
The bucket owner can then delegate those object permissions to others, to users in its own account, or
to another AWS account, as illustrated by the following examples.

• Example 3: Bucket Owner Granting Its Users Permissions to Objects It Does Not Own (p. 327)

In this exercise, the bucket owner first gets permissions from the object owner. The bucket owner
then delegates those permissions to users in its own account.

• Example 4: Bucket Owner Granting Cross-account Permission to Objects It Does Not Own (p. 332)

After receiving permissions from the object owner, the bucket owner cannot delegate permission
to other AWS accounts because cross-account delegation is not supported (see Permission
Delegation (p. 314)). Instead, the bucket owner can create an IAM role with permissions to perform
specific operations (such as get object) and allow another AWS account to assume that role. Anyone
who assumes the role can then access objects. This example shows how a bucket owner can use an
IAM role to enable this cross-account delegation.

Before You Try the Example Walkthroughs

These examples use the AWS Management Console to create resources and grant permissions. And to
test permissions, the examples use the command line tools, AWS Command Line Interface (CLI) and
AWS Tools for Windows PowerShell, so you don't need to write any code. To test permissions you will
need to set up one of these tools. For more information, see Setting Up the Tools for the Example
Walkthroughs (p. 316).

In addition, when creating resources these examples don't use root credentials of an AWS account.
Instead, you create an administrator user in these accounts to perform these tasks.

API Version 2006-03-01
315

Amazon Simple Storage Service Developer Guide
Introduction

About Using an Administrator User to Create Resources and Grant Permissions

AWS Identity and Access Management (IAM) recommends not using the root credentials of your
AWS account to make requests. Instead, create an IAM user, grant that user full access, and then use
that user's credentials to interact with AWS. We refer to this user as an administrator user. For more
information, go to Root Account Credentials vs. IAM User Credentials in the AWS General Reference and
IAM Best Practices in the IAM User Guide.

All example walkthroughs in this section use the administrator user credentials. If you have not created
an administrator user for your AWS account, the topics show you how.

Note that to sign in to the AWS Management Console using the user credentials, you will need to use
the IAM User Sign-In URL. The IAM console provides this URL for your AWS account. The topics show you
how to get the URL.

Setting Up the Tools for the Example Walkthroughs

The introductory examples (see Example Walkthroughs: Managing Access to Your Amazon S3 Resources
 (p. 315)) use the AWS Management Console to create resources and grant permissions. And to test
permissions, the examples use the command line tools, AWS Command Line Interface (CLI) and AWS
Tools for Windows PowerShell, so you don't need to write any code. To test permissions, you must set up
one of these tools.

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide.

Getting Set Up with the AWS Command Line Interface

Installing the AWS Command Line Interface

Configuring the AWS Command Line Interface
2. Set the default profile.

You will store user credentials in the AWS CLI config file. Create a default profile in the config file
using your AWS account credentials. See Configuration and Credential Files for instructions on
finding and editing your AWS CLI config file.

[default]
aws_access_key_id = access key ID
aws_secret_access_key = secret access key
region = us-west-2

3. Verify the setup by entering the following command at the command prompt. Both these
commands don't provide credentials explicitly, so the credentials of the default profile are used.

• Try the help command

aws help

• Use aws s3 ls to get a list of buckets on the configured account.

aws s3 ls

As you go through the example walkthroughs, you will create users, and you will save user credentials in
the config files by creating profiles, as the following example shows. Note that these profiles have names
(AccountAadmin and AccountBadmin):

API Version 2006-03-01
316

https://docs.aws.amazon.com/general/latest/gr/root-vs-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html

Amazon Simple Storage Service Developer Guide
Introduction

[profile AccountAadmin]
aws_access_key_id = User AccountAadmin access key ID
aws_secret_access_key = User AccountAadmin secret access key
region = us-west-2

[profile AccountBadmin]
aws_access_key_id = Account B access key ID
aws_secret_access_key = Account B secret access key
region = us-east-1

To execute a command using these user credentials, you add the --profile parameter specifying the
profile name. The following AWS CLI command retrieves a listing of objects in examplebucket and
specifies the AccountBadmin profile.

aws s3 ls s3://examplebucket --profile AccountBadmin

Alternatively, you can configure one set of user credentials as the default profile by changing the
AWS_DEFAULT_PROFILE environment variable from the command prompt. Once you've done this,
whenever you execute AWS CLI commands without the --profile parameter, the AWS CLI will use the
profile you set in the environment variable as the default profile.

$ export AWS_DEFAULT_PROFILE=AccountAadmin

To set up AWS Tools for Windows PowerShell

1. Download and configure the AWS Tools for Windows PowerShell. For instructions, go to Download
and Install the AWS Tools for Windows PowerShell in the AWS Tools for Windows PowerShell User
Guide.

Note
In order to load the AWS Tools for Windows PowerShell module, you need to enable
PowerShell script execution. For more information, go to Enable Script Execution in the AWS
Tools for Windows PowerShell User Guide.

2. For these exercises, you will specify AWS credentials per session using the Set-AWSCredentials
command. The command saves the credentials to a persistent store (-StoreAs parameter).

Set-AWSCredentials -AccessKey AccessKeyID -SecretKey SecretAccessKey -storeas string

3. Verify the setup.

• Execute the Get-Command to retrieve a list of available commands you can use for Amazon S3
operations.

Get-Command -module awspowershell -noun s3* -StoredCredentials string

• Execute the Get-S3Object command to retrieve a list of objects in a bucket.

Get-S3Object -BucketName bucketname -StoredCredentials string

For a list of commands, go to Amazon Simple Storage Service Cmdlets.

Now you are ready to try the exercises. Follow the links provided at the beginning of the section.

API Version 2006-03-01
317

https://docs.aws.amazon.com/powershell/latest/userguide/pstools-getting-set-up.html#pstools-installing-download
https://docs.aws.amazon.com/powershell/latest/userguide/pstools-getting-set-up.html#pstools-installing-download
https://docs.aws.amazon.com/powershell/latest/userguide/pstools-getting-set-up.html#enable-script-execution
https://docs.aws.amazon.com/powershell/latest/reference/Index.html

Amazon Simple Storage Service Developer Guide
Introduction

Example 1: Bucket Owner Granting Its Users Bucket Permissions

Topics
• Step 0: Preparing for the Walkthrough (p. 318)
• Step 1: Create Resources (a Bucket and an IAM User) in Account A and Grant Permissions (p. 319)
• Step 2: Test Permissions (p. 321)

In this exercise, an AWS account owns a bucket, and it has an IAM user in the account. The user by default
has no permissions. The parent account must grant permissions to the user to perform any tasks. Both
the bucket owner and the parent account to which the user belongs are the same. Therefore, the AWS
account can use a bucket policy, a user policy, or both to grant its user permissions on the bucket. You
will grant some permissions using a bucket policy and grant other permissions using a user policy.

The following steps summarize the walkthrough:

1. Account administrator creates a bucket policy granting a set of permissions to the user.
2. Account administrator attaches a user policy to the user granting additional permissions.
3. User then tries permissions granted via both the bucket policy and the user policy.

For this example, you will need an AWS account. Instead of using the root credentials of the account, you
will create an administrator user (see About Using an Administrator User to Create Resources and Grant
Permissions (p. 316)). We refer to the AWS account and the administrator user as follows:

Account ID Account Referred To As Administrator User in the
Account

1111-1111-1111 Account A AccountAadmin

All the tasks of creating users and granting permissions are done in the AWS Management Console. To
verify permissions, the walkthrough uses the command line tools, AWS Command Line Interface (CLI)
and AWS Tools for Windows PowerShell, to verify the permissions, so you don't need to write any code.

Step 0: Preparing for the Walkthrough

1. Make sure you have an AWS account and that it has a user with administrator privileges.

a. Sign up for an account, if needed. We refer to this account as Account A.

API Version 2006-03-01
318

Amazon Simple Storage Service Developer Guide
Introduction

i. Go to https://aws.amazon.com/s3 and click Sign Up.

ii. Follow the on-screen instructions.

AWS will notify you by email when your account is active and available for you to use.

b. In Account A, create an administrator user AccountAadmin. Using Account A credentials, sign in
to the IAM console and do the following:

i. Create user AccountAadmin and note down the user security credentials.

For instructions, see Creating an IAM User in Your AWS Account in the IAM User Guide.

ii. Grant AccountAadmin administrator privileges by attaching a user policy giving full access.

For instructions, see Working with Policies in the IAM User Guide.

iii. Note down the IAM User Sign-In URL for AccountAadmin. You will need to use this URL
when signing in to the AWS Management Console. For more information about where to
find it, see How Users Sign in to Your Account in IAM User Guide. Note down the URL for
each of the accounts.

2. Set up either the AWS Command Line Interface (CLI) or the AWS Tools for Windows PowerShell.
Make sure you save administrator user credentials as follows:

• If using the AWS CLI, create a profile, AccountAadmin, in the config file.

• If using the AWS Tools for Windows PowerShell, make sure you store credentials for the session as
AccountAadmin.

For instructions, see Setting Up the Tools for the Example Walkthroughs (p. 316).

Step 1: Create Resources (a Bucket and an IAM User) in Account A and Grant Permissions

Using the credentials of user AccountAadmin in Account A, and the special IAM user sign-in URL, sign in
to the AWS Management Console and do the following:

1. Create Resources (a bucket and an IAM user)

a. In the Amazon S3 console create a bucket. Note down the AWS region in which you created
it. For instructions, see How Do I Create an S3 Bucket? in the Amazon Simple Storage Service
Console User Guide.

b. In the IAM console, do the following:

i. Create a user, Dave.

For instructions, see Creating IAM Users (AWS Management Console) in the IAM User Guide.

ii. Note down the UserDave credentials.

iii. Note down the Amazon Resource Name (ARN) for user Dave. In the IAM console, select the
user, and the Summary tab provides the user ARN.

2. Grant Permissions.

Because the bucket owner and the parent account to which the user belongs are the same, the AWS
account can grant user permissions using a bucket policy, a user policy, or both. In this example,
you do both. If the object is also owned by the same account, the bucket owner can grant object
permissions in the bucket policy (or an IAM policy).

a. In the Amazon S3 console, attach the following bucket policy to examplebucket.

The policy has two statements.
API Version 2006-03-01

319

https://aws.amazon.com/s3
https://console.aws.amazon.com/iam/home?#home
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console

Amazon Simple Storage Service Developer Guide
Introduction

• The first statement grants Dave the bucket operation permissions s3:GetBucketLocation
and s3:ListBucket.

• The second statement grants the s3:GetObject permission. Because Account A also owns
the object, the account administrator is able to grant the s3:GetObject permission.

In the Principal statement, Dave is identified by his user ARN. For more information about
policy elements, see Access Policy Language Overview (p. 341).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountA-ID:user/Dave"
 },
 "Action": [
 "s3:GetBucketLocation",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::examplebucket"
]
 },
 {
 "Sid": "statement2",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountA-ID:user/Dave"
 },
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::examplebucket/*"
]
 }
]
}

b. Create an inline policy for the user Dave by using the following policy. The policy grants Dave
the s3:PutObject permission. You need to update the policy by providing your bucket name.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PermissionForObjectOperations",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::examplebucket/*"
]
 }
]
}

API Version 2006-03-01
320

Amazon Simple Storage Service Developer Guide
Introduction

For instructions, see Working with Inline Policies in the IAM User Guide. Note you need to sign in
to the console using Account A credentials.

Step 2: Test Permissions

Using Dave's credentials, verify that the permissions work. You can use either of the following two
procedures.

Test Using the AWS CLI

1. Update the AWS CLI config file by adding the following UserDaveAccountA profile. For more
information, see Setting Up the Tools for the Example Walkthroughs (p. 316).

[profile UserDaveAccountA]
aws_access_key_id = access-key
aws_secret_access_key = secret-access-key
region = us-east-1

2. Verify that Dave can perform the operations as granted in the user policy. Upload a sample object
using the following AWS CLI put-object command.

The --body parameter in the command identifies the source file to upload. For example, if the file
is in the root of the C: drive on a Windows machine, you specify c:\HappyFace.jpg. The --key
parameter provides the key name for the object.

aws s3api put-object --bucket examplebucket --key HappyFace.jpg --body HappyFace.jpg --
profile UserDaveAccountA

Execute the following AWS CLI command to get the object.

aws s3api get-object --bucket examplebucket --key HappyFace.jpg OutputFile.jpg --
profile UserDaveAccountA

Test Using the AWS Tools for Windows PowerShell

1. Store Dave's credentials as AccountADave. You then use these credentials to PUT and GET an object.

set-awscredentials -AccessKey AccessKeyID -SecretKey SecretAccessKey -storeas
 AccountADave

2. Upload a sample object using the AWS Tools for Windows PowerShell Write-S3Object command
using user Dave's stored credentials.

Write-S3Object -bucketname examplebucket -key HappyFace.jpg -file HappyFace.jpg -
StoredCredentials AccountADave

Download the previously uploaded object.

Read-S3Object -bucketname examplebucket -key HappyFace.jpg -file Output.jpg -
StoredCredentials AccountADave

API Version 2006-03-01
321

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_inline-using.html

Amazon Simple Storage Service Developer Guide
Introduction

Example 2: Bucket Owner Granting Cross-Account Bucket Permissions

Topics

• Step 0: Preparing for the Walkthrough (p. 323)

• Step 1: Do the Account A Tasks (p. 324)

• Step 2: Do the Account B Tasks (p. 325)

• Step 3: Extra Credit: Try Explicit Deny (p. 326)

• Step 4: Clean Up (p. 327)

An AWS account—for example, Account A—can grant another AWS account, Account B, permission to
access its resources such as buckets and objects. Account B can then delegate those permissions to users
in its account. In this example scenario, a bucket owner grants cross-account permission to another
account to perform specific bucket operations.

Note
Account A can also directly grant a user in Account B permissions using a bucket policy. But the
user will still need permission from the parent account, Account B, to which the user belongs,
even if Account B does not have permissions from Account A. As long as the user has permission
from both the resource owner and the parent account, the user will be able to access the
resource.

The following is a summary of the walkthrough steps:

1. Account A administrator user attaches a bucket policy granting cross-account permissions to Account
B to perform specific bucket operations.

Note that administrator user in Account B will automatically inherit the permissions.

2. Account B administrator user attaches user policy to the user delegating the permissions it received
from Account A.

3. User in Account B then verifies permissions by accessing an object in the bucket owned by Account A.

For this example, you need two accounts. The following table shows how we refer to these accounts
and the administrator users in them. Per IAM guidelines (see About Using an Administrator User to
Create Resources and Grant Permissions (p. 316)) we do not use the account root credentials in this
walkthrough. Instead, you create an administrator user in each account and use those credentials in
creating resources and granting them permissions.

AWS Account ID Account Referred To As Administrator User in the
Account

1111-1111-1111 Account A AccountAadmin

API Version 2006-03-01
322

Amazon Simple Storage Service Developer Guide
Introduction

AWS Account ID Account Referred To As Administrator User in the
Account

2222-2222-2222 Account B AccountBadmin

All the tasks of creating users and granting permissions are done in the AWS Management Console. To
verify permissions, the walkthrough uses the command line tools, AWS Command Line Interface (CLI)
and AWS Tools for Windows PowerShell, so you don't need to write any code.

Step 0: Preparing for the Walkthrough

1. Make sure you have two AWS accounts and that each account has one administrator user as shown
in the table in the preceding section.

a. Sign up for an AWS account, if needed.

i. Go to https://aws.amazon.com/s3/ and click Create an AWS Account.

ii. Follow the on-screen instructions.

AWS will notify you by email when your account is active and available for you to use.

b. Using Account A credentials, sign in to the IAM console to create the administrator user:

i. Create user AccountAadmin and note down the security credentials. For instructions, see
Creating an IAM User in Your AWS Account in the IAM User Guide.

ii. Grant AccountAadmin administrator privileges by attaching a user policy giving full access.
For instructions, see Working with Policies in the IAM User Guide.

c. While you are in the IAM console, note down the IAM User Sign-In URL on the Dashboard. All
users in the account must use this URL when signing in to the AWS Management Console.

For more information, see How Users Sign in to Your Account in IAM User Guide.

d. Repeat the preceding step using Account B credentials and create administrator user
AccountBadmin.

2. Set up either the AWS Command Line Interface (CLI) or the AWS Tools for Windows PowerShell.
Make sure you save administrator user credentials as follows:

• If using the AWS CLI, create two profiles, AccountAadmin and AccountBadmin, in the config file.

• If using the AWS Tools for Windows PowerShell, make sure you store credentials for the session as
AccountAadmin and AccountBadmin.

For instructions, see Setting Up the Tools for the Example Walkthroughs (p. 316).

3. Save the administrator user credentials, also referred to as profiles. You can use the profile name
instead of specifying credentials for each command you enter. For more information, see Setting Up
the Tools for the Example Walkthroughs (p. 316).

a. Add profiles in the AWS CLI credentials file for each of the administrator users in the two
accounts.

[AccountAadmin]
aws_access_key_id = access-key-ID
aws_secret_access_key = secret-access-key
region = us-east-1

[AccountBadmin]
aws_access_key_id = access-key-ID
aws_secret_access_key = secret-access-key

API Version 2006-03-01
323

https://aws.amazon.com/s3/
https://console.aws.amazon.com/iam/home?#home
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html

Amazon Simple Storage Service Developer Guide
Introduction

region = us-east-1

b. If you are using the AWS Tools for Windows PowerShell

set-awscredentials –AccessKey AcctA-access-key-ID –SecretKey AcctA-secret-access-
key –storeas AccountAadmin
set-awscredentials –AccessKey AcctB-access-key-ID –SecretKey AcctB-secret-access-
key –storeas AccountBadmin

Step 1: Do the Account A Tasks

Step 1.1: Sign In to the AWS Management Console

Using the IAM user sign-in URL for Account A first sign in to the AWS Management Console as
AccountAadmin user. This user will create a bucket and attach a policy to it.

Step 1.2: Create a Bucket

1. In the Amazon S3 console, create a bucket. This exercise assumes the bucket is created in the US East
(N. Virginia) region and is named examplebucket.

For instructions, see How Do I Create an S3 Bucket? in the Amazon Simple Storage Service Console
User Guide.

2. Upload a sample object to the bucket.

For instructions, go to Add an Object to a Bucket in the Amazon Simple Storage Service Getting
Started Guide.

Step 1.3: Attach a Bucket Policy to Grant Cross-Account Permissions to Account B

The bucket policy grants the s3:GetBucketLocation and s3:ListBucket permissions to Account B.
It is assumed you are still signed into the console using AccountAadmin user credentials.

1. Attach the following bucket policy to examplebucket. The policy grants Account B permission for
the s3:GetBucketLocation and s3:ListBucket actions.

For instructions, see How Do I Add an S3 Bucket Policy? in the Amazon Simple Storage Service
Console User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Example permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB-ID:root"
 },
 "Action": [
 "s3:GetBucketLocation",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::examplebucket"
]
 }
]
}

API Version 2006-03-01
324

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/PuttingAnObjectInABucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-bucket-policy.html

Amazon Simple Storage Service Developer Guide
Introduction

2. Verify Account B (and thus its administrator user) can perform the operations.

• Using the AWS CLI

aws s3 ls s3://examplebucket --profile AccountBadmin
aws s3api get-bucket-location --bucket examplebucket --profile AccountBadmin

• Using the AWS Tools for Windows PowerShell

get-s3object -BucketName example2bucket -StoredCredentials AccountBadmin
get-s3bucketlocation -BucketName example2bucket -StoredCredentials AccountBadmin

Step 2: Do the Account B Tasks

Now the Account B administrator creates a user, Dave, and delegates the permissions received from
Account A.

Step 2.1: Sign In to the AWS Management Console

Using the IAM user sign-in URL for Account B, first sign in to the AWS Management Console as
AccountBadmin user.

Step 2.2: Create User Dave in Account B

In the IAM console, create a user, Dave.

For instructions, see Creating IAM Users (AWS Management Console) in the IAM User Guide.

Step 2.3: Delegate Permissions to User Dave

Create an inline policy for the user Dave by using the following policy. You will need to update the policy
by providing your bucket name.

It is assumed you are signed in to the console using AccountBadmin user credentials.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Example",
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::examplebucket"
]
 }
]
}

For instructions, see Working with Inline Policies in the IAM User Guide.

Step 2.4: Test Permissions

Now Dave in Account B can list the contents of examplebucket owned by Account A. You can verify the
permissions using either of the following procedures.

API Version 2006-03-01
325

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_inline-using.html

Amazon Simple Storage Service Developer Guide
Introduction

Test Using the AWS CLI

1. Add the UserDave profile to the AWS CLI config file. For more information about the config file, see
Setting Up the Tools for the Example Walkthroughs (p. 316).

[profile UserDave]
aws_access_key_id = access-key
aws_secret_access_key = secret-access-key
region = us-east-1

2. At the command prompt, enter the following AWS CLI command to verify Dave can now get
an object list from the examplebucket owned by Account A. Note the command specifies the
UserDave profile.

aws s3 ls s3://examplebucket --profile UserDave

Dave does not have any other permissions. So if he tries any other operation—for example, the
following get bucket location—Amazon S3 returns permission denied.

aws s3api get-bucket-location --bucket examplebucket --profile UserDave

Test Using AWS Tools for Windows PowerShell

1. Store Dave's credentials as AccountBDave.

set-awscredentials -AccessKey AccessKeyID -SecretKey SecretAccessKey -storeas
 AccountBDave

2. Try the List Bucket command.

get-s3object -BucketName example2bucket -StoredCredentials AccountBDave

Dave does not have any other permissions. So if he tries any other operation—for example, the
following get bucket location—Amazon S3 returns permission denied.

get-s3bucketlocation -BucketName example2bucket -StoredCredentials AccountBDave

Step 3: Extra Credit: Try Explicit Deny

You can have permissions granted via an ACL, a bucket policy, and a user policy. But if there is an
explicit deny set via either a bucket policy or a user policy, the explicit deny takes precedence over
any other permissions. For testing, let's update the bucket policy and explicitly deny Account B the
s3:ListBucket permission. The policy also grants s3:ListBucket permission, but explicit deny takes
precedence, and Account B or users in Account B will not be able to list objects in examplebucket.

1. Using credentials of user AccountAadmin in Account A, replace the bucket policy by the following.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Example permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB-ID:root"

API Version 2006-03-01
326

Amazon Simple Storage Service Developer Guide
Introduction

 },
 "Action": [
 "s3:GetBucketLocation",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::examplebucket"
]
 },
 {
 "Sid": "Deny permission",
 "Effect": "Deny",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB-ID:root"
 },
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::examplebucket"
]
 }
]
}

2. Now if you try to get a bucket list using AccountBadmin credentials, you will get access denied.

• Using the AWS CLI:

aws s3 ls s3://examplebucket --profile AccountBadmin

• Using the AWS Tools for Windows PowerShell:

get-s3object -BucketName example2bucket -StoredCredentials AccountBDave

Step 4: Clean Up

1. After you are done testing, you can do the following to clean up.

• Sign in to the AWS Management Console (AWS Management Console) using Account A
credentials, and do the following:

• In the Amazon S3 console, remove the bucket policy attached to examplebucket. In the
bucket Properties, delete the policy in the Permissions section.

• If the bucket is created for this exercise, in the Amazon S3 console, delete the objects and
then delete the bucket.

• In the IAM console, remove the AccountAadmin user.

2. Sign in to the AWS Management Console (AWS Management Console) using Account B credentials.
In the IAM console, delete user AccountBadmin.

Example 3: Bucket Owner Granting Its Users Permissions to Objects It Does Not
Own

Topics

• Step 0: Preparing for the Walkthrough (p. 329)

• Step 1: Do the Account A Tasks (p. 329)

• Step 2: Do the Account B Tasks (p. 330)

API Version 2006-03-01
327

https://console.aws.amazon.com/
https://console.aws.amazon.com/

Amazon Simple Storage Service Developer Guide
Introduction

• Step 3: Test Permissions (p. 331)
• Step 4: Clean Up (p. 332)

The scenario for this example is that a bucket owner wants to grant permission to access objects, but not
all objects in the bucket are owned by the bucket owner. How can a bucket owner grant permission on
objects it does not own? For this example, the bucket owner is trying to grant permission to users in its
own account.

A bucket owner can enable other AWS accounts to upload objects. These objects are owned by the
accounts that created them. The bucket owner does not own objects that were not created by the bucket
owner. Therefore, for the bucket owner to grant access to these objects, the object owner must first
grant permission to the bucket owner using an object ACL. For more information, see Amazon S3 Bucket
and Object Ownership (p. 302).

In this example, the bucket owner delegates permission to users in its own account. The following is a
summary of the walkthrough steps:

1. Account A administrator user attaches a bucket policy with two statements.
• Allow cross-account permission to Account B to upload objects.
• Allow a user in its own account to access objects in the bucket.

2. Account B administrator user uploads objects to the bucket owned by Account A.
3. Account B administrator updates the object ACL adding grant that gives the bucket owner full-control

permission on the object.
4. User in Account A verifies by accessing objects in the bucket, regardless of who owns them.

For this example, you need two accounts. The following table shows how we refer to these accounts
and the administrator users in these accounts. Per IAM guidelines (see About Using an Administrator
User to Create Resources and Grant Permissions (p. 316)) we do not use the account root credentials in
this walkthrough. Instead, you create an administrator user in each account and use those credentials in
creating resources and granting them permissions.

AWS Account ID Account Referred To As Administrator User in the
Account

1111-1111-1111 Account A AccountAadmin

API Version 2006-03-01
328

Amazon Simple Storage Service Developer Guide
Introduction

AWS Account ID Account Referred To As Administrator User in the
Account

2222-2222-2222 Account B AccountBadmin

All the tasks of creating users and granting permissions are done in the AWS Management Console. To
verify permissions, the walkthrough uses the command line tools, AWS Command Line Interface (CLI)
and AWS Tools for Windows PowerShell, so you don't need to write any code.

Step 0: Preparing for the Walkthrough

1. Make sure you have two AWS accounts and each account has one administrator user as shown in the
table in the preceding section.

a. Sign up for an AWS account, if needed.

i. Go to https://aws.amazon.com/s3/ and click Create an AWS Account.
ii. Follow the on-screen instructions. AWS will notify you by email when your account is active

and available for you to use.
b. Using Account A credentials, sign in to the IAM console and do the following to create an

administrator user:

• Create user AccountAadmin and note down security credentials. For more information about
adding users, see Creating an IAM User in Your AWS Account in the IAM User Guide.

• Grant AccountAadmin administrator privileges by attaching a user policy giving full access.
For instructions, see Working with Policies in the IAM User Guide.

• In the IAM console Dashboard, note down the IAM User Sign-In URL. Users in this account
must use this URL when signing in to the AWS Management Console. For more information,
see How Users Sign in to Your Account in IAM User Guide.

c. Repeat the preceding step using Account B credentials and create administrator user
AccountBadmin.

2. Set up either the AWS Command Line Interface (CLI) or the AWS Tools for Windows PowerShell.
Make sure you save administrator user credentials as follows:

• If using the AWS CLI, create two profiles, AccountAadmin and AccountBadmin, in the config file.
• If using the AWS Tools for Windows PowerShell, make sure you store credentials for the session as

AccountAadmin and AccountBadmin.

For instructions, see Setting Up the Tools for the Example Walkthroughs (p. 316).

Step 1: Do the Account A Tasks

Step 1.1: Sign In to the AWS Management Console

Using the IAM user sign-in URL for Account A first sign in to the AWS Management Console as
AccountAadmin user. This user will create a bucket and attach a policy to it.

Step 1.2: Create a Bucket, a User, and Add a Bucket Policy Granting User Permissions

1. In the Amazon S3 console, create a bucket. This exercise assumes the bucket is created in the US East
(N. Virginia) region and the name is examplebucket.

For instructions, see How Do I Create an S3 Bucket? in the Amazon Simple Storage Service Console
User Guide.

2. In the IAM console, create a user Dave.

API Version 2006-03-01
329

https://aws.amazon.com/s3/
https://console.aws.amazon.com/iam/home?#home
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html

Amazon Simple Storage Service Developer Guide
Introduction

For instructions, see Creating IAM Users (AWS Management Console) in the IAM User Guide.

3. Note down the Dave credentials.

4. In the Amazon S3 console, attach the following bucket policy to examplebucket bucket. For
instructions, see How Do I Add an S3 Bucket Policy? in the Amazon Simple Storage Service Console
User Guide. Follow the steps to add a bucket policy. For information about how to find account IDs,
see Finding Your AWS Account ID.

The policy grants Account B the s3:PutObject and s3:ListBucket permissions. The policy also
grants user Dave the s3:GetObject permission.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB-ID:root"
 },
 "Action": [
 "s3:PutObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::examplebucket/*"
 "arn:aws:s3:::examplebucket"
]
 },
 {
 "Sid": "Statement3",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountA-ID:user/Dave"
 },
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::examplebucket/*"
]
 }
]
}

Step 2: Do the Account B Tasks

Now that Account B has permissions to perform operations on Account A's bucket, the Account B
administrator will do the following;

• Upload an object to Account A's bucket.

• Add a grant in the object ACL to allow Account A, the bucket owner, full control.

Using the AWS CLI

1. Using the put-object AWS CLI command, upload an object. The --body parameter in the
command identifies the source file to upload. For example, if the file is on C: drive of a Windows
machine, you would specify c:\HappyFace.jpg. The --key parameter provides the key name for
the object.

API Version 2006-03-01
330

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-bucket-policy.html
https://docs.aws.amazon.com//general/latest/gr/acct-identifiers.html#FindingYourAccountIdentifiers

Amazon Simple Storage Service Developer Guide
Introduction

aws s3api put-object --bucket examplebucket --key HappyFace.jpg --body HappyFace.jpg --
profile AccountBadmin

2. Add a grant to the object ACL to allow the bucket owner full control of the object. For information
about how to find a canonical user ID, see Finding Your Account Canonical User ID.

aws s3api put-object-acl --bucket examplebucket --key HappyFace.jpg --grant-full-
control id="AccountA-CanonicalUserID" --profile AccountBadmin

Using the AWS Tools for Windows PowerShell

1. Using the Write-S3Object AWS Tools for Windows PowerShell command, upload an object.

Write-S3Object -BucketName examplebucket -key HappyFace.jpg -file HappyFace.jpg -
StoredCredentials AccountBadmin

2. Add a grant to the object ACL to allow the bucket owner full control of the object.

Set-S3ACL -BucketName examplebucket -Key HappyFace.jpg -CannedACLName "bucket-owner-
full-control" -StoredCreden

Step 3: Test Permissions

Now verify user Dave in Account A can access the object owned by Account B.

Using the AWS CLI

1. Add user Dave credentials to the AWS CLI config file and create a new profile, UserDaveAccountA.
For more information, see Setting Up the Tools for the Example Walkthroughs (p. 316).

[profile UserDaveAccountA]
aws_access_key_id = access-key
aws_secret_access_key = secret-access-key
region = us-east-1

2. Execute the get-object AWS CLI command to download HappyFace.jpg and save it locally. You
provide user Dave credentials by adding the --profile parameter.

aws s3api get-object --bucket examplebucket --key HappyFace.jpg Outputfile.jpg --
profile UserDaveAccountA

Using the AWS Tools for Windows PowerShell

1. Store user Dave AWS credentials, as UserDaveAccountA, to persistent store.

Set-AWSCredentials -AccessKey UserDave-AccessKey -SecretKey UserDave-SecretAccessKey -
storeas UserDaveAccountA

2. Execute the Read-S3Object command to download the HappyFace.jpg object and save it locally.
You provide user Dave credentials by adding the -StoredCredentials parameter.

Read-S3Object -BucketName examplebucket -Key HappyFace.jpg -file HappyFace.jpg -
StoredCredentials UserDaveAccountA

API Version 2006-03-01
331

https://docs.aws.amazon.com//general/latest/gr/acct-identifiers.html#FindingCanonicalId

Amazon Simple Storage Service Developer Guide
Introduction

Step 4: Clean Up

1. After you are done testing, you can do the following to clean up.

• Sign in to the AWS Management Console (AWS Management Console) using Account A
credentials, and do the following:

• In the Amazon S3 console, remove the bucket policy attached to examplebucket. In the
bucket Properties, delete the policy in the Permissions section.

• If the bucket is created for this exercise, in the Amazon S3 console, delete the objects and
then delete the bucket.

• In the IAM console, remove the AccountAadmin user.

2. Sign in to the AWS Management Console (AWS Management Console) using Account B credentials.
In the IAM console, delete user AccountBadmin.

Example 4: Bucket Owner Granting Cross-account Permission to Objects It Does
Not Own

Topics

• Background: Cross-Account Permissions and Using IAM Roles (p. 332)

• Step 0: Preparing for the Walkthrough (p. 334)

• Step 1: Do the Account A Tasks (p. 335)

• Step 2: Do the Account B Tasks (p. 337)

• Step 3: Do the Account C Tasks (p. 338)

• Step 4: Clean Up (p. 339)

• Related Resources (p. 340)

In this example scenario, you own a bucket and you have enabled other AWS accounts to upload objects.
That is, your bucket can have objects that other AWS accounts own.

Now, suppose as a bucket owner, you need to grant cross-account permission on objects, regardless of
who the owner is, to a user in another account. For example, that user could be a billing application that
needs to access object metadata. There are two core issues:

• The bucket owner has no permissions on those objects created by other AWS accounts. So for the
bucket owner to grant permissions on objects it does not own, the object owner, the AWS account
that created the objects, must first grant permission to the bucket owner. The bucket owner can then
delegate those permissions.

• Bucket owner account can delegate permissions to users in its own account (see Example 3: Bucket
Owner Granting Its Users Permissions to Objects It Does Not Own (p. 327)), but it cannot delegate
permissions to other AWS accounts, because cross-account delegation is not supported.

In this scenario, the bucket owner can create an AWS Identity and Access Management (IAM) role with
permission to access objects, and grant another AWS account permission to assume the role temporarily
enabling it to access objects in the bucket.

Background: Cross-Account Permissions and Using IAM Roles

IAM roles enable several scenarios to delegate access to your resources, and cross-account access is
one of the key scenarios. In this example, the bucket owner, Account A, uses an IAM role to temporarily
delegate object access cross-account to users in another AWS account, Account C. Each IAM role you
create has two policies attached to it:

API Version 2006-03-01
332

https://console.aws.amazon.com/
https://console.aws.amazon.com/

Amazon Simple Storage Service Developer Guide
Introduction

• A trust policy identifying another AWS account that can assume the role.

• An access policy defining what permissions—for example, s3:GetObject—are allowed when
someone assumes the role. For a list of permissions you can specify in a policy, see Specifying
Permissions in a Policy (p. 345).

The AWS account identified in the trust policy then grants its user permission to assume the role. The
user can then do the following to access objects:

• Assume the role and, in response, get temporary security credentials.

• Using the temporary security credentials, access the objects in the bucket.

For more information about IAM roles, go to IAM Roles in IAM User Guide.

The following is a summary of the walkthrough steps:

1. Account A administrator user attaches a bucket policy granting Account B conditional permission to
upload objects.

2. Account A administrator creates an IAM role, establishing trust with Account C, so users in that
account can access Account A. The access policy attached to the role limits what user in Account C can
do when the user accesses Account A.

3. Account B administrator uploads an object to the bucket owned by Account A, granting full-control
permission to the bucket owner.

4. Account C administrator creates a user and attaches a user policy that allows the user to assume the
role.

5. User in Account C first assumes the role, which returns the user temporary security credentials. Using
those temporary credentials, the user then accesses objects in the bucket.

For this example, you need three accounts. The following table shows how we refer to these accounts
and the administrator users in these accounts. Per IAM guidelines (see About Using an Administrator
User to Create Resources and Grant Permissions (p. 316)) we do not use the account root credentials in
this walkthrough. Instead, you create an administrator user in each account and use those credentials in
creating resources and granting them permissions

API Version 2006-03-01
333

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon Simple Storage Service Developer Guide
Introduction

AWS Account ID Account Referred To As Administrator User in the
Account

1111-1111-1111 Account A AccountAadmin

2222-2222-2222 Account B AccountBadmin

3333-3333-3333 Account C AccountCadmin

Step 0: Preparing for the Walkthrough

Note
You may want to open a text editor and write down some of the information as you walk
through the steps. In particular, you will need account IDs, canonical user IDs, IAM User Sign-in
URLs for each account to connect to the console, and Amazon Resource Names (ARNs) of the
IAM users, and roles.

1. Make sure you have three AWS accounts and each account has one administrator user as shown in
the table in the preceding section.

a. Sign up for AWS accounts, as needed. We refer to these accounts as Account A, Account B, and
Account C.

i. Go to https://aws.amazon.com/s3/ and click Create an AWS Account.

ii. Follow the on-screen instructions.

AWS will notify you by email when your account is active and available for you to use.

b. Using Account A credentials, sign in to the IAM console and do the following to create an
administrator user:

• Create user AccountAadmin and note down security credentials. For more information about
adding users, see Creating an IAM User in Your AWS Account in the IAM User Guide.

• Grant AccountAadmin administrator privileges by attaching a user policy giving full access.
For instructions, see Working with Policies in the IAM User Guide.

• In the IAM Console Dashboard, note down the IAM User Sign-In URL. Users in this account
must use this URL when signing in to the AWS Management Console. For more information,
go to How Users Sign In to Your Account in IAM User Guide.

c. Repeat the preceding step to create administrator users in Account B and Account C.

2. For Account C, note down the canonical user ID.

When you create an IAM role in Account A, the trust policy grants Account C permission to assume
the role by specifying the account ID. You can find account information as follows:

a. Use your AWS account ID or account alias, your IAM user name, and your password to sign in to
the Amazon S3 Console.

b. Choose the name of an Amazon S3 bucket to view the details about that bucket.

c. Choose the Permissions tab and then choose Access Control List.

d. In the Access for your AWS account section, in the Account column is a long identifier, such as
c1daexampleaaf850ea79cf0430f33d72579fd1611c97f7ded193374c0b163b6. This is
your canonical user ID.

3. When creating a bucket policy, you will need the following information. Note down these values:

• Canonical user ID of Account A – When the Account A administrator grants conditional upload
object permission to the Account B administrator, the condition specifies the canonical user ID of
the Account A user that must get full-control of the objects.

API Version 2006-03-01
334

https://aws.amazon.com/s3/
https://console.aws.amazon.com/iam/home?#home
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_how-users-sign-in.html
https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
Introduction

Note
The canonical user ID is the Amazon S3–only concept. It is a 64-character obfuscated
version of the account ID.

• User ARN for Account B administrator – You can find the user ARN in the IAM console. You will
need to select the user and find the user's ARN in the Summary tab.

In the bucket policy, you grant AccountBadmin permission to upload objects and you specify the
user using the ARN. Here's an example ARN value:

arn:aws:iam::AccountB-ID:user/AccountBadmin

4. Set up either the AWS Command Line Interface (CLI) or the AWS Tools for Windows PowerShell.
Make sure you save administrator user credentials as follows:

• If using the AWS CLI, create profiles, AccountAadmin and AccountBadmin, in the config file.

• If using the AWS Tools for Windows PowerShell, make sure you store credentials for the session as
AccountAadmin and AccountBadmin.

For instructions, see Setting Up the Tools for the Example Walkthroughs (p. 316).

Step 1: Do the Account A Tasks

In this example, Account A is the bucket owner. So user AccountAadmin in Account A will create a bucket,
attach a bucket policy granting the Account B administrator permission to upload objects, create an IAM
role granting Account C permission to assume the role so it can access objects in the bucket.

Step 1.1: Sign In to the AWS Management Console

Using the IAM User Sign-in URL for Account A, first sign in to the AWS Management Console as
AccountAadmin user. This user will create a bucket and attach a policy to it.

Step 1.2: Create a Bucket and Attach a Bucket Policy

In the Amazon S3 console, do the following:

1. Create a bucket. This exercise assumes the bucket name is examplebucket.

For instructions, see How Do I Create an S3 Bucket? in the Amazon Simple Storage Service Console
User Guide.

2. Attach the following bucket policy granting conditional permission to the Account B administrator
permission to upload objects.

You need to update the policy by providing your own values for examplebucket, AccountB-ID,
and the CanonicalUserId-of-AWSaccountA-BucketOwner.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "111",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB-ID:user/AccountBadmin"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::examplebucket/*"
 },

API Version 2006-03-01
335

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html

Amazon Simple Storage Service Developer Guide
Introduction

 {
 "Sid": "112",
 "Effect": "Deny",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB-ID:user/AccountBadmin"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::examplebucket/*",
 "Condition": {
 "StringNotEquals": {
 "s3:x-amz-grant-full-control": "id=CanonicalUserId-of-AWSaccountA-
BucketOwner"
 }
 }
 }
]
}

Step 1.3: Create an IAM Role to Allow Account C Cross-Account Access in Account A

In the IAM console, create an IAM role ("examplerole") that grants Account C permission to assume the
role. Make sure you are still signed in as the Account A administrator because the role must be created in
Account A.

1. Before creating the role, prepare the managed policy that defines the permissions that the role
requires. You attach this policy to the role in a later step.

a. In the navigation pane on the left, click Policies and then click Create Policy.
b. Next to Create Your Own Policy, click Select.
c. Enter access-accountA-bucket in the Policy Name field.
d. Copy the following access policy and paste it into the Policy Document field. The access policy

grants the role s3:GetObject permission so when Account C user assumes the role, it can only
perform the s3:GetObject operation.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::examplebucket/*"
 }
]
}

e. Click Create Policy.

The new policy appears in the list of managed policies.
2. In the navigation pane on the left, click Roles and then click Create New Role.
3. Under Select Role Type, select Role for Cross-Account Access, and then click the Select button next

to Provide access between AWS accounts you own.
4. Enter the Account C account ID.

For this walkthrough you do not need to require users to have multi-factor authentication (MFA) to
assume the role, so leave that option unselected.

5. Click Next Step to set the permissions that will be associated with the role.
6. Select the box next to the access-accountA-bucket policy that you created and then click Next

Step.

API Version 2006-03-01
336

Amazon Simple Storage Service Developer Guide
Introduction

The Review page appears so you can confirm the settings for the role before it's created. One very
important item to note on this page is the link that you can send to your users who need to use this
role. Users who click the link go straight to the Switch Role page with the Account ID and Role Name
fields already filled in. You can also see this link later on the Role Summary page for any cross-
account role.

7. Enter examplerole for the role name, and then click Next Step.

8. After reviewing the role, click Create Role.

The examplerole role is displayed in the list of roles.

9. Click the role name examplerole.

10. Select the Trust Relationships tab.

11. Click Show policy document and verify the trust policy shown matches the following policy.

The following trust policy establishes trust with Account C, by allowing it the sts:AssumeRole
action. For more information, go to AssumeRole in the AWS Security Token Service API Reference.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountC-ID:root"
 },
 "Action": "sts:AssumeRole"
 }
]
}

12. Note down the Amazon Resource Name (ARN) of the examplerole role you created.

Later in the following steps, you attach a user policy to allow an IAM user to assume this role, and
you identify the role by the ARN value.

Step 2: Do the Account B Tasks

The examplebucket owned by Account A needs objects owned by other accounts. In this step, the
Account B administrator uploads an object using the command line tools.

• Using the put-object AWS CLI command, upload an object to the examplebucket.

aws s3api put-object --bucket examplebucket --key HappyFace.jpg --body HappyFace.jpg --
grant-full-control id="canonicalUserId-ofTheBucketOwner" --profile AccountBadmin

Note the following:

• The --Profile parameter specifies AccountBadmin profile, so the object is owned by Account B.

• The parameter grant-full-control grants the bucket owner full-control permission on the
object as required by the bucket policy.

• The --body parameter identifies the source file to upload. For example, if the file is on the C:
drive of a Windows computer, you specify c:\HappyFace.jpg.

API Version 2006-03-01
337

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

Amazon Simple Storage Service Developer Guide
Introduction

Step 3: Do the Account C Tasks

In the preceding steps, Account A has already created a role, examplerole, establishing trust with
Account C. This allows users in Account C to access Account A. In this step, Account C administrator
creates a user (Dave) and delegates him the sts:AssumeRole permission it received from Account A.
This will allow Dave to assume the examplerole and temporarily gain access to Account A. The access
policy that Account A attached to the role will limit what Dave can do when he accesses Account A—
specifically, get objects in examplebucket.

Step 3.1: Create a User in Account C and Delegate Permission to Assume examplerole

1. Using the IAM user sign-in URL for Account C, first sign in to the AWS Management Console as
AccountCadmin user.

2. In the IAM console, create a user Dave.

For instructions, see Creating IAM Users (AWS Management Console) in the IAM User Guide.

3. Note down the Dave credentials. Dave will need these credentials to assume the examplerole role.

4. Create an inline policy for the Dave IAM user to delegate the sts:AssumeRole permission to Dave
on the examplerole role in account A.

a. In the navigation pane on the left, click Users.

b. Click the user name Dave.

c. On the user details page, select the Permissions tab and then expand the Inline Policies
section.

d. Choose click here (or Create User Policy).

e. Click Custom Policy, and then click Select.

f. Enter a name for the policy in the Policy Name field.

g. Copy the following policy into the Policy Document field.

You will need to update the policy by providing the Account A ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["sts:AssumeRole"],
 "Resource": "arn:aws:iam::AccountA-ID:role/examplerole"
 }
]
}

h. Click Apply Policy

5. Save Dave's credentials to the config file of the AWS CLI by adding another profile, AccountCDave.

[profile AccountCDave]
aws_access_key_id = UserDaveAccessKeyID
aws_secret_access_key = UserDaveSecretAccessKey
region = us-west-2

Step 3.2: Assume Role (examplerole) and Access Objects

Now Dave can access objects in the bucket owned by Account A as follows:

• Dave first assumes the examplerole using his own credentials. This will return temporary credentials.
API Version 2006-03-01

338

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console

Amazon Simple Storage Service Developer Guide
Introduction

• Using the temporary credentials, Dave will then access objects in Account A's bucket.

1. At the command prompt, execute the following AWS CLI assume-role command using the
AccountCDave profile.

You will need to update the ARN value in the command by providing the Account A ID where
examplerole is defined.

aws sts assume-role --role-arn arn:aws:iam::accountA-ID:role/examplerole --profile
 AccountCDave --role-session-name test

In response, AWS Security Token Service (STS) returns temporary security credentials (access key ID,
secret access key, and a session token).

2. Save the temporary security credentials in the AWS CLI config file under the TempCred profile.

[profile TempCred]
aws_access_key_id = temp-access-key-ID
aws_secret_access_key = temp-secret-access-key
aws_session_token = session-token
region = us-west-2

3. At the command prompt, execute the following AWS CLI command to access objects using the
temporary credentials. For example, the command specifies the head-object API to retrieve object
metadata for the HappyFace.jpg object.

aws s3api get-object --bucket examplebucket --key HappyFace.jpg SaveFileAs.jpg --
profile TempCred

Because the access policy attached to examplerole allows the actions, Amazon S3 processes the
request. You can try any other action on any other object in the bucket.

If you try any other action—for example, get-object-acl—you will get permission denied
because the role is not allowed that action.

aws s3api get-object-acl --bucket examplebucket --key HappyFace.jpg --profile TempCred

We used user Dave to assume the role and access the object using temporary credentials. It could
also be an application in Account C that accesses objects in examplebucket. The application can
obtain temporary security credentials, and Account C can delegate the application permission to
assume examplerole.

Step 4: Clean Up

1. After you are done testing, you can do the following to clean up.

• Sign in to the AWS Management Console (AWS Management Console) using account A
credentials, and do the following:

• In the Amazon S3 console, remove the bucket policy attached to examplebucket. In the
bucket Properties, delete the policy in the Permissions section.

• If the bucket is created for this exercise, in the Amazon S3 console, delete the objects and
then delete the bucket.

• In the IAM console, remove the examplerole you created in Account A.

• In the IAM console, remove the AccountAadmin user.
API Version 2006-03-01

339

https://console.aws.amazon.com/

Amazon Simple Storage Service Developer Guide
Introduction

2. Sign in to the AWS Management Console (AWS Management Console) using Account B credentials.
In the IAM console, delete user AccountBadmin.

3. Sign in to the AWS Management Console (AWS Management Console) using Account C credentials.
In the IAM console, delete user AccountCadmin and user Dave.

Related Resources

• Creating a Role to Delegate Permissions to an IAM User in the IAM User Guide.
• Tutorial: Delegate Access Across AWS Accounts Using IAM Roles in the IAM User Guide.
• Working with Policies in the IAM User Guide.

API Version 2006-03-01
340

https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial-cross-account-with-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Using Bucket Policies and User Policies
Bucket policy and user policy are two of the access policy options available for you to grant permission
to your Amazon S3 resources. Both use JSON-based access policy language. The topics in this section
describe the key policy language elements, with emphasis on Amazon S3–specific details, and provide
example bucket and user policies.

Important
We recommend that you first review the introductory topics that explain the basic concepts and
options available for you to manage access to your Amazon S3 resources. For more information,
see Introduction to Managing Access Permissions to Your Amazon S3 Resources (p. 301).

Topics
• Access Policy Language Overview (p. 341)
• Bucket Policy Examples (p. 371)
• User Policy Examples (p. 380)

Access Policy Language Overview
The topics in this section describe the basic elements used in bucket and user policies as used in Amazon
S3. For complete policy language information, see the Overview of IAM Policies and the AWS IAM Policy
Reference topics in the IAM User Guide.

Note
Bucket policies are limited to 20 KB in size.

Common Elements in an Access Policy

In its most basic sense, a policy contains the following elements:

• Resources – Buckets and objects are the Amazon S3 resources for which you can allow or deny
permissions. In a policy, you use the Amazon Resource Name (ARN) to identify the resource.

• Actions – For each resource, Amazon S3 supports a set of operations. You identify resource
operations that you will allow (or deny) by using action keywords (see Specifying Permissions in a
Policy (p. 345)).

For example, the s3:ListBucket permission allows the user permission to the Amazon S3 GET
Bucket (List Objects) operation.

• Effect – What the effect will be when the user requests the specific action—this can be either allow or
deny.

If you do not explicitly grant access to (allow) a resource, access is implicitly denied. You can also
explicitly deny access to a resource, which you might do in order to make sure that a user cannot access
it, even if a different policy grants access.

• Principal – The account or user who is allowed access to the actions and resources in the statement.
In a bucket policy, the principal is the user, account, service, or other entity who is the recipient of this
permission.

The following example bucket policy shows the preceding common policy elements. The policy allows
Dave, a user in account Account-ID, s3:GetObject, s3:GetBucketLocation, and s3:ListBucket
Amazon S3 permissions on the examplebucket bucket.

{
 "Version": "2012-10-17",
 "Id": "ExamplePolicy01",
 "Statement": [

API Version 2006-03-01
341

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

 {
 "Sid": "ExampleStatement01",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::Account-ID:user/Dave"
 },
 "Action": [
 "s3:GetObject",
 "s3:GetBucketLocation",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::examplebucket/*",
 "arn:aws:s3:::examplebucket"
]
 }
]
}

For more information about the access policy elements, see the following topics:

• Specifying Resources in a Policy (p. 342)
• Specifying a Principal in a Policy (p. 343)
• Specifying Permissions in a Policy (p. 345)
• Specifying Conditions in a Policy (p. 350)

The following topics provide additional policy examples:

• Bucket Policy Examples (p. 371)
• User Policy Examples (p. 380)

Specifying Resources in a Policy

The following is the common Amazon Resource Name (ARN) format to identify any resources in AWS.

arn:partition:service:region:namespace:relative-id

For your Amazon S3 resources:

• aws is a common partition name. If your resources are in the China (Beijing) Region, aws-cn is the
partition name.

• s3 is the service.
• You don't specify Region and namespace.
• For Amazon S3, it can be a bucket-name or a bucket-name/object-key. You can use wild card.

Then the ARN format for Amazon S3 resources reduces to the following:

arn:aws:s3:::bucket_name
arn:aws:s3:::bucket_name/key_name

The following are examples of Amazon S3 resource ARNs.

• This ARN identifies the /developers/design_info.doc object in the examplebucket bucket.

arn:aws:s3:::examplebucket/developers/design_info.doc

API Version 2006-03-01
342

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

• You can use wildcards as part of the resource ARN. You can use wildcard characters (* and ?) within
any ARN segment (the parts separated by colons). An asterisk (*) represents any combination of zero
or more characters, and a question mark (?) represents any single character. You can use multiple * or
? characters in each segment, but a wildcard cannot span segments.

• This ARN uses the wildcard * in the relative-ID part of the ARN to identify all objects in the
examplebucket bucket.

arn:aws:s3:::examplebucket/*

This ARN uses * to indicate all Amazon S3 resources (all S3 buckets and objects in your account).

arn:aws:s3:::*

• This ARN uses both wildcards, * and ?, in the relative-ID part. It identifies all objects in buckets such
as example1bucket, example2bucket, example3bucket, and so on.

arn:aws:s3:::example?bucket/*

• You can use policy variables in Amazon S3 ARNs. At policy evaluation time, these predefined variables
are replaced by their corresponding values. Suppose that you organize your bucket as a collection of
folders, one folder for each of your users. The folder name is the same as the user name. To grant
users permission to their folders, you can specify a policy variable in the resource ARN:

arn:aws:s3:::bucket_name/developers/${aws:username}/

At runtime, when the policy is evaluated, the variable ${aws:username} in the resource ARN is
substituted with the user name making the request.

To find the ARN for an S3 bucket, you can look at the Amazon S3 console Bucket Policy or CORS
configuration permissions pages. For more information, see How Do I Add an S3 Bucket Policy? or How
Do I Allow Cross-Domain Resource Sharing with CORS? in the Amazon Simple Storage Service Console
User Guide.

For more information about ARNs, see the following:

• Resource in the IAM User Guide

• IAM Policy Variables Overview in the IAM User Guide

• ARNs in the AWS General Reference

For more information about other access policy language elements, see Access Policy Language
Overview (p. 341).

Specifying a Principal in a Policy

The Principal element specifies the user, account, service, or other entity that is allowed or denied
access to a resource. The following are examples of specifying Principal. For more information, see
Principal in the IAM User Guide.

• To grant permissions to an AWS account, identify the account using the following format.

"AWS":"account-ARN"

For example:
API Version 2006-03-01

343

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-bucket-policy.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-cors-configuration.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-cors-configuration.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Resource
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Principal

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

"Principal":{"AWS":"arn:aws:iam::AccountNumber-WithoutHyphens:root"}

Amazon S3 also supports a canonical user ID, which is an obfuscated form of the AWS account ID. You
can specify this ID using the following format.

"CanonicalUser":"64-digit-alphanumeric-value"

For example:

"Principal":{"CanonicalUser":"64-digit-alphanumeric-value"}

For information about how to find the canonical user ID for your account, see Finding Your Account
Canonical User ID.

Important
When you use a canonical user ID in a policy, Amazon S3 might change the canonical ID to
the corresponding AWS account ID. This does not impact the policy because both of these IDs
identify the same account.

• To grant permission to an IAM user within your account, you must provide an "AWS":"user-ARN"
name-value pair.

"Principal":{"AWS":"arn:aws:iam::account-number-without-hyphens:user/username"}

• To grant permission to everyone, also referred as anonymous access, you set the wildcard, "*", as the
Principal value. For example, if you configure your bucket as a website, you want all the objects in
the bucket to be publicly accessible. The following are equivalent:

"Principal":"*"

"Principal":{"AWS":"*"}

Warning
Use caution when granting anonymous access to your S3 bucket. When you grant anonymous
access, anyone in the world can access your bucket. We highly recommend that you never
grant any kind of anonymous write access to your S3 bucket.

• You can require that your users access your Amazon S3 content by using Amazon CloudFront URLs
(instead of Amazon S3 URLs). To do this, create a CloudFront origin access identity (OAI), and then
change the permissions either on your bucket or on the objects in your bucket. The format for
specifying the OAI in a Principal statement is as follows:

"Principal":{"CanonicalUser":"Amazon S3 Canonical User ID assigned to origin access
 identity"}

For more information, see Using an Origin Access Identity to Restrict Access to Your Amazon S3
Content in the Amazon CloudFront Developer Guide.

For more information about other access policy language elements, see Access Policy Language
Overview (p. 341).

API Version 2006-03-01
344

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingCanonicalId
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingCanonicalId
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Specifying Permissions in a Policy

Amazon S3 defines a set of permissions that you can specify in a policy. These are keywords, each of
which maps to specific Amazon S3 operations (see Operations on Buckets, and Operations on Objects in
the Amazon Simple Storage Service API Reference).

Topics
• Permissions for Object Operations (p. 345)
• Permissions Related to Bucket Operations (p. 346)
• Permissions Related to Bucket Subresource Operations (p. 347)
• Permissions Related to Account Operations (p. 349)

Permissions for Object Operations

This section provides a list of the permissions for object operations that you can specify in a policy.

Amazon S3 Permissions for Object Operations

Permissions Amazon S3 Operations

s3:AbortMultipartUploadAbort Multipart Upload

s3:BypassGovernanceRetentionPUT Object Retention, PUT Object , DELETE Object

s3:DeleteObject DELETE Object

s3:DeleteObjectTaggingDELETE Object tagging

s3:DeleteObjectVersionDELETE Object (a Specific Version of the Object)

s3:DeleteObjectVersionTaggingDELETE Object tagging (for a Specific Version of the Object)

s3:GetObject GET Object, HEAD Object, SELECT Object Content

When you grant this permission on a version-enabled bucket, you always get the
latest version data.

s3:GetObjectAcl GET Object ACL

s3:GetObjectLegalHoldGET Object Legal Hold, GET Object

s3:GetObjectRetentionGet Object Retention, GET Object

s3:GetObjectTaggingGET Object tagging

s3:GetObjectTorrentGET Object torrent

s3:GetObjectVersionGET Object, HEAD Object

To grant permission for version-specific object data, you must grant this
permission. That is, when you specify version number when making any of these
requests, you need this Amazon S3 permission.

s3:GetObjectVersionAclGET ACL (for a Specific Version of the Object)

s3:GetObjectVersionTaggingGET Object tagging (for a Specific Version of the Object)

s3:GetObjectVersionTorrentGET Object Torrent versioning

s3:ListMultipartUploadPartsList Parts

API Version 2006-03-01
345

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketOps.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectOps.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadAbort.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTRetention.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETEtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETEtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectSELECTContent.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETLegalHold.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETRetention.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETtorrent.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html
https://docs.aws.amazon.com/AmazonS3/latest/API/objectGetAclVersions.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETtorrent.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListParts.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Permissions Amazon S3 Operations

s3:PutObject PUT Object, POST Object, Initiate Multipart Upload, Upload Part, Complete
Multipart Upload, PUT Object - Copy

s3:PutObjectAcl PUT Object ACL

s3:PutObjectLegalHoldPUT Object Legal Hold, PUT Object

s3:PutObjectRetentionPUT Object Retention, PUT Object

s3:PutObjectTaggingPUT Object tagging

s3:PutObjectVersionAclPUT Object ACL (for a Specific Version of the Object)

s3:PutObjectVersionTaggingPUT Object tagging (for a Specific Version of the Object)

s3:RestoreObjectPOST Object restore

The following example bucket policy grants the s3:PutObject and the s3:PutObjectAcl permissions
to a user (Dave). If you remove the Principal element, you can attach the policy to a user. These
are object operations, and accordingly the relative-id portion of the Resource ARN identifies objects
(examplebucket/*). For more information, see Specifying Resources in a Policy (p. 342).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB-ID:user/Dave"
 },
 "Action": ["s3:PutObject","s3:PutObjectAcl"],
 "Resource": "arn:aws:s3:::examplebucket/*"
 }
]
}

You can use a wildcard to grant permission for all Amazon S3 actions.

"Action": "*"

Permissions Related to Bucket Operations

This section provides a list of the permissions related to bucket operations that you can specify in a
policy.

Amazon S3 Permissions Related to Bucket Operations

Permission
Keywords

Amazon S3 Operation(s) Covered

s3:CreateBucket PUT Bucket

s3:DeleteBucket DELETE Bucket

s3:ListBucket GET Bucket (List Objects), HEAD Bucket

s3:ListBucketVersionsGET Bucket Object versions

API Version 2006-03-01
346

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPart.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadComplete.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadComplete.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPartCopy.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTLegalHold.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTRetention.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETE.html
https://docs.aws.amazon.com/AmazonS3/latest/API/v2-RESTBucketGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketHEAD.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETVersion.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Permission
Keywords

Amazon S3 Operation(s) Covered

s3:ListAllMyBucketsGET Service

s3:ListBucketMultipartUploadsList Multipart Uploads

The following example user policy grants the s3:CreateBucket, s3:ListAllMyBuckets, and the
s3:GetBucketLocation permissions to a user. Note that for all these permissions, you set the relative-
id part of the Resource ARN to "*". For all other bucket actions, you must specify a bucket name. For
more information, see Specifying Resources in a Policy (p. 342).

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"statement1",
 "Effect":"Allow",
 "Action":[
 "s3:CreateBucket",
 "s3:ListAllMyBuckets",
 "s3:GetBucketLocation"
],
 "Resource":[
 "arn:aws:s3:::*"
]
 }
]
}

If your user is going to use the console to view buckets and see the contents of any of these buckets,
the user must have the s3:ListAllMyBuckets and s3:GetBucketLocation permissions. For an
example, see "Policy for Console Access" at Writing IAM Policies: How to Grant Access to an S3 Bucket.

Permissions Related to Bucket Subresource Operations

This section provides a list of the permissions related to bucket subresource operations that you can
specify in a policy.

Amazon S3 Permissions Related to Bucket Subresource Operations

Permissions Amazon S3 Operation(s) Covered

s3:DeleteBucketPolicy DELETE Bucket policy

s3:DeleteBucketWebsite DELETE Bucket website

s3:GetAccelerateConfiguration GET Bucket accelerate

s3:GetAnalyticsConfiguration GET Bucket analytics, List Bucket Analytics Configurations

s3:GetBucketAcl GET Bucket acl

s3:GetBucketCORS GET Bucket cors

s3:GetBucketLocation GET Bucket location

s3:GetBucketLogging GET Bucket logging

s3:GetBucketNotification GET Bucket notification

API Version 2006-03-01
347

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListMPUpload.html
https://aws.amazon.com/blogs/security/writing-iam-policies-how-to-grant-access-to-an-amazon-s3-bucket/
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEpolicy.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEwebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETaccelerate.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETAnalyticsConfig.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketListAnalyticsConfigs.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETcors.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlocation.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlogging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETnotification.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Permissions Amazon S3 Operation(s) Covered

s3:GetBucketObjectLockConfigurationGET Bucket Object Lock configuration

s3:GetBucketPolicy GET Bucket policy

s3:GetBucketPolicyStatus GET BucketPolicyStatus

s3:GetBucketPublicAccessBlock GET PublicAccessBlock

s3:GetBucketRequestPayment GET Bucket requestPayment

s3:GetBucketTagging GET Bucket tagging

s3:GetBucketVersioning GET Bucket versioning

s3:GetBucketWebsite GET Bucket website

s3:GetEncryptionConfiguration GET Bucket encryption

s3:GetInventoryConfiguration GET Bucket inventory, List Bucket Inventory Configurations

s3:GetLifecycleConfiguration GET Bucket lifecycle

s3:GetMetricsConfiguration GET Bucket metrics, List Bucket Metrics Configurations

s3:GetReplicationConfiguration GET Bucket replication

s3:PutAccelerateConfiguration PUT Bucket accelerate

s3:PutAnalyticsConfiguration PUT Bucket analytics, DELETE Bucket analytics

s3:PutBucketAcl PUT Bucket acl

s3:PutBucketCORS PUT Bucket cors, DELETE Bucket cors

s3:PutBucketLogging PUT Bucket logging

s3:PutBucketNotification PUT Bucket notification

s3:PutBucketObjectLockConfigurationPUT Bucket Object Lock configuration

s3:PutBucketPolicy PUT Bucket policy

s3:PutBucketPublicAccessBlock PUT PublicAccessBlock, DELETE PublicAccessBlock

s3:PutBucketRequestPayment PUT Bucket requestPayment

s3:PutBucketTagging DELETE Bucket tagging, PUT Bucket tagging

s3:PutBucketVersioning PUT Bucket versioning

s3:PutBucketWebsite PUT Bucket website

s3:PutEncryptionConfiguration PUT Bucket encryption, DELETE Bucket encryption

s3:PutInventoryConfiguration PUT Bucket inventory, DELETE Bucket inventory

s3:PutLifecycleConfiguration PUT Bucket lifecycle, DELETE Bucket lifecycle

s3:PutMetricsConfiguration PUT Bucket metrics, DELETE Bucket metrics

s3:PutReplicationConfiguration PUT Bucket replication, DELETE Bucket replication

API Version 2006-03-01
348

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETObjectLockConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETpolicy.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETPolicyStatus.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETPublicAccessBlock.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTrequestPaymentGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETversioningStatus.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETwebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETencryption.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETInventoryConfig.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketListInventoryConfigs.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETMetricConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTListBucketMetricsConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETreplication.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTaccelerate.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTAnalyticsConfig.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEAnalyticsConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTcors.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEcors.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlogging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTnotification.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTObjectLockConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTpolicy.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTPublicAccessBlock.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEPublicAccessBlock.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTrequestPaymentPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTVersioningStatus.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTwebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTencryption.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEencryption.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTInventoryConfig.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEInventoryConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETElifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTMetricConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTDeleteBucketMetricsConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTreplication.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEreplication.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

The following user policy grants the s3:GetBucketAcl permission on the examplebucket bucket to
user Dave.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::Account-ID:user/Dave"
 },
 "Action": [
 "s3:GetObjectVersion",
 "s3:GetBucketAcl"
],
 "Resource": "arn:aws:s3:::examplebucket"
 }
]
}

You can delete objects either by explicitly calling the DELETE Object API or by configuring its lifecycle
(see Object Lifecycle Management (p. 119)) so that Amazon S3 can remove the objects when their
lifetime expires. To explicitly block users or accounts from deleting objects, you must explicitly deny
them s3:DeleteObject, s3:DeleteObjectVersion, and s3:PutLifecycleConfiguration
permissions. By default, users have no permissions. But as you create users, add users to groups, and
grant them permissions, it is possible for users to get certain permissions that you did not intend to give.
That is where you can use explicit deny, which supersedes all other permissions a user might have and
denies the user permissions for specific actions.

Permissions Related to Account Operations

This section provides a list of the permissions related to account operations that you can specify in a
policy.

Amazon S3 Permissions Related to Account Operations

Permission
Keywords

Amazon S3 Operation(s) Covered

s3:CreateJob CreateJob

s3:DescribeJob DescribeJob

s3:GetAccountPublicAccessBlockGET PublicAccessBlock

s3:ListJobs ListJobs

s3:PutAccountPublicAccessBlockPUT PublicAccessBlock, DELETE PublicAccessBlock

s3:UpdateJobPriorityUpdateJobPriority

s3:UpdateJobStatusUpdateJobStatus

The following example user policy grants the s3:GetAccountPublicAccessBlock permission to a
user. Note that for these permissions, you set the Resource value to "*". For more information, see
Specifying Resources in a Policy (p. 342).

{

API Version 2006-03-01
349

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTAccountPOSTCreateJob.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTAccountGETDescribeJob.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTAccountGETPublicAccessBlock.html
https://docs.aws.amazon.com/AmazonS3/latest/API//RESTAccountGETListJobs.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTAccountPUTPublicAccessBlock.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTAccountDELETEPublicAccessBlock.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTAccountPOSTUpdateJobPriority.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTAccountPOSTUpdateJobStatus.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"statement1",
 "Effect":"Allow",
 "Action":[
 "s3:GetAccountPublicAccessBlock"
],
 "Resource":[
 "*"
]
 }
]
}

Specifying Conditions in a Policy

The access policy language allows you to specify conditions when granting permissions. The Condition
 element (or Condition block) lets you specify conditions for when a policy is in effect. In
the Condition element, which is optional, you build expressions in which you use Boolean operators
(equal, less than, etc.) to match your condition against values in the request. For example, when granting
a user permission to upload an object, the bucket owner can require the object be publicly readable by
adding the StringEquals condition as shown here:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "statement1",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::examplebucket/*"
],
 "Condition": {
 "StringEquals": {
 "s3:x-amz-acl": [
 "public-read"
]
 }
 }
 }
]
}

The Condition block specifies the StringEquals condition that is applied to the specified key-value
pair, "s3:x-amz-acl":["public-read"]. There is a set of predefined keys you can use in expressing
a condition. The example uses the s3:x-amz-acl condition key. This condition requires user to include
the x-amz-acl header with value public-read in every PUT object request.

For more information about specifying conditions in an access policy language, see Condition in the IAM
User Guide.

The following topics describe AWS-wide and Amazon S3–specific condition keys and provide example
policies.

Topics

• Available Condition Keys (p. 351)

API Version 2006-03-01
350

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Condition

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

• Amazon S3 Condition Keys for Object Operations (p. 353)

• Amazon S3 Condition Keys for Bucket Operations (p. 365)

Available Condition Keys

The predefined keys available for specifying conditions in an Amazon S3 access policy can be classified as
follows:

• AWS-wide keys – AWS provides a set of common keys that are supported by all AWS services that
support policies. These keys that are common to all services are called AWS-wide keys and use the
prefix aws:. For a list of AWS-wide keys, see Available Keys for Conditions in the IAM User Guide. There
are also keys that are specific to Amazon S3, which use the prefix s3:. Amazon S3–specific keys are
discussed in the next bulleted item.

The new condition keys aws:sourceVpce and aws:sourceVpc are used in bucket policies for VPC
endpoints. For examples of using these condition keys, see Example Bucket Policies for VPC Endpoints
for Amazon S3 (p. 378).

The following example bucket policy allows authenticated users permission to use the s3:GetObject
action if the request originates from a specific range of IP addresses (192.168.143.*), unless the IP
address is 192.168.143.188. In the condition block, the IpAddress and the NotIpAddress are
conditions, and each condition is provided a key-value pair for evaluation. Both the key-value pairs in
this example use the aws:SourceIp AWS-wide key.

Note
The IPAddress and NotIpAddress key values specified in the condition uses CIDR notation
as described in RFC 4632. For more information, go to http://www.rfc-editor.org/rfc/
rfc4632.txt.

{
 "Version": "2012-10-17",
 "Id": "S3PolicyId1",
 "Statement": [
 {
 "Sid": "statement1",
 "Effect": "Allow",
 "Principal": "*",
 "Action":["s3:GetObject"] ,
 "Resource": "arn:aws:s3:::examplebucket/*",
 "Condition" : {
 "IpAddress" : {
 "aws:SourceIp": "192.168.143.0/24"
 },
 "NotIpAddress" : {
 "aws:SourceIp": "192.168.143.188/32"
 }
 }
 }
]
}

• Amazon S3–specific keys – In addition to the AWS-wide keys, the following are the condition keys
that are applicable only in the context of granting Amazon S3 specific permissions. These Amazon S3–
specific keys use the prefix s3:.

• s3:x-amz-acl

• s3:x-amz-copy-source

• s3:x-amz-metadata-directive
API Version 2006-03-01

351

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
http://www.rfc-editor.org/rfc/rfc4632.txt
http://www.rfc-editor.org/rfc/rfc4632.txt

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

• s3:x-amz-server-side-encryption

• s3:VersionId

• s3:LocationConstraint

• s3:delimiter

• s3:max-keys

• s3:prefix

• s3:x-amz-server-side-encryption-aws-kms-key-id

• s3:ExistingObjectTag/<tag-key>

For example policies using object tags related condition keys, see Object Tagging and Access Control
Policies (p. 113).

• s3:RequestObjectTagKeys

• s3:RequestObjectTag/<tag-key>

• s3:object-lock-remaining-retention-days

• s3:object-lock-mode

• s3:object-lock-retain-until-date

• s3:object-lock-legal-hold

For example, the following bucket policy allows the s3:PutObject permission for two AWS accounts
if the request includes the x-amz-acl header making the object publicly readable.

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid":"AddCannedAcl",
 "Effect":"Allow",
 "Principal": {
 "AWS": ["arn:aws:iam::account1-ID:root","arn:aws:iam::account2-ID:root"]
 },
 "Action":["s3:PutObject"],
 "Resource": ["arn:aws:s3:::examplebucket/*"],
 "Condition": {
 "StringEquals": {
 "s3:x-amz-acl":["public-read"]
 }
 }
 }
]
}

The Condition block uses the StringEquals condition, and it is provided a key-value pair, "s3:x-
amz-acl":["public-read", for evaluation. In the key-value pair, the s3:x-amz-acl is an Amazon
S3–specific key, as indicated by the prefix s3:.

Important
Not all conditions make sense for all actions. For example, it makes sense to include an
s3:LocationConstraint condition on a policy that grants the s3:CreateBucket Amazon
S3 permission, but not for the s3:GetObject permission. Amazon S3 can test for semantic
errors of this type that involve Amazon S3–specific conditions. However, if you are creating a
policy for an IAM user and you include a semantically invalid Amazon S3 condition, no error is
reported, because IAM cannot validate Amazon S3 conditions.

API Version 2006-03-01
352

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

The following section describes the condition keys that can be used to grant conditional permission
for bucket and object operations. In addition, there are condition keys related to Amazon S3 Signature
Version 4 authentication. For more information, go to Amazon S3 Signature Version 4 Authentication
Specific Policy Keys in the Amazon Simple Storage Service API Reference.

Amazon S3 Condition Keys for Object Operations

The following table shows which Amazon S3 conditions you can use with which Amazon S3 actions.
Example policies are provided following the table. Note the following about the Amazon S3–specific
condition keys described in the following table:

• The condition key names are preceded by the prefix s3:. For example,
s3:x-amz-acl
.

• Each condition key maps to the same name request header allowed by the API on which the condition
can be set. That is, these condition keys dictate behavior of the same name request headers. For
example:

• The condition key s3:x-amz-acl that you can use to grant condition permission for the
s3:PutObject
permission defines behavior of the x-amz-acl request header that the PUT Object API supports.

• The condition key s3:VersionId that you can use to grant conditional permission for the
s3:GetObjectVersion
permission defines behavior of the versionId query parameter that you set in a GET Object
request.

Permission Applicable Condition Keys (or
keywords)

Description

• s3:x-amz-acl
(for canned ACL
permissions)

• s3:x-amz-grant-permi
ssion
(for explicit permissions),
where permission can be:

read, write, read-
acp, write-acp, full
-control

The PUT Object operation allows
access control list (ACL)–specific
headers that you can use to grant ACL-
based permissions. Using these keys,
the bucket owner can set a condition
to require specific access permissions
when the user uploads an object.

For an example policy, see Example
1: Granting s3:PutObject Permission
with a Condition Requiring the Bucket
Owner to Get Full Control (p. 360).

For more information about ACLs,
see Access Control List (ACL)
Overview (p. 403).

s3:PutObject

s3:x-amz-copy-source To copy an object, you use the PUT
Object API (see PUT Object) and
specify the source using the x-amz-
copy-source header. Using this key,
the bucket owner can restrict the copy
source to a specific bucket, a specific
folder in the bucket, or a specific
object in a bucket.

For a policy example, see Example 3:
Granting s3:PutObject Permission to

API Version 2006-03-01
353

https://docs.aws.amazon.com/AmazonS3/latest/API/bucket-policy-s3-sigv4-conditions.html
https://docs.aws.amazon.com/AmazonS3/latest/API/bucket-policy-s3-sigv4-conditions.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Permission Applicable Condition Keys (or
keywords)

Description

Copy Objects with a Restriction on the
Copy Source (p. 363).

s3:x-amz-server-side-
encryption

When you upload an object, you
can use the x-amz-server-side-
encryption header to request
Amazon S3 to encrypt the object
when it is saved, using an envelope
encryption key managed either
by AWS Key Management Service
(AWS KMS) or by Amazon S3 (see
Protecting Data Using Server-Side
Encryption (p. 265)).

When granting the s3:PutObject
permission, the bucket owner can add
a condition using this key to require
the user to specify this header in the
request. A bucket owner can grant
such conditional permission to ensure
that objects the user uploads are
encrypted when they are saved.

For a policy example, see Example
1: Granting s3:PutObject Permission
with a Condition Requiring the Bucket
Owner to Get Full Control (p. 360).

s3:x-amz-server-side-
encryption-aws-kms-key-
id

When you upload an object, you
can use the x-amz-server-side-
encryption-aws-kms-key-id
header to request Amazon S3 to
encrypt the object using the specified
AWS KMS key when it is saved (see
Protecting Data Using Server-Side
Encryption with keys stored in AWS
KMS(SSE-KMS) (p. 265)).

When granting the s3:PutObject
permission, the bucket owner can add
a condition using this key to restrict
the AWS KMS key ID used for object
encryption to a specific value.

A bucket owner can grant such
conditional permission to ensure that
objects the user uploads are encrypted
with a specific key when they are
saved.

The AWS KMS key you specify in the
policy must use the following format:

arn:aws:kms:region:acct-
id:key/key-id

API Version 2006-03-01
354

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Permission Applicable Condition Keys (or
keywords)

Description

s3:x-amz-metadata-di
rective

When you copy an object using the
PUT Object API (see PUT Object),
you can optionally add the x-amz-
metadata-directive header to
specify whether you want the object
metadata copied from the source
object or replaced with metadata
provided in the request.

Using this key bucket, an owner can
add a condition to enforce certain
behavior when objects are uploaded.

Valid values: COPY | REPLACE. The
default is COPY.

s3:x-amz-storage-class By default s3:PutObject stores
objects using the STANDARD storage
class, but you can use the x-amz-
storage-class request header to
specify a different storage class.

When granting the s3:PutObject
permission, you can use the s3:x-
amz-storage-class condition
key to restrict which storage class to
use when storing uploaded objects.
For more information about storage
classes, see Storage Classes.

For an example policy, see Example 5:
Restricting Object Uploads to Objects
with a Specific Storage Class (p. 365).

For valid values, see Amazon S3 PUT
Object Requests.

• s3:RequestObjectTagK
eys

• s3:RequestObjectTag/
<tag-key>

Using this condition key, you can limit
permission for the
s3:PutObject
action by restricting the object tags
allowed in the request. For examples
of using these condition keys, see
Object Tagging and Access Control
Policies (p. 113).

s3:object-lock-mode When you upload an object, you can
use the s3:object-lock-mode
condition to restrict the user to only
set a COMPLIANCE or GOVERNANCE
mode on an object.

API Version 2006-03-01
355

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html#storage-class-intro
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html#RESTObjectPUT-requests
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html#RESTObjectPUT-requests

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Permission Applicable Condition Keys (or
keywords)

Description

s3:object-lock-retain-
until-date

When you upload an object, you can
use the s3:object-lock-retain-
until-date condition to limit the
retention dates allowed on an object.

s3:object-lock-legal-
hold

When you upload an object, you can
use the s3:object-lock-legal-
hold condition to restrict the user
from setting legal hold on an object.

• s3:x-amz-acl
(for canned ACL
permissions)

• s3:x-amz-grant-permi
ssion
(for explicit permissions),
where permission can be:

read, write, read-
acp, write-acp,
grant-full-control

The PUT Object ACL API sets the access
control list (ACL) on the specified
object. The operation supports ACL-
related headers. When granting this
permission, the bucket owner can
add conditions using these keys to
require certain permissions. For more
information about ACLs, see Access
Control List (ACL) Overview (p. 403).

For example, the bucket owner may
want to retain control of the object
regardless of who owns the object.
To accomplish this, the bucket owner
can add a condition using one of these
keys to require the user to include
specific permissions to the bucket
owner.

s3:PutObjectAcl

s3:ExistingObjectTag/
<tag-key>

Using this condition key, you can limit
the permission for the
s3:PutObjectAcl
action to only on objects that have
a specific tag key and value. For
examples, see Object Tagging and
Access Control Policies (p. 113).

• s3:RequestObjectTagK
eys

• s3:RequestObjectTag/
<tag-key>

Using this condition key, you can limit
permission for the
s3:PutObjectTagging
action by restricting the object tags
allowed in the request. For examples
of using these condition keys, see
Object Tagging and Access Control
Policies (p. 113).

s3:PutObjectTagging

s3:ExistingObjectTag/
<tag-key>

Using this condition key, you can limit
the permission to only on objects that
have a specific tag key and value. For
examples, see Object Tagging and
Access Control Policies (p. 113).

API Version 2006-03-01
356

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Permission Applicable Condition Keys (or
keywords)

Description

• s3:RequestObjectTagK
eys

• s3:RequestObjectTag/
<tag-key>

Using this condition key, you can limit
permission for the
s3:PutObjectVersionTagging
action by restricting the object tags
allowed in the request. For examples
of using these condition keys, see
Object Tagging and Access Control
Policies (p. 113).

s3:VersionId Using this condition key, you can limit
the permission for the
s3:PutObjectVersionTagging
action to a specific object version. For
an example policy, see Example 4:
Granting Access to a Specific Version of
an Object (p. 364).

s3:PutObjectVersionT
agging

s3:ExistingObjectTag/
<tag-key>

Using this condition key, you can limit
the permission to only on objects that
have a specific tag key and value. For
examples, see Object Tagging and
Access Control Policies (p. 113).

s3:VersionId This Amazon S3 permission enables
the user to perform a set of
Amazon S3 API operations (see
Amazon S3 Permissions for Object
Operations (p. 345)). For a version-
enabled bucket, you can specify the
object version to retrieve data for.

By adding a condition using this
key, the bucket owner can restrict
the user to accessing data only for
a specific version of the object. For
an example policy, see Example 4:
Granting Access to a Specific Version of
an Object (p. 364).

s3:GetObjectVersion

s3:ExistingObjectTag/
<tag-key>

Using this condition key, you can limit
the permission to only on objects that
have a specific tag key and value. For
examples, see Object Tagging and
Access Control Policies (p. 113).

s3:GetObject s3:ExistingObjectTag/
<tag-key>

Using this condition key, you can limit
the permission to only on objects that
have a specific tag key and value. For
examples, see Object Tagging and
Access Control Policies (p. 113).

API Version 2006-03-01
357

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Permission Applicable Condition Keys (or
keywords)

Description

s3:GetObjectAcl s3:ExistingObjectTag/
<tag-key>

Using this condition key, you can limit
the permission to only on objects that
have a specific tag key and value. For
examples, see Object Tagging and
Access Control Policies (p. 113).

s3:VersionId You can retrieve the access control list
(ACL) of a specific object version using
the GET Object acl API. The user must
have permission for the
s3:GetObjectVersionAcl
action. For a version-enabled bucket,
this Amazon S3 permission allows
a user to get the ACL for a specific
version of the object.

The bucket owner can add a condition
using the key to restrict the user to a
specific version of the object.

s3:GetObjectVersionA
cl

s3:ExistingObjectTag/
<tag-key>

Using this condition key, you can limit
the permission to only on objects that
have a specific tag key and value. For
examples, see Object Tagging and
Access Control Policies (p. 113).

s3:VersionId For a version-enabled bucket, you
can specify the object version in the
PUT Object acl request to set ACL
on a specific object version. Using
this condition, the bucket owner can
restrict the user to setting an ACL only
on a specific version of an object.

• s3:x-amz-acl
(for canned ACL
permissions)

• s3:x-amz-grant-permi
ssion
(for explicit permissions),
where permission can be:

read, write, read-
acp, write-acp,
grant-full-control

For a version-enabled bucket, this
Amazon S3 permission allows you to
set an ACL on a specific version of the
object.

For a description of these condition
keys, see the s3:PutObjectACL
permission in this table.

s3:PutObjectVersionA
cl

s3:ExistingObjectTag/
<tag-key>

Using this condition key, you can limit
the permission to only on objects that
have a specific tag key and value. For
examples, see Object Tagging and
Access Control Policies (p. 113).

API Version 2006-03-01
358

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTacl.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Permission Applicable Condition Keys (or
keywords)

Description

s3:DeleteObjectVersi
on

s3:VersionId For a version-enabled bucket, this
Amazon S3 permission allows the
user to delete a specific version of the
object.

The bucket owner can add a condition
using this key to limit the user's ability
to delete only a specific version of the
object.

For an example of using this condition
key, see Example 4: Granting
Access to a Specific Version of an
Object (p. 364). The example is about
granting the
s3:GetObjectVersion
action, but the policy shows the use of
this condition key.

s3:DeleteObjectTagging s3:ExistingObjectTag/
<tag-key>

Using this condition key, you can limit
the permission to only on objects that
have a specific tag key and value. For
examples, see Object Tagging and
Access Control Policies (p. 113).

s3:ExistingObjectTag/
<tag-key>

Using this condition key, you can limit
the permission to only on objects that
have a specific tag key and value. For
examples, see Object Tagging and
Access Control Policies (p. 113).

s3:DeleteObjectVersionTagging

s3:VersionId Using this condition key, you
can limit the permission for the
s3:DeleteObjectVersionTagging
action to a specific object version. For
an example policy, see Example 4:
Granting Access to a Specific Version of
an Object (p. 364).

s3:GetObjectTagging s3:ExistingObjectTag/
<tag-key>

Using this condition key, you can limit
the permission to only on objects that
have a specific tag key and value. For
examples, see Object Tagging and
Access Control Policies (p. 113).

s3:GetObjectVersionTaggings3:ExistingObjectTag/
<tag-key>

Using this condition key, you can limit
the permission to only on objects that
have a specific tag key and value. For
examples, see Object Tagging and
Access Control Policies (p. 113).

API Version 2006-03-01
359

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Permission Applicable Condition Keys (or
keywords)

Description

s3:VersionId Using this condition key, you
can limit the permission for the
s3:GetObjectVersionTagging
action to a specific object version. For
an example policy, see Example 4:
Granting Access to a Specific Version of
an Object (p. 364).

s3:object-lock-
remaining-retention-
days

When granting this permission, the
bucket owner can set minimum and
maximum allowable retention periods
for objects within the bucket using this
condition key.

s3:object-lock-mode You can use the s3:object-lock-
mode condition to restrict the
user to only set a COMPLIANCE or
GOVERNANCE mode on an object.

s3:object-lock-retain-
until-date

You can use the s3:object-lock-
retain-until-date condition to
limit the retention dates allowed on an
object.

s3:PutObjectRetention

s3:object-lock-legal-
hold

You can use the s3:object-lock-
legal-hold condition to restrict the
user from setting legal hold on an
object.

s3:object-lock-mode When you upload an object, you can
use the s3:object-lock-mode
condition to restrict the user to only
set a COMPLIANCE or GOVERNANCE
mode on an object.

s3:object-lock-retain-
until-date

When you upload an object, you can
use the s3:object-lock-retain-
until-date condition to limit the
retention dates allowed on an object.

s3:CreateMultipartUp
load

s3:object-lock-legal-
hold

When you upload an object, you can
use the s3:object-lock-legal-
hold condition to restrict the user
from setting legal hold on an object.

Example 1: Granting s3:PutObject Permission with a Condition Requiring the Bucket Owner to
Get Full Control

Suppose that Account A owns a bucket and the account administrator wants to grant Dave, a user in
Account B, permissions to upload objects. By default, objects that Dave uploads are owned by Account B,
and Account A has no permissions on these objects. Because the bucket owner is paying the bills, it wants
full permissions on the objects that Dave uploads. The Account A administrator can do this by granting
the s3:PutObject permission to Dave, with a condition that the request include ACL-specific headers,
that either grants full permission explicitly or uses a canned ACL (see PUT Object).

API Version 2006-03-01
360

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

• Require the x-amz-full-control header in the request with full control permission to the bucket
owner.

The following bucket policy grants the s3:PutObject permission to user Dave with a condition using
the s3:x-amz-grant-full-control condition key, which requires the request to include the x-
amz-full-control header.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB-ID:user/Dave"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::examplebucket/*",
 "Condition": {
 "StringEquals": {
 "s3:x-amz-grant-full-control": "id=AccountA-CanonicalUserID"
 }
 }
 }
]
}

Note
This example is about cross-account permission. However, if Dave (who is getting the
permission) belongs to the AWS account that owns the bucket, this conditional permission is
not necessary. This is because the parent account to which Dave belongs owns objects that
the user uploads.

The preceding bucket policy grants conditional permission to user Dave in Account B. While this policy
is in effect, it is possible for Dave to get the same permission without any condition via some other
policy. For example, Dave can belong to a group, and you grant the group s3:PutObject permission
without any condition. To avoid such permission loopholes, you can write a stricter access policy by
adding explicit deny. In this example, you explicitly deny the user Dave upload permission if he does
not include the necessary headers in the request granting full permissions to the bucket owner. Explicit
deny always supersedes any other permission granted. The following is the revised access policy
example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB-ID:user/AccountBadmin"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::examplebucket/*",
 "Condition": {
 "StringEquals": {
 "s3:x-amz-grant-full-control": "id=AccountA-CanonicalUserID"
 }
 }
 },
 {
 "Sid": "statement2",

API Version 2006-03-01
361

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

 "Effect": "Deny",
 "Principal": {
 "AWS": "arn:aws:iam::AccountB-ID:user/AccountBadmin"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::examplebucket/*",
 "Condition": {
 "StringNotEquals": {
 "s3:x-amz-grant-full-control": "id=AccountA-CanonicalUserID"
 }
 }
 }
]
}

If you have two AWS accounts, you can test the policy using the AWS Command Line Interface (AWS
CLI). You attach the policy and, using Dave's credentials, test the permission using the following AWS
CLI put-object command. You provide Dave's credentials by adding the --profile parameter.
You grant full control permission to the bucket owner by adding the --grant-full-control
parameter. For more information about setting up and using the AWS CLI, see Setting Up the Tools for
the Example Walkthroughs (p. 316).

aws s3api put-object --bucket examplebucket --key HappyFace.jpg --body c:\HappyFace.jpg
 --grant-full-control id="AccountA-CanonicalUserID" --profile AccountBUserProfile

• Require the x-amz-acl header with a canned ACL granting full control permission to the bucket
owner.

To require the x-amz-acl header in the request, you can replace the key-value pair in the Condition
block and specify the s3:x-amz-acl condition key, as shown in the following example.

"Condition": {
 "StringNotEquals": {
 "s3:x-amz-acl": "bucket-owner-full-control"
 }

To test the permission using the AWS CLI, you specify the --acl parameter. The AWS CLI then adds
the x-amz-acl header when it sends the request.

aws s3api put-object --bucket examplebucket --key HappyFace.jpg --body c:\HappyFace.jpg
 --acl "bucket-owner-full-control" --profile AccountBadmin

Example 2: Granting s3:PutObject Permission Requiring Objects Stored Using Server-Side
Encryption

Suppose that Account A owns a bucket. The account administrator wants to grant Jane, a user in Account
A, permission to upload objects with a condition that Jane always request server-side encryption so
that Amazon S3 saves objects encrypted. The Account A administrator can accomplish using the s3:x-
amz-server-side-encryption condition key as shown. The key-value pair in the Condition block
specifies the s3:x-amz-server-side-encryption key.

"Condition": {
 "StringNotEquals": {
 "s3:x-amz-server-side-encryption": "AES256"
 }

API Version 2006-03-01
362

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

When testing the permission using the AWS CLI, you must add the required parameter using the --
server-side-encryption parameter.

aws s3api put-object --bucket example1bucket --key HappyFace.jpg --body c:\HappyFace.jpg --
server-side-encryption "AES256" --profile AccountBadmin

Example 3: Granting s3:PutObject Permission to Copy Objects with a Restriction on the Copy
Source

In the PUT Object request, when you specify a source object, it is a copy operation (see PUT Object -
Copy). Accordingly, the bucket owner can grant a user permission to copy objects with restrictions on the
source—for example:

• Allow copying objects only from the sourcebucket bucket.

• Allow copying objects from the sourcebucket bucket, and only the objects whose key name prefix
starts with public/ f. For example, sourcebucket/public/*

• Allow copying only a specific object from the sourcebucket; for example, sourcebucket/
example.jpg.

The following bucket policy grants user Dave s3:PutObject permission. It allows him to copy objects
only with a condition that the request include the s3:x-amz-copy-source header and the header
value specify the /examplebucket/public/* key name prefix.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "cross-account permission to user in your own account",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountA-ID:user/Dave"
 },
 "Action": ["s3:PutObject"],
 "Resource": "arn:aws:s3:::examplebucket/*"
 },
 {
 "Sid": "Deny your user permission to upload object if copy source is not /
bucket/folder",
 "Effect": "Deny",
 "Principal": {
 "AWS": "arn:aws:iam::AccountA-ID:user/Dave"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::examplebucket/*",
 "Condition": {
 "StringNotLike": {
 "s3:x-amz-copy-source": "examplebucket/public/*"
 }
 }
 }
]
}

You can test the permission using the AWS CLI copy-object command. You specify the source by
adding the --copy-source parameter, and the key name prefix must match the prefix allowed
in the policy. You need to provide the user Dave credentials using the --profile parameter.
For more information about setting up the AWS CLI, see Setting Up the Tools for the Example
Walkthroughs (p. 316).

API Version 2006-03-01
363

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

aws s3api copy-object --bucket examplebucket --key HappyFace.jpg
--copy-source examplebucket/public/PublicHappyFace1.jpg --profile AccountADave

The preceding policy uses the StringNotLike condition. To grant permission to copy only a specific
object, you must change the condition from StringNotLike to StringNotEquals and then specify
the exact object key as shown.

"Condition": {
 "StringNotEquals": {
 "s3:x-amz-copy-source": "examplebucket/public/PublicHappyFace1.jpg"
 }
}

Example 4: Granting Access to a Specific Version of an Object

Suppose that Account A owns a version-enabled bucket. The bucket has several versions of the
HappyFace.jpg object. The account administrator now wants to grant its user (Dave) permission to
get only a specific version of the object. The account administrator can accomplish this by granting Dave
s3:GetObjectVersion permission conditionally as shown. The key-value pair in the Condition block
specifies the s3:VersionId condition key.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountA-ID:user/Dave"
 },
 "Action": ["s3:GetObjectVersion"],
 "Resource": "arn:aws:s3:::examplebucketversionenabled/HappyFace.jpg"
 },
 {
 "Sid": "statement2",
 "Effect": "Deny",
 "Principal": {
 "AWS": "arn:aws:iam::AccountA-ID:user/Dave"
 },
 "Action": ["s3:GetObjectVersion"],
 "Resource": "arn:aws:s3:::examplebucketversionenabled/HappyFace.jpg",
 "Condition": {
 "StringNotEquals": {
 "s3:VersionId": "AaaHbAQitwiL_h47_44lRO2DDfLlBO5e"
 }
 }
 }
]
}

In this case, Dave needs to know the exact object version ID to retrieve the object.

You can test the permissions using the AWS CLI get-object command with the --version-id
parameter identifying the specific object version. The command retrieves the object and saves it to the
OutputFile.jpg file.

aws s3api get-object --bucket examplebucketversionenabled --key HappyFace.jpg
 OutputFile.jpg --version-id AaaHbAQitwiL_h47_44lRO2DDfLlBO5e --profile AccountADave

API Version 2006-03-01
364

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Example 5: Restricting Object Uploads to Objects with a Specific Storage Class

Suppose that Account A owns a bucket. The account administrator wants to restrict Dave, a user in
Account A, to be able to only upload objects to the bucket that are stored with the STANDARD_IA
storage class. The Account A administrator can do this by using the s3:x-amz-storage-class
condition key as shown in the following example bucket policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "statement1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountA-ID:user/Dave"
 },
 "Action": "s3:PutObject",
 "Resource": [
 "arn:aws:s3:::examplebucket/*"
],
 "Condition": {
 "StringEquals": {
 "s3:x-amz-storage-class": [
 "STANDARD_IA"
]
 }
 }
 }
]
}

Amazon S3 Condition Keys for Bucket Operations

The following table shows list of bucket operation–specific permissions that you can grant in policies. For
each permission, it shows the available keys that you can use in specifying a condition.

Permission Applicable Condition Keys Description

• s3:x-amz-acl
(for canned ACL permissions)

• s3:x-amz-grant-permi
ssion
(for explicit permissions),
where permission can be:

read, write, read-
acp, write-acp, full-
control

The Create Bucket API (see PUT Bucket)
supports ACL-specific headers. Using
these condition keys, you can require a
user to set these headers in the request
granting specific permissions.

s3:CreateBucket

s3:LocationConstraint Using this condition key, you can
restrict a user to create a bucket in
a specific AWS Region. For a policy
example, see Example 1: Allow a
User to Create a Bucket but Only in a
Specific Region (p. 368).

s3:ListBucket s3:prefix Using this condition key, you can limit
the response of the Get Bucket (List
Objects) API (see GET Bucket (List

API Version 2006-03-01
365

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Permission Applicable Condition Keys Description

Objects)) to key names with a specific
prefix.

The Get Bucket (List Objects) API
returns a list of object keys in the
specified bucket. This API supports the
prefix header to retrieve only the
object keys with a specific prefix. This
condition key relates to the prefix
header.

For example, the Amazon S3 console
supports the folder concept using
key name prefixes. So if you have
two objects with key names public/
object1.jpg and public/
object2.jpg, the console shows the
objects under the public folder. If you
organize your object keys using such
prefixes, you can grant
s3:ListBucket
permission with the condition that
will allow the user to get a list of key
names with a specific prefix.

For a policy example, see Example 2:
Allow a User to Get a List of Objects in
a Bucket According to a Specific Prefix
 (p. 369).

s3:delimiter If you organize your object key names
using prefixes and delimiters, you
can use this condition key to require
the user to specify the delimiter
parameter in the Get Bucket (List
Objects) request. In this case, the
response Amazon S3 returns is a list
of object keys with common prefixes
grouped together. For an example of
using prefixes and delimiters, go to Get
Bucket (List Objects).

s3:max-keys Using this condition, you can limit the
number of keys Amazon S3 returns
in response to the Get Bucket (List
Objects) request by requiring the user
to specify the max-keys parameter. By
default the API returns up to 1,000 key
names.
For a list of numeric conditions you can
use, see Numeric Condition Operators
in the IAM User Guide.

API Version 2006-03-01
366

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html#RESTBucketGET-responses-examples-sample-request-using-prefix-and-delimiter
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html#RESTBucketGET-responses-examples-sample-request-using-prefix-and-delimiter
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_Numeric

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Permission Applicable Condition Keys Description

s3:prefix If your bucket is version-enabled, you
can use the GET Bucket Object
versions API (see GET Bucket Object
versions) to retrieve metadata of all
of the versions of objects. For this API,
the bucket owner must grant the
s3:ListBucketVersions
permission in the policy.

Using this condition key, you can limit
the response of the API to key names
with a specific prefix by requiring the
user to specify the prefix parameter
in the request with a specific value.

For example, the Amazon S3 console
supports the folder concept of
using key name prefixes. If you
have two objects with key names
public/object1.jpg and public/
object2.jpg, the console shows the
objects under the public folder. If you
organize your object keys using such
prefixes, you can grant
s3:ListBucket
permission with the condition that will
allow a use to get a list of key names
with a specific prefix.

For a policy example, see Example 2:
Allow a User to Get a List of Objects in
a Bucket According to a Specific Prefix
 (p. 369).

s3:delimiter If you organize your object key names
using prefixes and delimiters, you
can use this condition key to require
the user to specify the delimiter
parameter in the GET Bucket Object
versions request. In this case, the
response Amazon S3 returns is a list
of object keys with common prefixes
grouped together.

s3:ListBucketVersions

s3:max-keys Using this condition, you can limit the
number of keys Amazon S3 returns
in response to the GET Bucket Object
versions request by requiring the user
to specify the max-keys parameter.
By default, the API returns up to
1,000 key names. For a list of numeric
conditions you can use, see Numeric
Condition Operators in the IAM User
Guide.

API Version 2006-03-01
367

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETVersion.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETVersion.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Conditions_Numeric
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Conditions_Numeric

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Permission Applicable Condition Keys Description

s3:PutBucketAcl • s3:x-amz-acl
(for canned ACL permissions)

• s3:x-amz-grant-permi
ssion
(for explicit permissions),
where permission can be:

read, write, read-
acp, write-acp, full-
control

The PUT Bucket acl API (see PUT
Bucket) supports ACL-specific headers.
You can use these condition keys to
require a user to set these headers in
the request.

Example 1: Allow a User to Create a Bucket but Only in a Specific Region

Suppose that an AWS account administrator wants to grant its user (Dave) permission to create a bucket
in the South America (São Paulo) Region only. The account administrator can attach the following user
policy granting the s3:CreateBucket permission with a condition as shown. The key-value pair in the
Condition block specifies the s3:LocationConstraint key and the sa-east-1 Region as its value.

Note
In this example, the bucket owner is granting permission to one of its users, so either a bucket
policy or a user policy can be used. This example shows a user policy.

For a list of Amazon S3 Regions, see Regions and Endpoints in the AWS General Reference.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"statement1",
 "Effect":"Allow",
 "Action":[
 "s3:CreateBucket"
],
 "Resource":[
 "arn:aws:s3:::*"
],
 "Condition": {
 "StringLike": {
 "s3:LocationConstraint": "sa-east-1"
 }
 }
 }
]
}

This policy restricts the user from creating a bucket in any other Region except sa-east-1. However,
it is possible some other policy will grant this user permission to create buckets in another Region.
For example, if the user belongs to a group, the group might have a policy attached to it allowing all
users in the group permission to create buckets in another Region. To ensure that the user does not get
permission to create buckets in any other Region, you can add an explicit deny statement in this policy.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"statement1",
 "Effect":"Allow",

API Version 2006-03-01
368

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

 "Action":[
 "s3:CreateBucket"
],
 "Resource":[
 "arn:aws:s3:::*"
],
 "Condition": {
 "StringLike": {
 "s3:LocationConstraint": "sa-east-1"
 }
 }
 },
 {
 "Sid":"statement2",
 "Effect":"Deny",
 "Action":[
 "s3:CreateBucket"
],
 "Resource":[
 "arn:aws:s3:::*"
],
 "Condition": {
 "StringNotLike": {
 "s3:LocationConstraint": "sa-east-1"
 }
 }
 }
]
}

The Deny statement uses the StringNotLike condition. That is, a create bucket request is denied if the
location constraint is not "sa-east-1". The explicit deny does not allow the user to create a bucket in any
other Region, no matter what other permission the user gets.

You can test the policy using the following create-bucket AWS CLI command. This example uses
the bucketconfig.txt file to specify the location constraint. Note the Windows file path. You need
to update the bucket name and path as appropriate. You must provide user credentials using the --
profile parameter. For more information about setting up and using the AWS CLI, see Setting Up the
Tools for the Example Walkthroughs (p. 316).

aws s3api create-bucket --bucket examplebucket --profile AccountADave --create-bucket-
configuration file://c:/Users/someUser/bucketconfig.txt

The bucketconfig.txt file specifies the configuration as follows.

{"LocationConstraint": "sa-east-1"}

Example 2: Allow a User to Get a List of Objects in a Bucket According to a Specific Prefix

A bucket owner can restrict a user to list the contents of a specific folder in the bucket. This is useful
if objects in the bucket are organized by key name prefixes. The Amazon S3 console then uses the
prefixes to show a folder hierarchy (only the console supports the concept of folders; the Amazon S3 API
supports only buckets and objects).

In this example, the bucket owner and the parent account to which the user belongs are the same. So the
bucket owner can use either a bucket policy or a user policy. First, we show a user policy.

The following user policy grants the s3:ListBucket permission (see GET Bucket (List Objects)) with a
condition that requires the user to specify the prefix in the request with the value projects.

{

API Version 2006-03-01
369

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"statement1",
 "Effect":"Allow",
 "Action":[
 "s3:ListBucket"
],
 "Resource":[
 "arn:aws:s3:::examplebucket"
],
 "Condition" : {
 "StringEquals" : {
 "s3:prefix": "projects"
 }
 }
 },
 {
 "Sid":"statement2",
 "Effect":"Deny",
 "Action":[
 "s3:ListBucket"
],
 "Resource":[
 "arn:aws:s3:::examplebucket"
],
 "Condition" : {
 "StringNotEquals" : {
 "s3:prefix": "projects"
 }
 }
 }
]
}

The condition restricts the user to listing object keys with the projects prefix. The added explicit deny
denies the user request for listing keys with any other prefix no matter what other permissions the
user might have. For example, it is possible that the user gets permission to list object keys without any
restriction; for example, either by updates to the preceding user policy or via a bucket policy. But because
explicit deny always supersedes, the user request to list keys other than the project prefix is denied.

The preceding policy is a user policy. If you add the Principal element to the policy, identifying the
user, you now have a bucket policy as shown.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"statement1",
 "Effect":"Allow",
 "Principal": {
 "AWS": "arn:aws:iam::BucketOwner-accountID:user/user-name"
 },
 "Action":[
 "s3:ListBucket"
],
 "Resource":[
 "arn:aws:s3:::examplebucket"
],
 "Condition" : {
 "StringEquals" : {
 "s3:prefix": "examplefolder"
 }
 }

API Version 2006-03-01
370

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

 },
 {
 "Sid":"statement2",
 "Effect":"Deny",
 "Principal": {
 "AWS": "arn:aws:iam::BucketOwner-AccountID:user/user-name"
 },
 "Action":[
 "s3:ListBucket"
],
 "Resource":[
 "arn:aws:s3:::examplebucket"
],
 "Condition" : {
 "StringNotEquals" : {
 "s3:prefix": "examplefolder"
 }
 }
 }
]
}

You can test the policy using the following list-object AWS CLI command. In the command, you
provide user credentials using the --profile parameter. For more information about setting up and
using the AWS CLI, see Setting Up the Tools for the Example Walkthroughs (p. 316).

aws s3api list-objects --bucket examplebucket --prefix examplefolder --profile AccountADave

Now if the bucket is version-enabled, to list the objects in the bucket, instead of s3:ListBucket
permission, you must grant the s3:ListBucketVersions permission in the preceding policy. This
permission also supports the s3:prefix condition key.

Bucket Policy Examples
This section presents a few examples of typical use cases for bucket policies. The policies use bucket
and examplebucket strings in the resource value. To test these policies, you need to replace these
strings with your bucket name. For information about access policy language, see Access Policy Language
Overview (p. 341).

Note
Bucket policies are limited to 20 KB in size.

You can use the AWS Policy Generator to create a bucket policy for your Amazon S3 bucket. You can then
use the generated document to set your bucket policy by using the Amazon S3 console, by a number of
third-party tools, or via your application.

Important
When testing permissions using the Amazon S3 console, you will need to grant additional
permissions that the console requires—s3:ListAllMyBuckets, s3:GetBucketLocation,
and s3:ListBucket permissions. For an example walkthrough that grants permissions to users
and tests them using the console, see Walkthrough: Controlling Access to a Bucket with User
Policies (p. 385).

Topics
• Granting Permissions to Multiple Accounts with Added Conditions (p. 372)
• Granting Read-Only Permission to an Anonymous User (p. 372)
• Restricting Access to Specific IP Addresses (p. 372)
• Restricting Access to a Specific HTTP Referrer (p. 374)
• Granting Permission to an Amazon CloudFront Origin Identity (p. 375)

API Version 2006-03-01
371

https://awspolicygen.s3.amazonaws.com/policygen.html
https://console.aws.amazon.com/s3/home

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

• Adding a Bucket Policy to Require MFA (p. 375)
• Granting Cross-Account Permissions to Upload Objects While Ensuring the Bucket Owner Has Full

Control (p. 377)
• Granting Permissions for Amazon S3 Inventory and Amazon S3 Analytics (p. 377)
• Example Bucket Policies for VPC Endpoints for Amazon S3 (p. 378)

Granting Permissions to Multiple Accounts with Added Conditions

The following example policy grants the s3:PutObject and s3:PutObjectAcl permissions to
multiple AWS accounts and requires that any request for these operations include the public-read
canned ACL. For more information, see Specifying Permissions in a Policy (p. 345) and Specifying
Conditions in a Policy (p. 350).

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AddCannedAcl",
 "Effect":"Allow",
 "Principal": {"AWS":
 ["arn:aws:iam::111122223333:root","arn:aws:iam::444455556666:root"]},
 "Action":["s3:PutObject","s3:PutObjectAcl"],
 "Resource":["arn:aws:s3:::examplebucket/*"],
 "Condition":{"StringEquals":{"s3:x-amz-acl":["public-read"]}}
 }
]
}

Granting Read-Only Permission to an Anonymous User

The following example policy grants the s3:GetObject permission to any public anonymous users. (For
a list of permissions and the operations that they allow, see Specifying Permissions in a Policy (p. 345).)
This permission allows anyone to read the object data, which is useful for when you configure your
bucket as a website and want everyone to be able to read objects in the bucket.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AddPerm",
 "Effect":"Allow",
 "Principal": "*",
 "Action":["s3:GetObject"],
 "Resource":["arn:aws:s3:::examplebucket/*"]
 }
]
}

Warning
Use caution when granting anonymous access to your S3 bucket. When you grant anonymous
access, anyone in the world can access your bucket. We highly recommend that you never grant
any kind of anonymous write access to your S3 bucket.

Restricting Access to Specific IP Addresses

The following example grants permissions to any user to perform any Amazon S3 operations on objects
in the specified bucket. However, the request must originate from the range of IP addresses specified in
the condition.

API Version 2006-03-01
372

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

The condition in this statement identifies the 54.240.143.* range of allowed Internet Protocol version 4
(IPv4) IP addresses, with one exception: 54.240.143.188.

The Condition block uses the IpAddress and NotIpAddress conditions and the aws:SourceIp
condition key, which is an AWS-wide condition key. For more information about these condition keys,
see Specifying Conditions in a Policy (p. 350). The aws:SourceIp IPv4 values use the standard CIDR
notation. For more information, see IP Address Condition Operators in the IAM User Guide.

{
 "Version": "2012-10-17",
 "Id": "S3PolicyId1",
 "Statement": [
 {
 "Sid": "IPAllow",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::examplebucket/*",
 "Condition": {
 "IpAddress": {"aws:SourceIp": "54.240.143.0/24"},
 "NotIpAddress": {"aws:SourceIp": "54.240.143.188/32"}
 }
 }
]
}

Allowing IPv4 and IPv6 Addresses

When you start using IPv6 addresses, we recommend that you update all of your organization's policies
with your IPv6 address ranges in addition to your existing IPv4 ranges to ensure that the policies
continue to work as you make the transition to IPv6.

The following example bucket policy shows how to mix IPv4 and IPv6 address ranges to cover all
of your organization's valid IP addresses. The example policy would allow access to the example IP
addresses 54.240.143.1 and 2001:DB8:1234:5678::1 and would deny access to the addresses
54.240.143.129 and 2001:DB8:1234:5678:ABCD::1.

The IPv6 values for aws:SourceIp must be in standard CIDR format. For IPv6 we support using ::
to represent a range of 0s, for example, 2032001:DB8:1234:5678::/64. For more information, see IP
Address Condition Operators in the IAM User Guide.

{
 "Id":"PolicyId2",
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowIPmix",
 "Effect":"Allow",
 "Principal":"*",
 "Action":"s3:*",
 "Resource":"arn:aws:s3:::examplebucket/*",
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": [
 "54.240.143.0/24",
 "2001:DB8:1234:5678::/64"
]
 },
 "NotIpAddress": {
 "aws:SourceIp": [
 "54.240.143.128/30",
 "2001:DB8:1234:5678:ABCD::/80"

API Version 2006-03-01
373

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Conditions_IPAddress
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Conditions_IPAddress
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Conditions_IPAddress

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

]
 }
 }
 }
]
}

Restricting Access to a Specific HTTP Referrer

Suppose you have a website with domain name (www.example.com or example.com) with links
to photos and videos stored in your S3 bucket, examplebucket. By default, all the S3 resources are
private, so only the AWS account that created the resources can access them. To allow read access to
these objects from your website, you can add a bucket policy that allows s3:GetObject permission
with a condition, using the aws:Referer key, that the get request must originate from specific
webpages. The following policy specifies the StringLike condition with the aws:Referer condition
key.

{
 "Version":"2012-10-17",
 "Id":"http referer policy example",
 "Statement":[
 {
 "Sid":"Allow get requests originating from www.example.com and example.com.",
 "Effect":"Allow",
 "Principal":"*",
 "Action":"s3:GetObject",
 "Resource":"arn:aws:s3:::examplebucket/*",
 "Condition":{
 "StringLike":{"aws:Referer":["http://www.example.com/*","http://example.com/*"]}
 }
 }
]
}

Make sure the browsers you use include the http referer header in the request.

You can further secure access to objects in the examplebucket bucket by adding explicit deny to the
bucket policy as shown in the following example. Explicit deny supersedes any permission you might
grant to objects in the examplebucket bucket using other means such as ACLs or user policies.

Important
Be aware that this example will prevent all users (including the root user) from performing all
Amazon S3 actions, including managing bucket policies. Consider adding a third Sid that grants
the root user s3:* actions.

{
 "Version": "2012-10-17",
 "Id": "http referer policy example",
 "Statement": [
 {
 "Sid": "Allow get requests referred by www.example.com and example.com.",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::examplebucket/*",
 "Condition": {
 "StringLike": {"aws:Referer": ["http://www.example.com/*","http://example.com/*"]}
 }
 },
 {
 "Sid": "Explicit deny to ensure requests are allowed only from specific referer.",

API Version 2006-03-01
374

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::examplebucket/*",
 "Condition": {
 "StringNotLike": {"aws:Referer": ["http://www.example.com/*","http://example.com/
*"]}
 }
 }
]
}

Granting Permission to an Amazon CloudFront Origin Identity

The following example bucket policy grants a CloudFront Origin Identity permission to get (list) all
objects in your Amazon S3 bucket. The CloudFront Origin Identity is used to enable the CloudFront
private content feature. The policy uses the CanonicalUser prefix, instead of AWS, to specify a Canonical
User ID. To learn more about CloudFront support for serving private content, go to the Serving Private
Content topic in the Amazon CloudFront Developer Guide. You must specify the canonical user ID for your
CloudFront distribution's origin access identity. For instructions about finding the canonical user ID, see
Specifying a Principal in a Policy (p. 343).

{
 "Version":"2012-10-17",
 "Id":"PolicyForCloudFrontPrivateContent",
 "Statement":[
 {
 "Sid":" Grant a CloudFront Origin Identity access to support private content",
 "Effect":"Allow",
 "Principal":{"CanonicalUser":"CloudFront Origin Identity Canonical User ID"},
 "Action":"s3:GetObject",
 "Resource":"arn:aws:s3:::examplebucket/*"
 }
]
}

Adding a Bucket Policy to Require MFA

Amazon S3 supports MFA-protected API access, a feature that can enforce multi-factor authentication
(MFA) for access to your Amazon S3 resources. Multi-factor authentication provides an extra level of
security you can apply to your AWS environment. It is a security feature that requires users to prove
physical possession of an MFA device by providing a valid MFA code. For more information, go to AWS
Multi-Factor Authentication. You can require MFA authentication for any requests to access your Amazon
S3 resources.

You can enforce the MFA authentication requirement using the aws:MultiFactorAuthAge key in a
bucket policy. IAM users can access Amazon S3 resources by using temporary credentials issued by the
AWS Security Token Service (STS). You provide the MFA code at the time of the STS request.

When Amazon S3 receives a request with MFA authentication, the aws:MultiFactorAuthAge key
provides a numeric value indicating how long ago (in seconds) the temporary credential was created.
If the temporary credential provided in the request was not created using an MFA device, this key
value is null (absent). In a bucket policy, you can add a condition to check this value, as shown in the
following example bucket policy. The policy denies any Amazon S3 operation on the /taxdocuments
folder in the examplebucket bucket if the request is not MFA authenticated. To learn more about MFA
authentication, see Using Multi-Factor Authentication (MFA) in AWS in the IAM User Guide.

{
 "Version": "2012-10-17",
 "Id": "123",

API Version 2006-03-01
375

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/PrivateContent.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/PrivateContent.html
https://aws.amazon.com/mfa/
https://aws.amazon.com/mfa/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

 "Statement": [
 {
 "Sid": "",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::examplebucket/taxdocuments/*",
 "Condition": { "Null": { "aws:MultiFactorAuthAge": true }}
 }
]
 }

The Null condition in the Condition block evaluates to true if the aws:MultiFactorAuthAge key
value is null, indicating that the temporary security credentials in the request were created without the
MFA key.

The following bucket policy is an extension of the preceding bucket policy. It includes two policy
statements. One statement allows the s3:GetObject permission on a bucket (examplebucket) to
everyone and another statement further restricts access to the examplebucket/taxdocuments folder
in the bucket by requiring MFA authentication.

{
 "Version": "2012-10-17",
 "Id": "123",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::examplebucket/taxdocuments/*",
 "Condition": { "Null": { "aws:MultiFactorAuthAge": true } }
 },
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": "*",
 "Action": ["s3:GetObject"],
 "Resource": "arn:aws:s3:::examplebucket/*"
 }
]
 }

You can optionally use a numeric condition to limit the duration for which the
aws:MultiFactorAuthAge key is valid, independent of the lifetime of the temporary security
credential used in authenticating the request. For example, the following bucket policy, in addition to
requiring MFA authentication, also checks how long ago the temporary session was created. The policy
denies any operation if the aws:MultiFactorAuthAge key value indicates that the temporary session
was created more than an hour ago (3,600 seconds).

{
 "Version": "2012-10-17",
 "Id": "123",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::examplebucket/taxdocuments/*",
 "Condition": {"Null": {"aws:MultiFactorAuthAge": true }}
 },

API Version 2006-03-01
376

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

 {
 "Sid": "",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::examplebucket/taxdocuments/*",
 "Condition": {"NumericGreaterThan": {"aws:MultiFactorAuthAge": 3600 }}
 },
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": "*",
 "Action": ["s3:GetObject"],
 "Resource": "arn:aws:s3:::examplebucket/*"
 }
]
 }

Granting Cross-Account Permissions to Upload Objects While Ensuring the
Bucket Owner Has Full Control

You can allow another AWS account to upload objects to your bucket. However, you may decide
that as a bucket owner you must have full control of the objects uploaded to your bucket. The
following policy enforces that a specific AWS account (111111111111) be denied the ability to upload
objects unless that account grants full-control access to the bucket owner identified by the email
address (xyz@amazon.com). The StringNotEquals condition in the policy specifies the s3:x-amz-
grant-full-control condition key to express the requirement (see Specifying Conditions in a
Policy (p. 350)).

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"111",
 "Effect":"Allow",
 "Principal":{"AWS":"1111111111"},
 "Action":"s3:PutObject",
 "Resource":"arn:aws:s3:::examplebucket/*"
 },
 {
 "Sid":"112",
 "Effect":"Deny",
 "Principal":{"AWS":"1111111111" },
 "Action":"s3:PutObject",
 "Resource":"arn:aws:s3:::examplebucket/*",
 "Condition": {
 "StringNotEquals": {"s3:x-amz-grant-full-control":["emailAddress=xyz@amazon.com"]}
 }
 }
]
}

Granting Permissions for Amazon S3 Inventory and Amazon S3 Analytics

Amazon S3 inventory creates lists of the objects in an S3 bucket and Amazon S3 analytics export
creates output files of the data used in the analysis. The bucket that the inventory lists the objects for
is called the source bucket. The bucket where the inventory file is written and the bucket where the
analytics export file is written is called a destination bucket. You must create a bucket policy for the
destination bucket when setting up inventory for an S3 bucket and when setting up the analytics export.
For more information, see Amazon S3 Inventory (p. 422) and Amazon S3 Analytics – Storage Class
Analysis (p. 257).

API Version 2006-03-01
377

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

The following example bucket policy grants Amazon S3 permission to write objects (PUTs) from
the account for the source bucket to the destination bucket. You use a bucket policy like this on the
destination bucket when setting up Amazon S3 inventory and Amazon S3 analytics export.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"InventoryAndAnalyticsExamplePolicy",
 "Effect":"Allow",
 "Principal": {"Service": "s3.amazonaws.com"},
 "Action":["s3:PutObject"],
 "Resource":["arn:aws:s3:::destination-bucket/*"],
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:s3:::source-bucket"
 },
 "StringEquals": {
 "aws:SourceAccount": "1234567890",
 "s3:x-amz-acl": "bucket-owner-full-control"
 }
 }
 }
]
}

Example Bucket Policies for VPC Endpoints for Amazon S3

You can use Amazon S3 bucket policies to control access to buckets from specific Amazon Virtual Private
Cloud (Amazon VPC) endpoints, or specific VPCs. This section contains example bucket policies that can
be used to control S3 bucket access from VPC endpoints. To learn how to set up VPC endpoints, see VPC
Endpoints in the Amazon VPC User Guide.

Amazon VPC enables you to launch Amazon Web Services (AWS) resources into a virtual network that
you define. A VPC endpoint enables you to create a private connection between your VPC and another
AWS service without requiring access over the Internet, through a VPN connection, through a NAT
instance, or through AWS Direct Connect.

A VPC endpoint for Amazon S3 is a logical entity within a VPC that allows connectivity only to Amazon
S3. The VPC endpoint routes requests to Amazon S3 and routes responses back to the VPC. VPC
endpoints change only how requests are routed. Amazon S3 public endpoints and DNS names will
continue to work with VPC endpoints. For important information about using Amazon VPC endpoints
with Amazon S3, see Gateway VPC Endpoints and Endpoints for Amazon S3 in the Amazon VPC User
Guide.

VPC endpoints for Amazon S3 provides two ways to control access to your Amazon S3 data:

• You can control the requests, users, or groups that are allowed through a specific VPC endpoint. For
information on this type of access control, see Controlling Access to Services with VPC Endpoints in the
Amazon VPC User Guide.

• You can control which VPCs or VPC endpoints have access to your S3 buckets by using S3 bucket
policies. For examples of this type of bucket policy access control, see the following topics on
restricting access.

Topics
• Restricting Access to a Specific VPC Endpoint (p. 379)
• Restricting Access to a Specific VPC (p. 379)
• Related Resources (p. 380)

API Version 2006-03-01
378

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-s3.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Important
When applying the S3 bucket polices for VPC endpoints described in this section, you might
block your access to the bucket without intending to do so. Bucket permissions intended to
specifically limit bucket access to connections originating from your VPC endpoint can block
all connections to the bucket. For information about how to fix this issue, see How do I regain
access to an Amazon S3 bucket after applying a policy to the bucket that restricts access to my
VPC endpoint? in the AWS Support Knowledge Center.

Restricting Access to a Specific VPC Endpoint

The following is an example of an S3 bucket policy that restricts access to a specific bucket,
examplebucket, only from the VPC endpoint with the ID vpce-1a2b3c4d. The policy denies all
access to the bucket if the specified endpoint is not being used. The aws:sourceVpce condition is
used to the specify the endpoint. The aws:sourceVpce condition does not require an ARN for the VPC
endpoint resource, only the VPC endpoint ID. For more information about using conditions in a policy,
see Specifying Conditions in a Policy (p. 350).

{
 "Version": "2012-10-17",
 "Id": "Policy1415115909152",
 "Statement": [
 {
 "Sid": "Access-to-specific-VPCE-only",
 "Principal": "*",
 "Action": "s3:*",
 "Effect": "Deny",
 "Resource": ["arn:aws:s3:::examplebucket",
 "arn:aws:s3:::examplebucket/*"],
 "Condition": {
 "StringNotEquals": {
 "aws:sourceVpce": "vpce-1a2b3c4d"
 }
 }
 }
]
}

Restricting Access to a Specific VPC

You can create a bucket policy that restricts access to a specific VPC by using the aws:sourceVpc
condition. This is useful if you have multiple VPC endpoints configured in the same VPC, and you want to
manage access to your S3 buckets for all of your endpoints. The following is an example of a policy that
allows VPC vpc-111bbb22 to access examplebucket and its objects. The policy denies all access to the
bucket if the specified VPC is not being used. The vpc-111bbb22 condition key does not require an ARN
for the VPC resource, only the VPC ID.

{
 "Version": "2012-10-17",
 "Id": "Policy1415115909153",
 "Statement": [
 {
 "Sid": "Access-to-specific-VPC-only",
 "Principal": "*",
 "Action": "s3:*",
 "Effect": "Deny",
 "Resource": ["arn:aws:s3:::examplebucket",
 "arn:aws:s3:::examplebucket/*"],
 "Condition": {
 "StringNotEquals": {
 "aws:sourceVpc": "vpc-111bbb22"
 }

API Version 2006-03-01
379

https://aws.amazon.com/premiumsupport/knowledge-center/s3-regain-access/
https://aws.amazon.com/premiumsupport/knowledge-center/s3-regain-access/
https://aws.amazon.com/premiumsupport/knowledge-center/s3-regain-access/

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

 }
 }
]
}

Related Resources

• Bucket Policy Examples (p. 371)
• VPC Endpoints in the Amazon VPC User Guide

User Policy Examples
This section shows several IAM user policies for controlling user access to Amazon S3. For information
about access policy language, see Access Policy Language Overview (p. 341).

The following example policies will work if you test them programmatically. However, to use them
with the Amazon S3 console, you must grant additional permissions that are required by the console.
For information about using policies such as these with the Amazon S3 console, see Walkthrough:
Controlling Access to a Bucket with User Policies (p. 385).

Topics
• Allowing an IAM User Access to One of Your Buckets (p. 380)
• Allowing Each IAM User Access to a Folder in a Bucket (p. 381)
• Allowing a Group to Have a Shared Folder in Amazon S3 (p. 383)
• Allowing All Your Users to Read Objects in a Portion of the Corporate Bucket (p. 384)
• Allowing a Partner to Drop Files into a Specific Portion of the Corporate Bucket (p. 384)
• Walkthrough: Controlling Access to a Bucket with User Policies (p. 385)

Allowing an IAM User Access to One of Your Buckets

In this example, you want to grant an IAM user in your AWS account access to one of your buckets,
examplebucket, and allow the user to add, update, and delete objects.

In addition to granting the s3:PutObject, s3:GetObject, and s3:DeleteObject permissions
to the user, the policy also grants the s3:ListAllMyBuckets, s3:GetBucketLocation, and
s3:ListBucket permissions. These are the additional permissions required by the console. Also, the
s3:PutObjectAcl and the s3:GetObjectAcl actions are required to be able to copy, cut, and paste
objects in the console. For an example walkthrough that grants permissions to users and tests them
using the console, see Walkthrough: Controlling Access to a Bucket with User Policies (p. 385).

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:ListAllMyBuckets"
],
 "Resource":"arn:aws:s3:::*"
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:ListBucket",
 "s3:GetBucketLocation"
],

API Version 2006-03-01
380

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

 "Resource":"arn:aws:s3:::examplebucket"
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:GetObject",
 "s3:GetObjectAcl",
 "s3:DeleteObject"
],
 "Resource":"arn:aws:s3:::examplebucket/*"
 }
]
}

Allowing Each IAM User Access to a Folder in a Bucket

In this example, you want two IAM users, Alice and Bob, to have access to your bucket, examplebucket,
so that they can add, update, and delete objects. However, you want to restrict each user’s access to a
single folder in the bucket. You might create folders with names that match the user names.

examplebucket
 Alice/
 Bob/

To grant each user access only to his or her folder, you can write a policy for each user and attach it
individually. For example, you can attach the following policy to user Alice to allow her specific Amazon
S3 permissions on the examplebucket/Alice folder.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:DeleteObject",
 "s3:DeleteObjectVersion"
],
 "Resource":"arn:aws:s3:::examplebucket/Alice/*"
 }
]
}

You then attach a similar policy to user Bob, identifying folder Bob in the Resource value.

Instead of attaching policies to individual users, you can write a single policy that uses a policy variable
and attach the policy to a group. First you must create a group and add both Alice and Bob to the
group. The following example policy allows a set of Amazon S3 permissions in the examplebucket/
${aws:username} folder. When the policy is evaluated, the policy variable ${aws:username} is
replaced by the requester's user name. For example, if Alice sends a request to put an object, the
operation is allowed only if Alice is uploading the object to the examplebucket/Alice folder.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",

API Version 2006-03-01
381

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

 "Action":[
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:DeleteObject",
 "s3:DeleteObjectVersion"
],
 "Resource":"arn:aws:s3:::examplebucket/${aws:username}/*"
 }
]
}

Note
When using policy variables, you must explicitly specify version 2012-10-17 in the policy. The
default version of the access policy language, 2008-10-17, does not support policy variables.

If you want to test the preceding policy on the Amazon S3 console, the console requires permission
for additional Amazon S3 permissions, as shown in the following policy. For information about
how the console uses these permissions, see Walkthrough: Controlling Access to a Bucket with User
Policies (p. 385).

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "AllowGroupToSeeBucketListInTheConsole",
 "Action": ["s3:ListAllMyBuckets", "s3:GetBucketLocation"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::*"]
 },
 {
 "Sid": "AllowRootLevelListingOfTheBucket",
 "Action": ["s3:ListBucket"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::examplebucket"],
 "Condition":{
 "StringEquals":{
 "s3:prefix":[""], "s3:delimiter":["/"]
 }
 }
 },
 {
 "Sid": "AllowListBucketOfASpecificUserPrefix",
 "Action": ["s3:ListBucket"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::examplebucket"],
 "Condition":{ "StringLike":{"s3:prefix":["${aws:username}/*"] }
 }
 },
 {
 "Sid": "AllowUserSpecificActionsOnlyInTheSpecificUserPrefix",
 "Effect":"Allow",
 "Action":[
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:DeleteObject",
 "s3:DeleteObjectVersion"
],
 "Resource":"arn:aws:s3:::examplebucket/${aws:username}/*"
 }
]
}

API Version 2006-03-01
382

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Note
In the 2012-10-17 version of the policy, policy variables start with $. This change in syntax can
potentially create a conflict if your object key includes a $. For example, to include an object key
my$file in a policy, you specify the $ character with ${$}, my${$}file.

Although IAM user names are friendly, human-readable identifiers, they are not required to be globally
unique. For example, if user Bob leaves the organization and another Bob joins, then new Bob could
access old Bob's information. Instead of using user names, you could create folders based on user IDs.
Each user ID is unique. In this case, you must modify the preceding policy to use the ${aws:userid}
policy variable. For more information about user identifiers, see IAM Identifiers in the IAM User Guide.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:DeleteObject",
 "s3:DeleteObjectVersion"
],
 "Resource":"arn:aws:s3:::my_corporate_bucket/home/${aws:userid}/*"
 }
]
}

Allowing Non-IAM Users (Mobile App Users) Access to Folders in a Bucket

Suppose that you want to develop a mobile app, a game that stores users' data in an S3 bucket. For each
app user, you want to create a folder in your bucket. You also want to limit each user’s access to his or
her own folder. But you cannot create folders before someone downloads your app and starts playing
the game, because you don’t have a user ID.

In this case, you can require users to sign in to your app by using public identity providers such as
Login with Amazon, Facebook, or Google. After users have signed in to your app through one of these
providers, they have a user ID that you can use to create user-specific folders at runtime.

You can then use web identity federation in AWS Security Token Service to integrate information from
the identity provider with your app and to get temporary security credentials for each user. You can then
create IAM policies that allow the app to access your bucket and perform such operations as creating
user-specific folders and uploading data. For more information about web identity federation, see About
Web Identity Federation in the IAM User Guide.

Allowing a Group to Have a Shared Folder in Amazon S3

Attaching the following policy to the group grants everybody in the group access to the following folder
in Amazon S3: my_corporate_bucket/share/marketing. Group members are allowed to access only
the specific Amazon S3 permissions shown in the policy and only for objects in the specified folder.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetObjectVersion",

API Version 2006-03-01
383

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_oidc.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_oidc.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

 "s3:DeleteObject",
 "s3:DeleteObjectVersion"
],
 "Resource":"arn:aws:s3:::my_corporate_bucket/share/marketing/*"
 }
]
}

Allowing All Your Users to Read Objects in a Portion of the Corporate Bucket

In this example, you create a group named AllUsers, which contains all the IAM users that are
owned by the AWS account. You then attach a policy that gives the group access to GetObject and
GetObjectVersion, but only for objects in the my_corporate_bucket/readonly folder.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource":"arn:aws:s3:::my_corporate_bucket/readonly/*"
 }
]
}

Allowing a Partner to Drop Files into a Specific Portion of the Corporate Bucket

In this example, you create a group called WidgetCo that represents a partner company. You create an
IAM user for the specific person or application at the partner company that needs access, and then you
put the user in the group.

You then attach a policy that gives the group PutObject access to the following folder in the corporate
bucket: my_corporate_bucket/uploads/widgetco.

You want to prevent the WidgetCo group from doing anything else with the bucket, so you add a
statement that explicitly denies permission to any Amazon S3 permissions except PutObject on any
Amazon S3 resource in the AWS account. This step is necessary only if there's a broad policy in use
elsewhere in your AWS account that gives users wide access to Amazon S3 resources.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":"s3:PutObject",
 "Resource":"arn:aws:s3:::my_corporate_bucket/uploads/widgetco/*"
 },
 {
 "Effect":"Deny",
 "NotAction":"s3:PutObject",
 "Resource":"arn:aws:s3:::my_corporate_bucket/uploads/widgetco/*"
 },
 {
 "Effect":"Deny",
 "Action":"s3:*",
 "NotResource":"arn:aws:s3:::my_corporate_bucket/uploads/widgetco/*"
 }
]

API Version 2006-03-01
384

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

}

Walkthrough: Controlling Access to a Bucket with User Policies

This walkthrough explains how user permissions work with Amazon S3. In this example, you create a
bucket with folders. You then create AWS Identity and Access Management (IAM) users in your AWS
account and grant those users incremental permissions on your Amazon S3 bucket and the folders in it.

Topics
• The Basics of Buckets and Folders (p. 385)

• Walkthrough Summary (p. 387)

• Preparing for the Walkthrough (p. 387)

• Step 1: Create a Bucket (p. 388)

• Step 2: Create IAM Users and a Group (p. 388)

• Step 3: Verify That IAM Users Have No Permissions (p. 389)

• Step 4: Grant Group-Level Permissions (p. 389)

• Step 5: Grant IAM User Alice Specific Permissions (p. 396)

• Step 6: Grant IAM User Bob Specific Permissions (p. 400)

• Step 7: Secure the Private Folder (p. 400)

• Step 8: Clean Up (p. 402)

• Related Resources (p. 402)

The Basics of Buckets and Folders

The Amazon S3 data model is a flat structure: You create a bucket, and the bucket stores objects. There is
no hierarchy of subbuckets or subfolders, but you can emulate a folder hierarchy. Tools like the Amazon
S3 console can present a view of these logical folders and subfolders in your bucket, as shown in the
following image.

The console shows that a bucket named companybucket has three folders, Private, Development,
and Finance, and an object, s3-dg.pdf. The console uses the object names (keys) to create a logical
hierarchy with folders and subfolders. Consider the following examples:

API Version 2006-03-01
385

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

• When you create the Development folder, the console creates an object with the key Development/.
Note the trailing slash (/) delimiter.

• When you upload an object named Projects1.xls in the Development folder, the console uploads
the object and gives it the key Development/Projects1.xls.

In the key, Development is the prefix and / is the delimiter. The Amazon S3 API supports prefixes and
delimiters in its operations. For example, you can get a list of all objects from a bucket with a specific
prefix and delimiter. On the console, when you open the Development folder, the console lists the
objects in that folder. In the following example, the Development folder contains one object.

When the console lists the Development folder in the companybucket bucket, it sends a request
to Amazon S3 in which it specifies a prefix of Development and a delimiter of / in the request. The
console's response looks just like a folder list in your computer's file system. The preceding example
shows that the bucket companybucket has an object with the key Development/Projects1.xls.

The console is using object keys to infer a logical hierarchy. Amazon S3 has no physical hierarchy; it only
has buckets that contain objects in a flat file structure. When you create objects using the Amazon S3
API, you can use object keys that imply a logical hierarchy. When you create a logical hierarchy of objects,
you can manage access to individual folders, as this walkthrough demonstrates.

Before you start, be sure that you are familiar with the concept of the root-level bucket content. Suppose
that your companybucket bucket has the following objects:

• Private/privDoc1.txt

• Private/privDoc2.zip

• Development/project1.xls

• Development/project2.xls

• Finance/Tax2011/document1.pdf

• Finance/Tax2011/document2.pdf

• s3-dg.pdf

These object keys create a logical hierarchy with Private, Development, and the Finance as root-level
folders and s3-dg.pdf as a root-level object. When you choose the bucket name on the Amazon S3
console, the root-level items appear as shown in the following image. The console shows the top-level

API Version 2006-03-01
386

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

prefixes (Private/, Development/, and Finance/) as root-level folders. The object key s3-dg.pdf
has no prefix, and so it appears as a root-level item.

Walkthrough Summary

In this walkthrough, you create a bucket with three folders (Private, Development, and Finance) in it.

You have two users, Alice and Bob. You want Alice to access only the Development folder, and you want
Bob to access only the Finance folder. You want to keep the Private folder content private. In the
walkthrough, you manage access by creating IAM users (the example uses the user names Alice and Bob)
and granting them the necessary permissions.

IAM also supports creating user groups and granting group-level permissions that apply to all users in
the group. This helps you better manage permissions. For this exercise, both Alice and Bob need some
common permissions. So you also create a group named Consultants and then add both Alice and Bob
to the group. You first grant permissions by attaching a group policy to the group. Then you add user-
specific permissions by attaching policies to specific users.

Note
The walkthrough uses companybucket as the bucket name, Alice and Bob as the IAM users, and
Consultants as the group name. Because Amazon S3 requires that bucket names be globally
unique, you must replace the bucket name with a name that you create.

Preparing for the Walkthrough

In this example, you use your AWS account credentials to create IAM users. Initially, these users have no
permissions. You incrementally grant these users permissions to perform specific Amazon S3 actions.
To test these permissions, you sign in to the console with each user's credentials. As you incrementally
grant permissions as an AWS account owner and test permissions as an IAM user, you need to sign in and
out, each time using different credentials. You can do this testing with one browser, but the process will
go faster if you can use two different browsers. Use one browser to connect to the AWS Management
Console with your AWS account credentials and another to connect with the IAM user credentials.

To sign in to the AWS Management Console with your AWS account credentials, go to https://
console.aws.amazon.com/. An IAM user cannot sign in using the same link. An IAM user must use an
IAM-enabled sign-in page. As the account owner, you can provide this link to your users.

For more information about IAM, see The AWS Management Console Sign-in Page in the IAM User Guide.

API Version 2006-03-01
387

https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

To Provide a Sign-In Link for IAM Users

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the Navigation pane, choose IAM Dashboard .

3. Note the URL under IAM users sign in link:. You will give this link to IAM users to sign in to the
console with their IAM user name and password.

Step 1: Create a Bucket

In this step, you sign in to the Amazon S3 console with your AWS account credentials, create a bucket,
add folders (Development, Finance, and Private) to the bucket, and upload one or two sample
documents in each folder.

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Create a bucket.

For step-by-step instructions, see How Do I Create an S3 Bucket? in the Amazon Simple Storage
Service Console User Guide.

3. Upload one document to the bucket.

This exercise assumes that you have the s3-dg.pdf document at the root level of this bucket. If you
upload a different document, substitute its file name for s3-dg.pdf.

4. Add three folders named Private, Finance, and Development to the bucket.

For step-by-step instructions to create a folder, see Creating a Folder in the Amazon Simple Storage
Service Console User Guide.

5. Upload one or two documents to each folder.

For this exercise, assume that you have uploaded a couple of documents in each folder, resulting in
the bucket having objects with the following keys:

• Private/privDoc1.txt

• Private/privDoc2.zip

• Development/project1.xls

• Development/project2.xls

• Finance/Tax2011/document1.pdf

• Finance/Tax2011/document2.pdf

• s3-dg.pdf

For step-by-step instructions, see How Do I Upload Files and Folders to an S3 Bucket? in the Amazon
Simple Storage Service Console User Guide.

Step 2: Create IAM Users and a Group

Now use the IAM console to add two IAM users, Alice and Bob, to your AWS account. Also create an
administrative group named Consultants, and then add both users to the group.

Warning
When you add users and a group, do not attach any policies that grant permissions to these
users. At first, these users don't have any permissions. In the following sections, you grant
permissions incrementally. First you must ensure that you have assigned passwords to these IAM

API Version 2006-03-01
388

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-folder.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-objects.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

users. You use these user credentials to test Amazon S3 actions and verify that the permissions
work as expected.

For step-by-step instructions for creating a new IAM user, see Creating an IAM User in Your AWS Account
in the IAM User Guide. When you create the users for this walkthrough, select AWS Management
Console access and clear Programmatic access.

For step-by-step instructions for creating an administrative group, see Creating Your First IAM Admin
User and Group in the IAM User Guide.

Step 3: Verify That IAM Users Have No Permissions

If you are using two browsers, you can now use the second browser to sign in to the console using one of
the IAM user credentials.

1. Using the IAM user sign-in link (see To Provide a Sign-In Link for IAM Users (p. 388)), sign in to the
AWS Management Console using either of the IAM user credentials.

2. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

Verify the following console message telling you that access is denied.

Now, you can begin granting incremental permissions to the users. First, you attach a group policy that
grants permissions that both users must have.

Step 4: Grant Group-Level Permissions

You want the users to be able to do the following:

• List all buckets owned by the parent account. To do so, Bob and Alice must have permission for the
s3:ListAllMyBuckets action.

• List root-level items, folders, and objects in the companybucket bucket. To do so, Bob and Alice must
have permission for the s3:ListBucket action on the companybucket bucket.

First, you create a policy that grants these permissions, and then you attach it to the Consultants
group.

Step 4.1: Grant Permission to List All Buckets

In this step, you create a managed policy that grants the users minimum permissions to enable them to
list all buckets owned by the parent account. Then you attach the policy to the Consultants group.
When you attach the managed policy to a user or a group, you grant the user or group permission to
obtain a list of buckets owned by the parent AWS account.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

Note
Because you are granting user permissions, sign in using your AWS account credentials, not
as an IAM user.

2. Create the managed policy.

API Version 2006-03-01
389

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

a. In the navigation pane on the left, choose Policies, and then choose Create Policy.

b. Choose the JSON tab.

c. Copy the following access policy and paste it into the policy text field.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowGroupToSeeBucketListInTheConsole",
 "Action": ["s3:ListAllMyBuckets"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::*"]
 }
]
}

A policy is a JSON document. In the document, a Statement is an array of objects, each
describing a permission using a collection of name-value pairs. The preceding policy
describes one specific permission. The Action specifies the type of access. In the policy, the
s3:ListAllMyBuckets is a predefined Amazon S3 action. This action covers the Amazon S3
GET Service operation, which returns list of all buckets owned by the authenticated sender. The
Effect element value determines whether specific permission is allowed or denied.

d. Choose Review Policy. On the next page, enter
AllowGroupToSeeBucketListInTheConsole in the Name field, and then choose Create
policy.

Note
The Summary entry displays a message stating that the policy does not grant any
permissions. For this walkthrough, you can safely ignore this message.

3. Attach the AllowGroupToSeeBucketListInTheConsole managed policy that you created to the
Consultants group.

For step-by-step instructions for attaching a managed policy, see Adding and Removing IAM Identity
Permissions in the IAM User Guide.

You attach policy documents to IAM users and groups in the IAM console. Because you want both
users to be able to list the buckets, you attach the policy to the group.

4. Test the permission.

a. Using the IAM user sign-in link (see To Provide a Sign-In Link for IAM Users (p. 388)), sign in to
the console using any one of IAM user credentials.

b. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

The console should now list all the buckets but not the objects in any of the buckets.

API Version 2006-03-01
390

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#attach-managed-policy-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#attach-managed-policy-console
https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Step 4.2: Enable Users to List Root-Level Content of a Bucket

Next, you allow all users in the Consultants group to list the root-level companybucket bucket items.
When a user chooses the company bucket on the Amazon S3 console, the user can see the root-level
items in the bucket.

Note
This example uses companybucket for illustration. You must use the name of the bucket that
you created.

To understand the request that the console sends to Amazon S3 when you choose a bucket name,
the response that Amazon S3 returns, and how the console interprets the response, it is necessary to
examine it a little more closely.

When you choose a bucket name, the console sends the GET Bucket (List Objects) request to Amazon S3.
This request includes the following parameters:

API Version 2006-03-01
391

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

• The prefix parameter with an empty string as its value.

• The delimiter parameter with / as its value.

The following is an example request.

GET ?prefix=&delimiter=/ HTTP/1.1
Host: companybucket.s3.amazonaws.com
Date: Wed, 01 Aug 2012 12:00:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:xQE0diMbLRepdf3YB+FIEXAMPLE=

Amazon S3 returns a response that includes the following <ListBucketResult/> element.

<ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Name>companybucket</Name>
 <Prefix></Prefix>
 <Delimiter>/</Delimiter>
 ...
 <Contents>
 <Key>s3-dg.pdf</Key>
 ...
 </Contents>
 <CommonPrefixes>
 <Prefix>Development/</Prefix>
 </CommonPrefixes>
 <CommonPrefixes>
 <Prefix>Finance/</Prefix>
 </CommonPrefixes>
 <CommonPrefixes>
 <Prefix>Private/</Prefix>
 </CommonPrefixes>
</ListBucketResult>

The key s3-dg.pdf object does not contain the slash (/) delimiter, and Amazon S3 returns the key
in the <Contents> element. However, all other keys in the example bucket contain the / delimiter.
Amazon S3 groups these keys and returns a <CommonPrefixes> element for each of the distinct prefix
values Development/, Finance/, and Private/ that is a substring from the beginning of these keys
to the first occurrence of the specified / delimiter.

The console interprets this result and displays the root-level items as three folders and one object key.

API Version 2006-03-01
392

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

If Bob or Alice opens the Development folder, the console sends the GET Bucket (List Objects) request to
Amazon S3 with the prefix and the delimiter parameters set to the following values:

• The prefix parameter with the value Development/.

• The delimiter parameter with the "/" value.

In response, Amazon S3 returns the object keys that start with the specified prefix.

<ListBucketResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Name>companybucket</Name>
 <Prefix>Development</Prefix>
 <Delimiter>/</Delimiter>
 ...
 <Contents>
 <Key>Project1.xls</Key>
 ...
 </Contents>
 <Contents>
 <Key>Project2.xls</Key>
 ...
 </Contents>
</ListBucketResult>

The console shows the object keys.

API Version 2006-03-01
393

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Now, return to granting users permission to list the root-level bucket items. To list bucket content, users
need permission to call the s3:ListBucket action, as shown in the following policy statement. To
ensure that they see only the root-level content, you add a condition that users must specify an empty
prefix in the request—that is, they are not allowed to double-click any of the root-level folders. Finally,
you add a condition to require folder-style access by requiring user requests to include the delimiter
parameter with the value "/".

{
 "Sid": "AllowRootLevelListingOfCompanyBucket",
 "Action": ["s3:ListBucket"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::companybucket"],
 "Condition":{
 "StringEquals":{
 "s3:prefix":[""], "s3:delimiter":["/"]
 }
 }
}

When you choose a bucket on the Amazon S3 console, the console first sends the GET Bucket location
request to find the AWS Region where the bucket is deployed. Then the console uses the Region-specific
endpoint for the bucket to send the GET Bucket (List Objects) request. As a result, if users are going to
use the console, you must grant permission for the s3:GetBucketLocation action as shown in the
following policy statement.

{
 "Sid": "RequiredByS3Console",
 "Action": ["s3:GetBucketLocation"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::*"]
}

To enable users to list root-level bucket content

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

Use your AWS account credentials, not the credentials of an IAM user, to sign in to the console.

API Version 2006-03-01
394

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlocation.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

2. Replace the existing AllowGroupToSeeBucketListInTheConsole managed policy that
is attached to the Consultants group with the following policy, which also allows the
s3:ListBucket action. Remember to replace companybucket in the policy Resource with the
name of your bucket.

For step-by-step instructions, see Editing IAM Policies in the IAM User Guide. When following the
step-by-step instructions, be sure to follow the steps for applying your changes to all principal
entities that the policy is attached to.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid":
 "AllowGroupToSeeBucketListAndAlsoAllowGetBucketLocationRequiredForListBucket",
 "Action": ["s3:ListAllMyBuckets", "s3:GetBucketLocation"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::*"]
 },
 {
 "Sid": "AllowRootLevelListingOfCompanyBucket",
 "Action": ["s3:ListBucket"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::companybucket"],
 "Condition":{
 "StringEquals":{
 "s3:prefix":[""], "s3:delimiter":["/"]
 }
 }
 }
]
}

3. Test the updated permissions.

a. Using the IAM user sign-in link (see To Provide a Sign-In Link for IAM Users (p. 388)), sign in to
the AWS Management Console.

Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

b. Choose the bucket that you created, and the console shows the root-level bucket items. If you
choose any folders in the bucket, you won't be able to see the folder content because you
haven't yet granted those permissions.

API Version 2006-03-01
395

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-edit.html
https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

This test succeeds when users use the Amazon S3 console. When you choose a bucket on the console, the
console implementation sends a request that includes the prefix parameter with an empty string as its
value and the delimiter parameter with "/" as its value.

Step 4.3: Summary of the Group Policy

The net effect of the group policy that you added is to grant the IAM users Alice and Bob the following
minimum permissions:

• List all buckets owned by the parent account.

• See root-level items in the companybucket bucket.

However, the users still can't do much. Next, you grant user-specific permissions, as follows:

• Allow Alice to get and put objects in the Development folder.

• Allow Bob to get and put objects in the Finance folder.

For user-specific permissions, you attach a policy to the specific user, not to the group. In the following
section, you grant Alice permission to work in the Development folder. You can repeat the steps to
grant similar permission to Bob to work in the Finance folder.

Step 5: Grant IAM User Alice Specific Permissions

Now you grant additional permissions to Alice so that she can see the content of the Development
folder and get and put objects in that folder.

Step 5.1: Grant IAM User Alice Permission to List the Development Folder Content

For Alice to list the Development folder content, you must apply a policy to the Alice user that grants
permission for the s3:ListBucket action on the companybucket bucket, provided the request
includes the prefix Development/. You want this policy to be applied only to the user Alice, so you use
an inline policy. For more information about inline policies, see Managed Policies and Inline Policies in
the IAM User Guide.

API Version 2006-03-01
396

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

Use your AWS account credentials, not the credentials of an IAM user, to sign in to the console.

2. Create an inline policy to grant the user Alice permission to list the Development folder content.

a. In the navigation pane on the left, choose Users.

b. Choose the user name Alice.

c. On the user details page, choose the Permissions tab and then choose Add inline policy.

d. Choose the JSON tab.

e. Copy the following policy and paste it into the policy text field.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowListBucketIfSpecificPrefixIsIncludedInRequest",
 "Action": ["s3:ListBucket"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::companybucket"],
 "Condition":{ "StringLike":{"s3:prefix":["Development/*"] }
 }
 }
]
}

f. Choose Review Policy. On the next page, enter a name in the Name field, and then choose
Create policy.

3. Test the change to Alice's permissions:

a. Using the IAM user sign-in link (see To Provide a Sign-In Link for IAM Users (p. 388)), sign in to
the AWS Management Console.

b. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

c. On the Amazon S3 console, verify that Alice can see the list of objects in the Development/
folder in the bucket.

When the user chooses the /Development folder to see the list of objects in it, the Amazon
S3 console sends the ListObjects request to Amazon S3 with the prefix /Development.
Because the user is granted permission to see the object list with the prefix Development and
delimiter /, Amazon S3 returns the list of objects with the key prefix Development/, and the
console displays the list.

API Version 2006-03-01
397

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Step 5.2: Grant IAM User Alice Permissions to Get and Put Objects in the Development Folder

For Alice to get and put objects in the Development folder, she needs permission to call the
s3:GetObject and s3:PutObject actions. The following policy statements grant these permissions,
provided that the request includes the prefix parameter with a value of Development/.

{
 "Sid":"AllowUserToReadWriteObjectData",
 "Action":["s3:GetObject", "s3:PutObject"],
 "Effect":"Allow",
 "Resource":["arn:aws:s3:::companybucket/Development/*"]
 }

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

Use your AWS account credentials, not the credentials of an IAM user, to sign in to the console.
2. Edit the inline policy that you created in the previous step.

a. In the navigation pane on the left, choose Users.
b. Choose the user name Alice.
c. On the user details page, choose the Permissions tab and expand the Inline Policies section.
d. Next to the name of the policy that you created in the previous step, choose Edit Policy.
e. Copy the following policy and paste it into the policy text field, replacing the existing policy.

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Sid":"AllowListBucketIfSpecificPrefixIsIncludedInRequest",
 "Action":["s3:ListBucket"],
 "Effect":"Allow",
 "Resource":["arn:aws:s3:::companybucket"],
 "Condition":{
 "StringLike":{"s3:prefix":["Development/*"]
 }
 }

API Version 2006-03-01
398

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

 },
 {
 "Sid":"AllowUserToReadWriteObjectDataInDevelopmentFolder",
 "Action":["s3:GetObject", "s3:PutObject"],
 "Effect":"Allow",
 "Resource":["arn:aws:s3:::companybucket/Development/*"]
 }
]
}

3. Test the updated policy:

a. Using the IAM user sign-in link (see To Provide a Sign-In Link for IAM Users (p. 388)), sign into
the AWS Management Console.

b. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

c. On the Amazon S3 console, verify that Alice can now add an object and download an object in
the Development folder.

Step 5.3: Explicitly Deny IAM User Alice Permissions to Any Other Folders in the Bucket

User Alice can now list the root-level content in the companybucket bucket. She can also get and put
objects in the Development folder. If you really want to tighten the access permissions, you could
explicitly deny Alice access to any other folders in the bucket. If there is any other policy (bucket policy
or ACL) that grants Alice access to any other folders in the bucket, this explicit deny overrides those
permissions.

You can add the following statement to the user Alice policy that requires all requests that Alice sends to
Amazon S3 to include the prefix parameter, whose value can be either Development/* or an empty
string.

{
 "Sid": "ExplicitlyDenyAnyRequestsForAllOtherFoldersExceptDevelopment",
 "Action": ["s3:ListBucket"],
 "Effect": "Deny",
 "Resource": ["arn:aws:s3:::companybucket"],
 "Condition":{ "StringNotLike": {"s3:prefix":["Development/*",""] },
 "Null" : {"s3:prefix":false }
 }
}

There are two conditional expressions in the Condition block. The result of these conditional
expressions is combined by using the logical AND. If both conditions are true, the result of the combined
condition is true. Because the Effect in this policy is Deny, when the Condition evaluates to true,
users can't perform the specified Action.

• The Null conditional expression ensures that requests from Alice include the prefix parameter.

The prefix parameter requires folder-like access. If you send a request without the prefix
parameter, Amazon S3 returns all the object keys.

If the request includes the prefix parameter with a null value, the expression evaluates to true, and
so the entire Condition evaluates to true. You must allow an empty string as value of the prefix
parameter. From the preceding discussion, recall that allowing the null string allows Alice to retrieve
root-level bucket items as the console does in the preceding discussion. For more information, see Step
4.2: Enable Users to List Root-Level Content of a Bucket (p. 391).

• The StringNotLike conditional expression ensures that if the value of the prefix parameter is
specified and is not Development/*, the request fails.

API Version 2006-03-01
399

https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

Follow the steps in the preceding section and again update the inline policy that you created for user
Alice.

Copy the following policy and paste it into the policy text field, replacing the existing policy.

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Sid":"AllowListBucketIfSpecificPrefixIsIncludedInRequest",
 "Action":["s3:ListBucket"],
 "Effect":"Allow",
 "Resource":["arn:aws:s3:::companybucket"],
 "Condition":{
 "StringLike":{"s3:prefix":["Development/*"]
 }
 }
 },
 {
 "Sid":"AllowUserToReadWriteObjectDataInDevelopmentFolder",
 "Action":["s3:GetObject", "s3:PutObject"],
 "Effect":"Allow",
 "Resource":["arn:aws:s3:::companybucket/Development/*"]
 },
 {
 "Sid": "ExplicitlyDenyAnyRequestsForAllOtherFoldersExceptDevelopment",
 "Action": ["s3:ListBucket"],
 "Effect": "Deny",
 "Resource": ["arn:aws:s3:::companybucket"],
 "Condition":{ "StringNotLike": {"s3:prefix":["Development/*",""] },
 "Null" : {"s3:prefix":false }
 }
 }
]
}

Step 6: Grant IAM User Bob Specific Permissions

Now you want to grant Bob permission to the Finance folder. Follow the steps that you used earlier to
grant permissions to Alice, but replace the Development folder with the Finance folder. For step-by-
step instructions, see Step 5: Grant IAM User Alice Specific Permissions (p. 396).

Step 7: Secure the Private Folder

In this example, you have only two users. You granted all the minimum required permissions at the group
level and granted user-level permissions only when you really need to permissions at the individual
user level. This approach helps minimize the effort of managing permissions. As the number of users
increases, managing permissions can become cumbersome. For example, you don't want any of the
users in this example to access the content of the Private folder. How do you ensure that you don't
accidentally grant a user permission to it? You add a policy that explicitly denies access to the folder. An
explicit deny overrides any other permissions.

To ensure that the Private folder remains private, you can add the following two deny statements to
the group policy:

• Add the following statement to explicitly deny any action on resources in the Private folder
(companybucket/Private/*).

{
 "Sid": "ExplictDenyAccessToPrivateFolderToEveryoneInTheGroup",
 "Action": ["s3:*"],
 "Effect": "Deny",

API Version 2006-03-01
400

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

 "Resource":["arn:aws:s3:::companybucket/Private/*"]
}

• You also deny permission for the list objects action when the request specifies the Private/ prefix.
On the console, if Bob or Alice opens the Private folder, this policy causes Amazon S3 to return an
error response.

{
 "Sid": "DenyListBucketOnPrivateFolder",
 "Action": ["s3:ListBucket"],
 "Effect": "Deny",
 "Resource": ["arn:aws:s3:::*"],
 "Condition":{
 "StringLike":{"s3:prefix":["Private/"]}
 }
}

Replace the Consultants group policy with an updated policy that includes the preceding deny
statements. After the updated policy is applied, none of the users in the group can access the Private
folder in your bucket.

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

Use your AWS account credentials, not the credentials of an IAM user, to sign in to the console.
2. Replace the existing AllowGroupToSeeBucketListInTheConsole managed policy that

is attached to the Consultants group with the following policy. Remember to replace
companybucket in the policy with the name of your bucket.

For instructions, see Editing Customer Managed Policies in the IAM User Guide. When following the
instructions, make sure to follow the directions for applying your changes to all principal entities
that the policy is attached to.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid":
 "AllowGroupToSeeBucketListAndAlsoAllowGetBucketLocationRequiredForListBucket",
 "Action": ["s3:ListAllMyBuckets", "s3:GetBucketLocation"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::*"]
 },
 {
 "Sid": "AllowRootLevelListingOfCompanyBucket",
 "Action": ["s3:ListBucket"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::companybucket"],
 "Condition":{
 "StringEquals":{"s3:prefix":[""]}
 }
 },
 {
 "Sid": "RequireFolderStyleList",
 "Action": ["s3:ListBucket"],
 "Effect": "Deny",
 "Resource": ["arn:aws:s3:::*"],
 "Condition":{
 "StringNotEquals":{"s3:delimiter":"/"}
 }
 },

API Version 2006-03-01
401

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-edit.html#edit-managed-policy-console

Amazon Simple Storage Service Developer Guide
Using Bucket Policies and User Policies

 {
 "Sid": "ExplictDenyAccessToPrivateFolderToEveryoneInTheGroup",
 "Action": ["s3:*"],
 "Effect": "Deny",
 "Resource":["arn:aws:s3:::companybucket/Private/*"]
 },
 {
 "Sid": "DenyListBucketOnPrivateFolder",
 "Action": ["s3:ListBucket"],
 "Effect": "Deny",
 "Resource": ["arn:aws:s3:::*"],
 "Condition":{
 "StringLike":{"s3:prefix":["Private/"]}
 }
 }
]
}

Step 8: Clean Up

To clean up, open the IAM console and remove the users Alice and Bob. For step-by-step instructions, see
Deleting an IAM User in the IAM User Guide.

To ensure that you aren't charged further for storage, you should also delete the objects and the bucket
that you created for this exercise.

Related Resources

• Managing IAM Policies in the IAM User Guide.

API Version 2006-03-01
402

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_manage.html#id_users_deleting
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html

Amazon Simple Storage Service Developer Guide
Managing Access with ACLs

Managing Access with ACLs
Topics

• Access Control List (ACL) Overview (p. 403)

• Managing ACLs (p. 409)

Access control lists (ACLs) are one of the resource-based access policy options (see Overview of Managing
Access (p. 302)) that you can use to manage access to your buckets and objects. You can use ACLs to
grant basic read/write permissions to other AWS accounts. There are limits to managing permissions
using ACLs. For example, you can grant permissions only to other AWS accounts; you cannot grant
permissions to users in your account. You cannot grant conditional permissions, nor can you explicitly
deny permissions. ACLs are suitable for specific scenarios. For example, if a bucket owner allows other
AWS accounts to upload objects, permissions to these objects can only be managed using object ACL by
the AWS account that owns the object.

The following introductory topics explain the basic concepts and options that are available for you to
manage access to your Amazon S3 resources, and provide guidelines for when to use which access policy
options.

• Introduction to Managing Access Permissions to Your Amazon S3 Resources (p. 301)

• Guidelines for Using the Available Access Policy Options (p. 312)

Access Control List (ACL) Overview
Topics

• Who Is a Grantee? (p. 404)

• What Permissions Can I Grant? (p. 405)

• Sample ACL (p. 407)

• Canned ACL (p. 408)

• How to Specify an ACL (p. 408)

Amazon S3 access control lists (ACLs) enable you to manage access to buckets and objects. Each bucket
and object has an ACL attached to it as a subresource. It defines which AWS accounts or groups are
granted access and the type of access. When a request is received against a resource, Amazon S3 checks
the corresponding ACL to verify that the requester has the necessary access permissions.

When you create a bucket or an object, Amazon S3 creates a default ACL that grants the resource owner
full control over the resource. This is shown in the following sample bucket ACL (the default object ACL
has the same structure):

Example

<?xml version="1.0" encoding="UTF-8"?>
<AccessControlPolicy xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Owner>
 <ID>*** Owner-Canonical-User-ID ***</ID>
 <DisplayName>owner-display-name</DisplayName>
 </Owner>
 <AccessControlList>
 <Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="Canonical User">

API Version 2006-03-01
403

Amazon Simple Storage Service Developer Guide
Managing Access with ACLs

 <ID>*** Owner-Canonical-User-ID ***</ID>
 <DisplayName>display-name</DisplayName>
 </Grantee>
 <Permission>FULL_CONTROL</Permission>
 </Grant>
 </AccessControlList>
</AccessControlPolicy>

The sample ACL includes an Owner element that identifies the owner by the AWS account's canonical
user ID. For instructions on finding your canonical user id, see Finding an AWS Account Canonical
User ID (p. 404). The Grant element identifies the grantee (either an AWS account or a predefined
group) and the permission granted. This default ACL has one Grant element for the owner. You grant
permissions by adding Grant elements, with each grant identifying the grantee and the permission.

Note
An ACL can have up to 100 grants.

Who Is a Grantee?

A grantee can be an AWS account or one of the predefined Amazon S3 groups. You grant permission
to an AWS account using the email address or the canonical user ID. However, if you provide an email
address in your grant request, Amazon S3 finds the canonical user ID for that account and adds it to the
ACL. The resulting ACLs always contain the canonical user ID for the AWS account, not the AWS account's
email address.

Important
Using email addresses to specify a grantee is only supported in the following AWS Regions:

• US East (N. Virginia)

• US West (N. California)

• US West (Oregon)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• EU (Ireland)

• South America (São Paulo)

For a list of all the Amazon S3 supported regions and endpoints, see Regions and Endpoints in
the AWS General Reference.

Warning
When you grant other AWS accounts access to your resources, be aware that the AWS accounts
can delegate their permissions to users under their accounts. This is known as cross-account
access. For information about using cross-account access, see Creating a Role to Delegate
Permissions to an IAM User in the IAM User Guide.

Finding an AWS Account Canonical User ID

The canonical user ID is associated with your AWS account. It is a long string, such as
79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be. For information
about how to find the canonical user ID for your account, see Finding Your Account Canonical User ID.

You can also look up the canonical user ID of an AWS account by reading the ACL of a bucket or an
object to which the AWS account has access permissions. When an individual AWS account is granted
permissions by a grant request, a grant entry is added to the ACL with the AWS account's canonical user
ID.

API Version 2006-03-01
404

https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingCanonicalId

Amazon Simple Storage Service Developer Guide
Managing Access with ACLs

Note
If you make your bucket public (not recommended) any unauthenticated user can upload
objects to the bucket. These anonymous users don't have an AWS account. When an
anonymous user uploads an object to your bucket Amazon S3 adds a special canonical user
ID (65a011a29cdf8ec533ec3d1ccaae921c) as the object owner in the ACL. For more
information, see Amazon S3 Bucket and Object Ownership (p. 302).

Amazon S3 Predefined Groups

Amazon S3 has a set of predefined groups. When granting account access to a group, you specify one of
our URIs instead of a canonical user ID. We provide the following predefined groups:

• Authenticated Users group – Represented by http://acs.amazonaws.com/groups/global/
AuthenticatedUsers.

This group represents all AWS accounts. Access permission to this group allows any AWS account to
access the resource. However, all requests must be signed (authenticated).

Warning
When you grant access to the Authenticated Users group any AWS authenticated user in the
world can access your resource.

• All Users group – Represented by http://acs.amazonaws.com/groups/global/AllUsers.

Access permission to this group allows anyone in the world access to the resource. The requests
can be signed (authenticated) or unsigned (anonymous). Unsigned requests omit the Authentication
header in the request.

Warning
We highly recommend that you never grant the All Users group WRITE, WRITE_ACP, or
FULL_CONTROL permissions. For example, WRITE permissions allow anyone to store objects
in your bucket, for which you are billed. It also allows others to delete objects that you might
want to keep. For more details about these permissions, see the following section What
Permissions Can I Grant? (p. 405).

• Log Delivery group – Represented by http://acs.amazonaws.com/groups/s3/LogDelivery.

WRITE permission on a bucket enables this group to write server access logs (see Amazon S3 Server
Access Logging (p. 647)) to the bucket.

Note
When using ACLs, a grantee can be an AWS account or one of the predefined Amazon S3 groups.
However, the grantee cannot be an IAM user. For more information about AWS users and
permissions within IAM, go to Using AWS Identity and Access Management.

What Permissions Can I Grant?

The following table lists the set of permissions that Amazon S3 supports in an ACL. The set of ACL
permissions is the same for an object ACL and a bucket ACL. However, depending on the context (bucket
ACL or object ACL), these ACL permissions grant permissions for specific buckets or object operations.
The table lists the permissions and describes what they mean in the context of objects and buckets.

Permission When granted on a bucket When granted on an object

READ Allows grantee to list the objects in the
bucket

Allows grantee to read the object data
and its metadata

WRITE Allows grantee to create, overwrite, and
delete any object in the bucket

Not applicable

API Version 2006-03-01
405

https://docs.aws.amazon.com/IAM/latest/UserGuide/

Amazon Simple Storage Service Developer Guide
Managing Access with ACLs

Permission When granted on a bucket When granted on an object

READ_ACP Allows grantee to read the bucket ACL Allows grantee to read the object ACL

WRITE_ACP Allows grantee to write the ACL for the
applicable bucket

Allows grantee to write the ACL for the
applicable object

FULL_CONTROL Allows grantee the READ, WRITE,
READ_ACP, and WRITE_ACP permissions
on the bucket

Allows grantee the READ, READ_ACP,
and WRITE_ACP permissions on the
object

Warning
Use caution when granting access permissions to your S3 buckets and objects. For example,
granting WRITE access to a bucket allows the grantee to create, overwrite, and delete any object
in the bucket. We highly recommend that you read through this entire Access Control List (ACL)
Overview (p. 403) section before granting permissions.

Mapping of ACL Permissions and Access Policy Permissions

As shown in the preceding table, an ACL allows only a finite set of permissions, compared to the number
of permissions you can set in an access policy (see Specifying Permissions in a Policy (p. 345)). Each of
these permissions allows one or more Amazon S3 operations.

The following table shows how each ACL permission maps to the corresponding access policy
permissions. As you can see, access policy allows more permissions than ACL does. You use ACL primarily
to grant basic read/write permissions, similar to file system permissions. For more information about
when to use ACL, see Guidelines for Using the Available Access Policy Options (p. 312).

ACL permission Corresponding access policy
permissions when the ACL permission
is granted on a bucket

Corresponding access policy
permissions when the ACL permission
is granted on an object

READ s3:ListBucket,
s3:ListBucketVersions, and
s3:ListBucketMultipartUploads

s3:GetObject,
s3:GetObjectVersion, and
s3:GetObjectTorrent

WRITE s3:PutObject and
s3:DeleteObject.

In addition, when the grantee is
the bucket owner, granting WRITE
permission in a bucket ACL allows the
s3:DeleteObjectVersion action to
be performed on any version in that
bucket.

Not applicable

READ_ACP s3:GetBucketAcl s3:GetObjectAcl and
s3:GetObjectVersionAcl

WRITE_ACP s3:PutBucketAcl s3:PutObjectAcl and
s3:PutObjectVersionAcl

FULL_CONTROL Equivalent to granting READ, WRITE,
READ_ACP, and WRITE_ACP ACL
permissions. Accordingly, this ACL
permission maps to a combination of
corresponding access policy permissions.

Equivalent to granting READ, READ_ACP,
and WRITE_ACP ACL permissions.
Accordingly, this ACL permission maps to
a combination of corresponding access
policy permissions.

API Version 2006-03-01
406

Amazon Simple Storage Service Developer Guide
Managing Access with ACLs

Sample ACL

The following sample ACL on a bucket identifies the resource owner and a set of grants. The format is
the XML representation of an ACL in the Amazon S3 REST API. The bucket owner has FULL_CONTROL
of the resource. In addition, the ACL shows how permissions are granted on a resource to two AWS
accounts, identified by canonical user ID, and two of the predefined Amazon S3 groups discussed in the
preceding section.

Example

<?xml version="1.0" encoding="UTF-8"?>
<AccessControlPolicy xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Owner>
 <ID>Owner-canonical-user-ID</ID>
 <DisplayName>display-name</DisplayName>
 </Owner>
 <AccessControlList>
 <Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="CanonicalUser">
 <ID>Owner-canonical-user-ID</ID>
 <DisplayName>display-name</DisplayName>
 </Grantee>
 <Permission>FULL_CONTROL</Permission>
 </Grant>

 <Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="CanonicalUser">
 <ID>user1-canonical-user-ID</ID>
 <DisplayName>display-name</DisplayName>
 </Grantee>
 <Permission>WRITE</Permission>
 </Grant>

 <Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="CanonicalUser">
 <ID>user2-canonical-user-ID</ID>
 <DisplayName>display-name</DisplayName>
 </Grantee>
 <Permission>READ</Permission>
 </Grant>

 <Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="Group">
 <URI>http://acs.amazonaws.com/groups/global/AllUsers</URI>
 </Grantee>
 <Permission>READ</Permission>
 </Grant>
 <Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="Group">
 <URI>http://acs.amazonaws.com/groups/s3/LogDelivery</URI>
 </Grantee>
 <Permission>WRITE</Permission>
 </Grant>

 </AccessControlList>
</AccessControlPolicy>

API Version 2006-03-01
407

Amazon Simple Storage Service Developer Guide
Managing Access with ACLs

Canned ACL

Amazon S3 supports a set of predefined grants, known as canned ACLs. Each canned ACL has a
predefined set of grantees and permissions. The following table lists the set of canned ACLs and the
associated predefined grants.

Canned ACL Applies to Permissions added to ACL

private Bucket and
object

Owner gets FULL_CONTROL. No one else has access rights
(default).

public-read Bucket and
object

Owner gets FULL_CONTROL. The AllUsers group (see
Who Is a Grantee? (p. 404)) gets READ access.

public-read-write Bucket and
object

Owner gets FULL_CONTROL. The AllUsers group gets
READ and WRITE access. Granting this on a bucket is
generally not recommended.

aws-exec-read Bucket and
object

Owner gets FULL_CONTROL. Amazon EC2 gets READ access
to GET an Amazon Machine Image (AMI) bundle from
Amazon S3.

authenticated-read Bucket and
object

Owner gets FULL_CONTROL. The AuthenticatedUsers
group gets READ access.

bucket-owner-read Object Object owner gets FULL_CONTROL. Bucket owner gets
READ access. If you specify this canned ACL when creating
a bucket, Amazon S3 ignores it.

bucket-owner-full-
control

Object Both the object owner and the bucket owner get
FULL_CONTROL over the object. If you specify this canned
ACL when creating a bucket, Amazon S3 ignores it.

log-delivery-write Bucket The LogDelivery group gets WRITE and READ_ACP
permissions on the bucket. For more information about
logs, see (Amazon S3 Server Access Logging (p. 647)).

Note
You can specify only one of these canned ACLs in your request.

You specify a canned ACL in your request using the x-amz-acl request header. When Amazon S3
receives a request with a canned ACL in the request, it adds the predefined grants to the ACL of the
resource.

How to Specify an ACL

Amazon S3 APIs enable you to set an ACL when you create a bucket or an object. Amazon S3 also
provides API to set an ACL on an existing bucket or an object. These APIs provide the following methods
to set an ACL:

• Set ACL using request headers— When you send a request to create a resource (bucket or object),
you set an ACL using the request headers. Using these headers, you can either specify a canned ACL or
specify grants explicitly (identifying grantee and permissions explicitly).

• Set ACL using request body— When you send a request to set an ACL on an existing resource, you can
set the ACL either in the request header or in the body.

For more information, see Managing ACLs (p. 409).

API Version 2006-03-01
408

Amazon Simple Storage Service Developer Guide
Managing Access with ACLs

Managing ACLs
Topics

• Managing ACLs in the AWS Management Console (p. 409)
• Managing ACLs Using the AWS SDK for Java (p. 409)
• Managing ACLs Using the AWS SDK for .NET (p. 411)
• Managing ACLs Using the REST API (p. 414)

There are several ways you can add grants to your resource ACL. You can use the AWS Management
Console, which provides a UI to manage permissions without writing any code. You can use the REST API
or one of the AWS SDKs. These libraries further simplify your programming tasks.

Managing ACLs in the AWS Management Console

AWS Management Console provides a UI for you to grant ACL-based access permissions to your buckets
and objects. For information on setting ACL-based access permissions in the console, see How Do I Set
ACL Bucket Permissions? and How Do I Set Permissions on an Object? in the Amazon Simple Storage
Service Console User Guide.

Managing ACLs Using the AWS SDK for Java

This section provides examples of how to configure access control list (ACL) grants on buckets
and objects. The first example creates a bucket with a canned ACL (see Canned ACL (p. 408)),
creates a list of custom permission grants, and then replaces the canned ACL with an ACL
containing the custom grants. The second example shows how to modify an ACL using the
AccessControlList.grantPermission() method.

Setting ACL Grants

Example

This example creates a bucket. In the request, the example specifies a canned ACL that grants the Log
Delivery group permission to write logs to the bucket.

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.io.IOException;
import java.util.ArrayList;

public class CreateBucketWithACL {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String userEmailForReadPermission = "*** user@example.com ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withRegion(clientRegion)
 .build();

 // Create a bucket with a canned ACL. This ACL will be replaced by the
 setBucketAcl()

API Version 2006-03-01
409

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/set-bucket-permissions.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/set-bucket-permissions.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide//set-object-permissions.html

Amazon Simple Storage Service Developer Guide
Managing Access with ACLs

 // calls below. It is included here for demonstration purposes.
 CreateBucketRequest createBucketRequest = new CreateBucketRequest(bucketName,
 clientRegion.getName())
 .withCannedAcl(CannedAccessControlList.LogDeliveryWrite);
 s3Client.createBucket(createBucketRequest);

 // Create a collection of grants to add to the bucket.
 ArrayList<Grant> grantCollection = new ArrayList<Grant>();

 // Grant the account owner full control.
 Grant grant1 = new Grant(new
 CanonicalGrantee(s3Client.getS3AccountOwner().getId()), Permission.FullControl);
 grantCollection.add(grant1);

 // Grant the LogDelivery group permission to write to the bucket.
 Grant grant2 = new Grant(GroupGrantee.LogDelivery, Permission.Write);
 grantCollection.add(grant2);

 // Save grants by replacing all current ACL grants with the two we just
 created.
 AccessControlList bucketAcl = new AccessControlList();
 bucketAcl.grantAllPermissions(grantCollection.toArray(new Grant[0]));
 s3Client.setBucketAcl(bucketName, bucketAcl);

 // Retrieve the bucket's ACL, add another grant, and then save the new ACL.
 AccessControlList newBucketAcl = s3Client.getBucketAcl(bucketName);
 Grant grant3 = new Grant(new EmailAddressGrantee(userEmailForReadPermission),
 Permission.Read);
 newBucketAcl.grantAllPermissions(grant3);
 s3Client.setBucketAcl(bucketName, newBucketAcl);
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it and returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Configuring ACL Grants on an Existing Object

Example

This example updates the ACL on an object. The example performs the following tasks:

• Retrieves an object's ACL

• Clears the ACL by removing all existing permissions

• Adds two permissions: full access to the owner, and WRITE_ACP (see What Permissions Can I
Grant? (p. 405)) to a user identified by an email address

• Saves the ACL to the object

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;

API Version 2006-03-01
410

Amazon Simple Storage Service Developer Guide
Managing Access with ACLs

import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.AccessControlList;
import com.amazonaws.services.s3.model.CanonicalGrantee;
import com.amazonaws.services.s3.model.EmailAddressGrantee;
import com.amazonaws.services.s3.model.Permission;

import java.io.IOException;

public class ModifyACLExistingObject {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";
 String keyName = "*** Key name ***";
 String emailGrantee = "*** user@example.com ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 // Get the existing object ACL that we want to modify.
 AccessControlList acl = s3Client.getObjectAcl(bucketName, keyName);

 // Clear the existing list of grants.
 acl.getGrantsAsList().clear();

 // Grant a sample set of permissions, using the existing ACL owner for Full
 Control permissions.
 acl.grantPermission(new CanonicalGrantee(acl.getOwner().getId()),
 Permission.FullControl);
 acl.grantPermission(new EmailAddressGrantee(emailGrantee),
 Permission.WriteAcp);

 // Save the modified ACL back to the object.
 s3Client.setObjectAcl(bucketName, keyName, acl);
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Managing ACLs Using the AWS SDK for .NET

This section provides examples of configuring ACL grants on Amazon S3 buckets and objects.

Example 1: Creating a Bucket and Using a Canned ACL to Set Permissions

This C# example creates a bucket. In the request, the code also specifies a canned ACL that grants the
Log Delivery group permissions to write the logs to the bucket.

For instructions on creating and testing a working example, see Running the Amazon S3 .NET Code
Examples (p. 678).

API Version 2006-03-01
411

Amazon Simple Storage Service Developer Guide
Managing Access with ACLs

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class ManagingBucketACLTest
 {
 private const string newBucketName = "*** bucket name ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 client;

 public static void Main()
 {
 client = new AmazonS3Client(bucketRegion);
 CreateBucketUseCannedACLAsync().Wait();
 }

 private static async Task CreateBucketUseCannedACLAsync()
 {
 try
 {
 // Add bucket (specify canned ACL).
 PutBucketRequest putBucketRequest = new PutBucketRequest()
 {
 BucketName = newBucketName,
 BucketRegion = S3Region.EUW1, // S3Region.US,
 // Add canned ACL.
 CannedACL = S3CannedACL.LogDeliveryWrite
 };
 PutBucketResponse putBucketResponse = await
 client.PutBucketAsync(putBucketRequest);

 // Retrieve bucket ACL.
 GetACLResponse getACLResponse = await client.GetACLAsync(new GetACLRequest
 {
 BucketName = newBucketName
 });
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 Console.WriteLine("S3 error occurred. Exception: " +
 amazonS3Exception.ToString());
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: " + e.ToString());
 }
 }
 }
}

Example 2: Configure ACL Grants on an Existing Object

This C# example updates the ACL on an existing object. The example performs the following tasks:

• Retrieves an object's ACL.

• Clears the ACL by removing all existing permissions.

• Adds two permissions: full access to the owner, and WRITE_ACP to a user identified by email address.

• Saves the ACL by sending a PutAcl request.

API Version 2006-03-01
412

Amazon Simple Storage Service Developer Guide
Managing Access with ACLs

For instructions on creating and testing a working example, see Running the Amazon S3 .NET Code
Examples (p. 678).

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class ManagingObjectACLTest
 {
 private const string bucketName = "*** bucket name ***";
 private const string keyName = "*** object key name ***";
 private const string emailAddress = "*** email address ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 client;
 public static void Main()
 {
 client = new AmazonS3Client(bucketRegion);
 TestObjectACLTestAsync().Wait();
 }
 private static async Task TestObjectACLTestAsync()
 {
 try
 {
 // Retrieve the ACL for the object.
 GetACLResponse aclResponse = await client.GetACLAsync(new GetACLRequest
 {
 BucketName = bucketName,
 Key = keyName
 });

 S3AccessControlList acl = aclResponse.AccessControlList;

 // Retrieve the owner (we use this to re-add permissions after we clear
 the ACL).
 Owner owner = acl.Owner;

 // Clear existing grants.
 acl.Grants.Clear();

 // Add a grant to reset the owner's full permission (the previous clear
 statement removed all permissions).
 S3Grant fullControlGrant = new S3Grant
 {
 Grantee = new S3Grantee { CanonicalUser = owner.Id },
 Permission = S3Permission.FULL_CONTROL

 };

 // Describe the grant for the permission using an email address.
 S3Grant grantUsingEmail = new S3Grant
 {
 Grantee = new S3Grantee { EmailAddress = emailAddress },
 Permission = S3Permission.WRITE_ACP
 };
 acl.Grants.AddRange(new List<S3Grant> { fullControlGrant,
 grantUsingEmail });

 // Set a new ACL.
 PutACLResponse response = await client.PutACLAsync(new PutACLRequest

API Version 2006-03-01
413

Amazon Simple Storage Service Developer Guide
Blocking Public Access

 {
 BucketName = bucketName,
 Key = keyName,
 AccessControlList = acl
 });
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 Console.WriteLine("An AmazonS3Exception was thrown. Exception: " +
 amazonS3Exception.ToString());
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: " + e.ToString());
 }
 }
 }
}

Managing ACLs Using the REST API

For information on the REST API support for managing ACLs, see the following sections in the Amazon
Simple Storage Service API Reference:

• GET Bucket acl
• PUT Bucket acl
• GET Object acl
• PUT Object acl
• PUT Object
• PUT Bucket
• PUT Object - Copy
• Initiate Multipart Upload

Using Amazon S3 Block Public Access
Amazon S3 provides block public access settings for buckets and accounts to help you manage public
access to Amazon S3 resources. By default, new buckets and objects don't allow public access, but
users can modify bucket policies or object permissions to allow public access. Amazon S3 block public
access settings override these policies and permissions so that you can limit public access to these
resources. With Amazon S3 block public access, account administrators and bucket owners can easily set
up centralized controls to limit public access to their Amazon S3 resources that are enforced regardless
of how the resources are created.

When Amazon S3 receives a request to access a bucket or an object, it determines whether the bucket
or the bucket owner's account has a block public access setting applied. If there is an existing block
public access setting that prohibits the requested access, then Amazon S3 rejects the request. Amazon
S3 block public access provides four settings. These settings are independent and can be used in any
combination. And each setting can be applied to a bucket or to an entire AWS account. If a bucket has
block public access settings that are different from its owner's account, Amazon S3 applies the most
restrictive combination of the bucket-level and account-level settings. When Amazon S3 evaluates
whether an operation is prohibited by a block public access setting, it rejects any request that violates
either a bucket-level or an account-level setting.

Note

• You can enable block public access settings only for buckets and AWS accounts. Amazon S3
doesn't support block public access settings on a per-object basis.

API Version 2006-03-01
414

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html

Amazon Simple Storage Service Developer Guide
Blocking Public Access

• When you apply block public access settings to an account, the settings apply to all
AWS Regions globally. The settings might not take effect in all Regions immediately or
simultaneously, but they eventually propagate to all Regions.

Topics

• Enable Block Public Access on the Amazon S3 Console (p. 415)

• Block Public Access Settings (p. 416)

• The Meaning of "Public" (p. 417)

• Permissions (p. 418)

• Examples (p. 419)

Enable Block Public Access on the Amazon S3 Console

Amazon S3 Block public access provides four settings. You can apply these settings in any combination to
individual buckets or to entire AWS accounts. The image below shows how to enable block public access
on the Amazon S3 console for your account. For more information, see Setting Permissions: Block Public
Access in the Amazon Simple Storage Service Console User Guide.

API Version 2006-03-01
415

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/block-public-access.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/block-public-access.html

Amazon Simple Storage Service Developer Guide
Blocking Public Access

Block Public Access Settings

Amazon S3 block public access provides four settings. You can apply these settings in any combination to
individual buckets or to entire AWS accounts. If you apply a setting to an account, it applies to all buckets
that are owned by that account.

The following table contains the available settings.

Name Description

BlockPublicAcls Setting this option to TRUE causes the following behavior:

• PUT Bucket acl and PUT Object acl calls fail if the specified access control list
(ACL) is public.

• PUT Object calls fail if the request includes a public ACL.
• If this setting is applied to an account, then PUT Bucket calls fail if the

request includes a public ACL.

When this setting is set to TRUE, the specified operations fail (whether made
through the REST API, AWS CLI, or AWS SDKs). However, existing policies and
ACLs for buckets and objects are not modified. This setting enables you to
protect against public access while allowing you to audit, refine, or otherwise
alter the existing policies and ACLs for your buckets and objects.

IgnorePublicAcls Setting this option to TRUE causes Amazon S3 to ignore all public ACLs on a
bucket and any objects that it contains. This setting enables you to safely block
public access granted by ACLs while still allowing PUT Object calls that include
a public ACL (as opposed to BlockPublicAcls, which rejects PUT Object calls
that include a public ACL). Enabling this setting doesn't affect the persistence of
any existing ACLs and doesn't prevent new public ACLs from being set.

BlockPublicPolicy Setting this option to TRUE causes Amazon S3 to reject calls to PUT Bucket
policy if the specified bucket policy allows public access. This setting enables
you to allow users to manage bucket policies without allowing them to publicly
share the bucket or the objects it contains. Enabling this setting doesn't affect
existing bucket policies.

Important
To use this setting effectively, you should apply it at the account level.
A bucket policy can allow users to alter a bucket's block public access
settings. Therefore, users who have permission to change a bucket
policy could insert a policy that allows them to disable the block public
access settings for the bucket. If this setting is enabled for the entire
account, rather than for a specific bucket, Amazon S3 blocks public
policies even if a user alters the bucket policy to disable this setting.

RestrictPublicBucketsSetting this option to TRUE restricts access to a bucket with a public policy to
only AWS services and authorized users within the bucket owner's account. This
setting blocks all cross-account access to the bucket (except by AWS services),
while still allowing users within the account to manage the bucket.

Enabling this setting doesn't affect existing bucket policies, except that Amazon
S3 blocks public and cross-account access derived from any public bucket
policy, including non-public delegation to specific accounts.

API Version 2006-03-01
416

Amazon Simple Storage Service Developer Guide
Blocking Public Access

Important

• Calls to GET Bucket acl and GET Object acl always return the effective permissions in place
for the specified bucket or object. For example, suppose that a bucket has an ACL that grants
public access, but the bucket also has the IgnorePublicAcls setting enabled. In this
case, GET Bucket acl returns an ACL that reflects the access permissions that Amazon S3 is
enforcing, rather than the actual ACL that is associated with the bucket.

• Block public access settings don't alter existing policies or ACLs. Therefore, removing a block
public access setting causes a bucket or object with a public policy or ACL to again be publicly
accessible.

The Meaning of "Public"
ACLs

Amazon S3 considers a bucket or object ACL public if it grants any permissions to members of the
predefined AllUsers or AuthenticatedUsers groups. For more information about predefined
groups, see Amazon S3 Predefined Groups (p. 405).

Policies

When evaluating a bucket policy, Amazon S3 begins by assuming that the policy is public. It then
evaluates the policy to determine whether it qualifies as non-public. To be considered non-public, a
bucket policy must grant access only to fixed values (values that don't contain a wildcard) of one or
more of the following:

• A set of Classless Inter-Domain Routings (CIDRs), using aws:SourceIp. For more information
about CIDR, see RFC 4632 on the RFC Editor website.

• An AWS principal, user, role, or service principal (e.g. aws:PrincipalOrgID)

• aws:SourceArn

• aws:SourceVpc

• aws:SourceVpce

• aws:SourceOwner

• aws:SourceAccount

• s3:x-amz-server-side-encryption-aws-kms-key-id

• aws:userid, outside the pattern "AROLEID:*"

Under these rules, the following example policies are considered public:

{
 "Principal": { "Federated": "graph.facebook.com" },
 "Resource": "*",
 "Action": "s3:PutObject",
 "Effect": "Allow"
}

{
 "Principal": "*",
 "Resource": "*",
 "Action": "s3:PutObject",
 "Effect": "Allow"
}

{
 "Principal": "*",
 "Resource": "*",
 "Action": "s3:PutObject", API Version 2006-03-01

417

http://www.rfc-editor.org/rfc/rfc4632.txt

Amazon Simple Storage Service Developer Guide
Blocking Public Access

 "Effect": "Allow",
 "Condition": { "StringLike": {"aws:SourceVpc": "vpc-*"}}
}

You can make these policies non-public by including any of the condition keys listed previously,
using a fixed value. For example, you can make the last policy preceding non-public by setting
aws:SourceVpc to a fixed value, like this:

{
 "Principal": "*",
 "Resource": "*",
 "Action": "s3:PutObject",
 "Effect": "Allow",
 "Condition": {"StringEquals": {"aws:SourceVpc": "vpc-91237329"}}
}

For more information about bucket policies, see Using Bucket Policies and User Policies (p. 341).

Example

This example shows how Amazon S3 evaluates a policy that contains both public and non-public access
grants.

Suppose that a bucket has a policy that grants access to a set of fixed principals. Under the previously
described rules, this policy isn't public. Thus, if you enable the RestrictPublicBuckets setting, the
policy remains in effect as written, because RestrictPublicBuckets only applies to buckets that have
public policies. However, if you add a public statement to the policy, RestrictPublicBuckets takes
effect on the bucket. It allows only AWS service principals and authorized users of the bucket owner's
account to access the bucket.

As an example, suppose that a bucket owned by "Account-1" has a policy that contains the following:

1. A statement that grants access to AWS CloudTrail (which is an AWS service principal)

2. A statement that grants access to account "Account-2"

3. A statement that grants access to the public, for example by specifying "Principal": "*" with no
limiting Condition

This policy qualifies as public because of the third statement. With this policy in place and
RestrictPublicBuckets enabled, Amazon S3 allows access only by CloudTrail. Even though
statement 2 isn't public, Amazon S3 disables access by "Account-2." This is because statement 3
renders the entire policy public, so RestrictPublicBuckets applies. As a result, Amazon S3 disables
cross-account access, even though the policy delegates access to a specific account, "Account-2."
But if you remove statement 3 from the policy, then the policy doesn't qualify as public, and
RestrictPublicBuckets no longer applies. Thus, "Account-2" regains access to the bucket, even if you
leave RestrictPublicBuckets enabled.

Permissions
To use Amazon S3 block public access features, you must have the following permissions.

Operation Required Permissions

GET bucket policy status s3:GetBucketPolicyStatus

GET bucket Block Public Access settings s3:GetBucketPublicAccessBlock

API Version 2006-03-01
418

Amazon Simple Storage Service Developer Guide
Blocking Public Access

Operation Required Permissions

PUT bucket Block Public Access settings s3:PutBucketPublicAccessBlock

DELETE bucket Block Public Access settings s3:PutBucketPublicAccessBlock

GET account Block Public Access settings s3:GetAccountPublicAccessBlock

PUT account Block Public Access settings s3:PutAccountPublicAccessBlock

DELETE account Block Public Access settings s3:PutAccountPublicAccessBlock

Note
The DELETE operations require the same permissions as the PUT operations. There are no
separate permissions for the DELETE operations.

Examples

Using Block Public Access with the AWS CLI

You can use Amazon S3 block public access through the AWS CLI. The command you use depends
on whether you want to perform a block public access call on a bucket or on an account. For more
information about setting up and using the AWS CLI, see What is the AWS Command Line Interface?

Bucket
To perform block public access operations on a bucket, use the AWS CLI service s3api. The bucket-
level operations that use this service are as follows:
• PUT PublicAccessBlock (for a bucket)
• GET PublicAccessBlock (for a bucket)
• DELETE PublicAccessBlock (for a bucket)
• GET BucketPolicyStatus

Account
To perform block public access operations on an account, use the AWS CLI service s3control. The
account-level operations that use this service are as follows:
• PUT PublicAccessBlock (for an account)
• GET PublicAccessBlock (for an account)
• DELETE PublicAccessBlock (for an account)

Using Block Public Access with the AWS SDK for Java

The following examples show how to use Amazon S3 block public access with the AWS SDK for Java. For
instructions on how to create and test a working sample, see Using the AWS SDK for Java (p. 676).

Example 1

This example shows how to set a public access block configuration on an S3 bucket using the AWS SDK
for Java.

AmazonS3 client = AmazonS3ClientBuilder.standard()
 .withCredentials(<credentials>)
 .build();

client.setPublicAccessBlock(new SetPublicAccessBlockRequest()

API Version 2006-03-01
419

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

Amazon Simple Storage Service Developer Guide
Blocking Public Access

 .withBucketName(<bucket-name>)
 .withPublicAccessBlockConfiguration(new PublicAccessBlockConfiguration()
 .withBlockPublicAcls(<value>)
 .withIgnorePublicAcls(<value>)
 .withBlockPublicPolicy(<value>)
 .withRestrictPublicBuckets(<value>)));

Important
This example pertains only to bucket-level operations, which use the AmazonS3 client class. For
account-level operations, see the following example.

Example 2

This example shows how to put a public access block configuration on an Amazon S3 account using the
AWS SDK for Java.

AWSS3ControlClientBuilder controlClientBuilder = AWSS3ControlClientBuilder.standard();
controlClientBuilder.setRegion(<region>);
controlClientBuilder.setCredentials(<credentials>);

AWSS3Control client = controlClientBuilder.build();
client.putPublicAccessBlock(new PutPublicAccessBlockRequest()
 .withAccountId(<account-id>)
 .withPublicAccessBlockConfiguration(new PublicAccessBlockConfiguration()
 .withIgnorePublicAcls(<value>)
 .withBlockPublicAcls(<value>)
 .withBlockPublicPolicy(<value>)
 .withRestrictPublicBuckets(<value>)));

Important
This example pertains only to account-level operations, which use the AWSS3Control client
class. For bucket-level operations, see the preceding example.

Using Block Public Access with Other AWS SDKs

For information about using the other AWS SDKs, see Using the AWS SDKs, CLI, and Explorers (p. 669).

Using Block Public Access with the REST APIs

For information about using Amazon S3 block public access through the REST APIs, see the following
topics in the Amazon Simple Storage Service API Reference.

• Account-level operations
• PUT PublicAccessBlock
• GET PublicAccessBlock
• DELETE PublicAccessBlock

• Bucket-level operations
• PUT PublicAccessBlock
• GET PublicAccessBlock
• DELETE PublicAccessBlock
• GET BucketPolicyStatus

API Version 2006-03-01
420

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTAccountPUTPublicAccessBlock.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTAccountGETPublicAccessBlock.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTAccountDELETEPublicAccessBlock.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTPublicAccessBlock.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETPublicAccessBlock.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEPublicAccessBlock.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETPolicyStatus.html

Amazon Simple Storage Service Developer Guide
Logging and Monitoring

Logging and Monitoring in Amazon S3
Monitoring is an important part of maintaining the reliability, availability, and performance of Amazon
S3 and your AWS solutions. You should collect monitoring data from all of the parts of your AWS
solution so that you can more easily debug a multi-point failure if one occurs. AWS provides several tools
for monitoring your Amazon S3 resources and responding to potential incidents:

Amazon CloudWatch Alarms

Using Amazon CloudWatch alarms, you watch a single metric over a time period that you specify.
If the metric exceeds a given threshold, a notification is sent to an Amazon SNS topic or AWS Auto
Scaling policy. CloudWatch alarms do not invoke actions because they are in a particular state.
Rather the state must have changed and been maintained for a specified number of periods. For
more information, see Monitoring Metrics with Amazon CloudWatch (p. 611).

AWS CloudTrail Logs

CloudTrail provides a record of actions taken by a user, role, or an AWS service in Amazon S3. Using
the information collected by CloudTrail, you can determine the request that was made to Amazon
S3, the IP address from which the request was made, who made the request, when it was made,
and additional details. For more information, see Logging Amazon S3 API Calls by Using AWS
CloudTrail (p. 621).

Amazon S3 Access Logs

Server access logs provide detailed records about requests that are made to a bucket. Server access
logs are useful for many applications. For example, access log information can be useful in security
and access audits. For more information, see Amazon S3 Server Access Logging (p. 647).

AWS Trusted Advisor

Trusted Advisor draws upon best practices learned from serving hundreds of thousands of AWS
customers. Trusted Advisor inspects your AWS environment and then makes recommendations
when opportunities exist to save money, improve system availability and performance, or help
close security gaps. All AWS customers have access to five Trusted Advisor checks. Customers with a
Business or Enterprise support plan can view all Trusted Advisor checks.

Trusted Advisor has the following Amazon S3-related checks:
• Logging configuration of Amazon S3 buckets.
• Security checks for Amazon S3 buckets that have open access permissions.
• Fault tolerance checks for Amazon S3 buckets that don't have versioning enabled, or have

versioning suspended.

For more information, see AWS Trusted Advisor in the AWS Support User Guide.

The following security best practices also address logging and monitoring:

• Identify and audit all your Amazon S3 buckets
• Implement monitoring using AWS monitoring tools
• Enable AWS Config
• Enable Amazon S3 server access logging
• Use AWS CloudTrail
• Monitor AWS security advisories

API Version 2006-03-01
421

https://docs.aws.amazon.com/awssupport/latest/user/getting-started.html#trusted-advisor

Amazon Simple Storage Service Developer Guide
Compliance Validation

Compliance Validation for Amazon S3
The security and compliance of Amazon S3 is assessed by third-party auditors as part of multiple AWS
compliance programs, including the following:

• System and Organization Controls (SOC)
• Payment Card Industry Data Security Standard (PCI DSS)
• Federal Risk and Authorization Management Program (FedRAMP)
• Health Insurance Portability and Accountability Act (HIPAA)

AWS provides a frequently updated list of AWS services in scope of specific compliance programs at AWS
Services in Scope by Compliance Program.

Third-party audit reports are available for you to download using AWS Artifact. For more information,
see Downloading Reports in AWS Artifact.

For more information about AWS compliance programs, see AWS Compliance Programs.

Your compliance responsibility when using Amazon S3 is determined by the sensitivity of your data, your
organization’s compliance objectives, and applicable laws and regulations. If your use of Amazon S3 is
subject to compliance with standards like HIPAA, PCI, or FedRAMP, AWS provides resources to help:

• Security and Compliance Quick Start Guides that discuss architectural considerations and steps for
deploying security- and compliance-focused baseline environments on AWS.

• Architecting for HIPAA Security and Compliance whitepaper that outlines how companies use AWS to
help them meet HIPAA requirements.

• AWS Compliance Resources provide several different workbooks and guides that might apply to your
industry and location.

• AWS Config can be used to assess how well your resource configurations comply with internal
practices, industry guidelines, and regulations.

• AWS Security Hub provides you with a comprehensive view of your security state within AWS and helps
you check your compliance with security industry standards and best practices.

• Amazon S3 Object Lock can help you meet technical requirements of financial services regulators
(such as the SEC, FINRA, and CFTC) that require write once, read many (WORM) data storage for
certain types of books and records information.

• Amazon S3 Inventory (p. 422) can help you audit and report on the replication and encryption status
of your objects for business, compliance, and regulatory needs.

Amazon S3 Inventory
Amazon S3 inventory is one of the tools Amazon S3 provides to help manage your storage. You can use
it to audit and report on the replication and encryption status of your objects for business, compliance,
and regulatory needs. You can also simplify and speed up business workflows and big data jobs using
Amazon S3 inventory, which provides a scheduled alternative to the Amazon S3 synchronous List API
operation.

Amazon S3 inventory provides comma-separated values (CSV), Apache optimized row columnar (ORC)
or Apache Parquet (Parquet) output files that list your objects and their corresponding metadata on a
daily or weekly basis for an S3 bucket or a shared prefix (that is, objects that have names that begin with
a common string). For information about Amazon S3 inventory pricing, see Amazon S3 Pricing.

You can configure multiple inventory lists for a bucket. You can configure what object metadata to
include in the inventory, whether to list all object versions or only current versions, where to store the

API Version 2006-03-01
422

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://d0.awsstatic.com/whitepapers/compliance/AWS_HIPAA_Compliance_Whitepaper.pdf
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lock.html
https://orc.apache.org/
https://parquet.apache.org/
https://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Inventory

inventory list file output, and whether to generate the inventory on a daily or weekly basis. You can also
specify that the inventory list file be encrypted.

You can query Amazon S3 inventory using standard SQL by using Amazon Athena, Amazon Redshift
Spectrum, and other tools such as Presto, Apache Hive, and Apache Spark. It's easy to use Athena to run
queries on your inventory files. You can use Athena for Amazon S3 inventory queries in all Regions where
Athena is available.

Topics

• How Do I Set Up Amazon S3 Inventory? (p. 423)

• What's Included in an Amazon S3 Inventory? (p. 425)

• Where Are Inventory Lists Located? (p. 426)

• How Do I Know When an Inventory Is Complete? (p. 429)

• Querying Inventory with Amazon Athena (p. 429)

• Amazon S3 Inventory REST APIs (p. 430)

How Do I Set Up Amazon S3 Inventory?
This section describes how to set up an inventory, including details about the inventory source and
destination buckets.

Amazon S3 Inventory Source and Destination Buckets

The bucket that the inventory lists the objects for is called the source bucket. The bucket where the
inventory list file is stored is called the destination bucket.

Source Bucket

The inventory lists the objects that are stored in the source bucket. You can get inventory lists for an
entire bucket or filtered by (object key name) prefix.

The source bucket:

• Contains the objects that are listed in the inventory.

• Contains the configuration for the inventory.

Destination Bucket

Amazon S3 inventory list files are written to the destination bucket. To group all the inventory list files
in a common location in the destination bucket, you can specify a destination (object key name) prefix in
the inventory configuration.

The destination bucket:

• Contains the inventory file lists.

• Contains the manifest files that list all the file inventory lists that are stored in the destination bucket.
For more information, see What Is an Inventory Manifest? (p. 427)

• Must have a bucket policy to give Amazon S3 permission to verify ownership of the bucket and
permission to write files to the bucket.

• Must be in the same AWS Region as the source bucket.

• Can be the same as the source bucket.

• Can be owned by a different AWS account than the account that owns the source bucket.

API Version 2006-03-01
423

https://docs.aws.amazon.com/athena/latest/ug//what-is.html
https://prestodb.io/
https://hive.apache.org/
https://databricks.com/spark/about/

Amazon Simple Storage Service Developer Guide
Inventory

Setting Up Amazon S3 Inventory

Amazon S3 inventory helps you manage your storage by creating lists of the objects in an S3 bucket
on a defined schedule. You can configure multiple inventory lists for a bucket. The inventory lists are
published to CSV, ORC, or Parquet files in a destination bucket.

The easiest way to set up an inventory is by using the AWS Management Console, but you can also use
the REST API, AWS CLI, or AWS SDKs. The console performs the first step of the following procedure for
you: adding a bucket policy to the destination bucket.

To set up Amazon S3 inventory for an S3 bucket

1. Add a bucket policy for the destination bucket.

You must create a bucket policy on the destination bucket to grant permissions to Amazon S3 to write
objects to the bucket in the defined location. For an example policy, see Granting Permissions for
Amazon S3 Inventory and Amazon S3 Analytics (p. 377).

2. Configure an inventory to list the objects in a source bucket and publish the list to a destination
bucket.

When you configure an inventory list for a source bucket, you specify the destination bucket where
you want the list to be stored, and whether you want to generate the list daily or weekly. You can
also configure what object metadata to include and whether to list all object versions or only current
versions.

You can specify that the inventory list file be encrypted by using Amazon S3-managed keys (SSE-
S3) or keys stored in AWS KMS (SSE-KMS). For more information about SSE-S3 and SSE-KMS, see
Protecting Data Using Server-Side Encryption (p. 265). If you plan to use SSE-KMS encryption, see
Step 3.
• For information about how to use the console to configure an inventory list, see How Do I Configure

Amazon S3 Inventory? in the Amazon Simple Storage Service Console User Guide.
• To use the Amazon S3 API to configure an inventory list, use the PUT Bucket inventory configuration

REST API, or the equivalent from the AWS CLI or AWS SDKs.
3. To encrypt the inventory list file with SSE-KMS, grant Amazon S3 permission to use the AWS KMS

key.

You can configure encryption for the inventory list file by using the AWS Management Console, REST
API, AWS CLI, or AWS SDKs. Whichever way you choose, you must grant Amazon S3 permission to
use the AWS KMS customer master key (CMK) to encrypt the inventory file. You grant Amazon S3
permission by modifying the key policy for the AWS KMS CMK that is being used to encrypt the
inventory file. For more information, see the next section, Grant Amazon S3 Permission to Encrypt
Using Your AWS KMS Key (p. 424).

Grant Amazon S3 Permission to Encrypt Using Your AWS KMS Key

You must grant Amazon S3 permission to encrypt using your AWS KMS key with a key policy. The
following procedure describes how to use the AWS Identity and Access Management (IAM) console to
modify the key policy for the AWS KMS CMK that is used to encrypt the inventory file.

To grant permissions to encrypt using your AWS KMS key

1. Sign in to the AWS Management Console using the AWS account that owns the AWS KMS CMK, and
open the IAM console at https://console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Encryption keys.
3. For Region, choose the appropriate AWS Region. Do not use the region selector in the navigation bar

(upper-right corner).

API Version 2006-03-01
424

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/configure-inventory.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/configure-inventory.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTInventoryConfig.html
https://console.aws.amazon.com/iam/

Amazon Simple Storage Service Developer Guide
Inventory

4. Choose the alias of the CMK that you want to encrypt inventory with.

5. In the Key Policy section of the page, choose Switch to policy view.

6. Using the Key Policy editor, insert following key policy into the existing policy and then choose Save
Changes. You might want to copy the policy to the end of the existing policy.

{
 "Sid": "Allow Amazon S3 use of the key",
 "Effect": "Allow",
 "Principal": {
 "Service": "s3.amazonaws.com"
 },
 "Action": [
 "kms:GenerateDataKey*"
],
 "Resource": "*"
}

You can also use the AWS KMS PUT key policy API PutKeyPolicy to copy the key policy to the CMK that
is being used to encrypt the inventory file. For more information about creating and editing AWS KMS
CMKs, see Getting Started in the AWS Key Management Service Developer Guide.

What's Included in an Amazon S3 Inventory?
An inventory list file contains a list of the objects in the source bucket and metadata for each object.
The inventory lists are stored in the destination bucket as a CSV file compressed with GZIP, as an
Apache optimized row columnar (ORC) file compressed with ZLIB, or as an Apache Parquet (Parquet) file
compressed with Snappy.

The inventory list contains a list of the objects in an S3 bucket and the following metadata for each
listed object:

• Bucket name – The name of the bucket that the inventory is for.

• Key name – Object key name (or key) that uniquely identifies the object in the bucket. When using the
CSV file format, the key name is URL-encoded and must be decoded before you can use it.

• Version ID – Object version ID. When you enable versioning on a bucket, Amazon S3 assigns a version
number to objects that are added to the bucket. For more information, see Object Versioning (p. 108).
(This field is not included if the list is only for the current version of objects.)

• IsLatest – Set to True if the object is the current version of the object. (This field is not included if the
list is only for the current version of objects.)

• Size – Object size in bytes.

• Last modified date – Object creation date or the last modified date, whichever is the latest.

• ETag – The entity tag is a hash of the object. The ETag reflects changes only to the contents of an
object, not its metadata. The ETag may or may not be an MD5 digest of the object data. Whether it is
depends on how the object was created and how it is encrypted.

• Storage class – Storage class used for storing the object. For more information, see Amazon S3
Storage Classes (p. 103).

• Multipart upload flag – Set to True if the object was uploaded as a multipart upload. For more
information, see Multipart Upload Overview (p. 175).

• Delete marker – Set to True, if the object is a delete marker. For more information, see Object
Versioning (p. 108). (This field is automatically added to your report if you've configured the report to
include all versions of your objects).

• Replication status – Set to PENDING, COMPLETED, FAILED, or REPLICA. For more information, see
Replication Status Information (p. 594).

API Version 2006-03-01
425

https://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.aws.amazon.com/kms/latest/developerguide/getting-started.html

Amazon Simple Storage Service Developer Guide
Inventory

• Encryption status – Set to SSE-S3, SSE-C, SSE-KMS, or NOT-SSE. The server-side encryption status
for SSE-S3, SSE-KMS, and SSE with customer-provided keys (SSE-C). A status of NOT-SSE means that
the object is not encrypted with server-side encryption. For more information, see Protecting Data
Using Encryption (p. 264).

• Object lock Retain until date – The date until which the locked object cannot be deleted. For more
information, see Locking Objects Using Amazon S3 Object Lock (p. 453).

• Object lock Mode – Set to Governance or Compliance for objects that are locked. For more
information, see Locking Objects Using Amazon S3 Object Lock (p. 453).

• Object lock Legal hold status – Set to On if a legal hold has been applied to an object; otherwise it is
set to Off. For more information, see Locking Objects Using Amazon S3 Object Lock (p. 453).

The following is an example CSV inventory list opened in a spreadsheet application. The heading row is
shown only to help clarify the example; it is not included in the actual list.

We recommend that you create a lifecycle policy that deletes old inventory lists. For more information,
see Object Lifecycle Management (p. 119).

Inventory Consistency

All of your objects might not appear in each inventory list. The inventory list provides eventual
consistency for PUTs of both new objects and overwrites, and DELETEs. Inventory lists are a rolling
snapshot of bucket items, which are eventually consistent (that is, the list might not include recently
added or deleted objects).

To validate the state of the object before you take action on the object, we recommend that you perform
a HEAD Object REST API request to retrieve metadata for the object, or check the object's properties
in the Amazon S3 console. You can also check object metadata with the AWS CLI or the AWS SDKS. For
more information, see HEAD Object in the Amazon Simple Storage Service API Reference.

Where Are Inventory Lists Located?
When an inventory list is published, the manifest files are published to the following location in the
destination bucket.

 destination-prefix/source-bucket/config-ID/YYYY-MM-DDTHH-MMZ/manifest.json
 destination-prefix/source-bucket/config-ID/YYYY-MM-DDTHH-MMZ/manifest.checksum
 destination-prefix/source-bucket/config-ID/hive/dt=YYYY-MM-DD-HH-MM/symlink.txt

• destination-prefix is the (object key name) prefix set in the inventory configuration, which can be
used to group all the inventory list files in a common location within the destination bucket.

• source-bucket is the source bucket that the inventory list is for. It is added to prevent collisions
when multiple inventory reports from different source buckets are sent to the same destination
bucket.

• config-ID is added to prevent collisions with multiple inventory reports from the same source
bucket that are sent to the same destination bucket. The config-ID comes from the inventory report
configuration, and is the name for the report that is defined on setup.

API Version 2006-03-01
426

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html

Amazon Simple Storage Service Developer Guide
Inventory

• YYYY-MM-DDTHH-MMZ is the timestamp that consists of the start time and the date when the
inventory report generation begins scanning the bucket; for example, 2016-11-06T21-32Z. Storage
added after the timestamp is not in the report.

• manifest.json is the manifest file.

• manifest.checksum is the MD5 of the content of the manifest.json file.

• symlink.txt is the Apache Hive-compatible manifest file.

The inventory lists are published daily or weekly to the following location in the destination bucket.

 destination-prefix/source-bucket/config-ID/example-file-name.csv.gz
 ...
 destination-prefix/source-bucket/config-ID/example-file-name-1.csv.gz

• destination-prefix is the (object key name) prefix set in the inventory configuration. It can be
used to group all the inventory list files in a common location in the destination bucket.

• source-bucket is the source bucket that the inventory list is for. It is added to prevent collisions
when multiple inventory reports from different source buckets are sent to the same destination
bucket.

• example-file-name.csv.gz is one of the CSV inventory files. ORC inventory names end with the
file name extension .orc, and Parquet inventory names end with the file name extension .parquet.

What Is an Inventory Manifest?

The manifest files manifest.json and symlink.txt describe where the inventory files are located.
Whenever a new inventory list is delivered, it is accompanied by a new set of manifest files.

Each manifest contained in the manifest.json file provides metadata and other basic information
about an inventory. This information includes the following:

• Source bucket name

• Destination bucket name

• Version of the inventory

• Creation timestamp in the epoch date format that consists of the start time and the date when the
inventory report generation begins scanning the bucket

• Format and schema of the inventory files

• Actual list of the inventory files that are in the destination bucket

Whenever a manifest.json file is written, it is accompanied by a manifest.checksum file that is the
MD5 of the content of manifest.json file.

The following is an example of a manifest in a manifest.json file for a CSV-formatted inventory.

{
 "sourceBucket": "example-source-bucket",
 "destinationBucket": "arn:aws:s3:::example-inventory-destination-bucket",
 "version": "2016-11-30",
 "creationTimestamp" : "1514944800000",
 "fileFormat": "CSV",
 "fileSchema": "Bucket, Key, VersionId, IsLatest, IsDeleteMarker, Size,
 LastModifiedDate, ETag, StorageClass, IsMultipartUploaded, ReplicationStatus,
 EncryptionStatus, ObjectLockRetainUntilDate, ObjectLockMode, ObjectLockLegalHoldStatus",

API Version 2006-03-01
427

Amazon Simple Storage Service Developer Guide
Inventory

 "files": [
 {
 "key": "Inventory/example-source-bucket/2016-11-06T21-32Z/
files/939c6d46-85a9-4ba8-87bd-9db705a579ce.csv.gz",
 "size": 2147483647,
 "MD5checksum": "f11166069f1990abeb9c97ace9cdfabc"
 }
]
}

The following is an example of a manifest in a manifest.json file for an ORC-formatted inventory.

{
 "sourceBucket": "example-source-bucket",
 "destinationBucket": "arn:aws:s3:::example-destination-bucket",
 "version": "2016-11-30",
 "creationTimestamp" : "1514944800000",
 "fileFormat": "ORC",
 "fileSchema":
 "struct<bucket:string,key:string,version_id:string,is_latest:boolean,is_delete_marker:boolean,size:bigint,last_modified_date:timestamp,e_tag:string,storage_class:string,is_multipart_uploaded:boolean,replication_status:string,encryption_status:string,object_lock_retain_until_date:timestamp,object_lock_mode:string,object_lock_legal_hold_status:string>",
 "files": [
 {
 "key": "inventory/example-source-bucket/data/
d794c570-95bb-4271-9128-26023c8b4900.orc",
 "size": 56291,
 "MD5checksum": "5925f4e78e1695c2d020b9f6eexample"
 }
]
}

The following is an example of a manifest in a manifest.json file for a Parquet-formatted inventory.

{
 "sourceBucket": "example-source-bucket",
 "destinationBucket": "arn:aws:s3:::example-destination-bucket",
 "version": "2016-11-30",
 "creationTimestamp" : "1514944800000",
 "fileFormat": "Parquet",
 "fileSchema": "message s3.inventory { required binary bucket (UTF8); required binary
 key (UTF8); optional binary version_id (UTF8); optional boolean is_latest; optional
 boolean is_delete_marker; optional int64 size; optional int64 last_modified_date
 (TIMESTAMP_MILLIS); optional binary e_tag (UTF8); optional binary storage_class (UTF8);
 optional boolean is_multipart_uploaded; optional binary replication_status (UTF8);
 optional binary encryption_status (UTF8);}"
 "files": [
 {
 "key": "inventory/example-source-bucket/data/
d754c470-85bb-4255-9218-47023c8b4910.parquet",
 "size": 56291,
 "MD5checksum": "5825f2e18e1695c2d030b9f6eexample"
 }
]
}

The symlink.txt file is an Apache Hive-compatible manifest file that allows Hive to automatically
discover inventory files and their associated data files. The Hive-compatible manifest works with the
Hive-compatible services Athena and Amazon Redshift Spectrum. It also works with Hive-compatible
applications, including Presto, Apache Hive, Apache Spark, and many others.

Important
The symlink.txt Apache Hive-compatible manifest file does not currently work with AWS
Glue.

API Version 2006-03-01
428

https://prestodb.io/
https://hive.apache.org/
https://databricks.com/spark/about/

Amazon Simple Storage Service Developer Guide
Inventory

Reading symlink.txt with Apache Hive and Apache Spark is not supported for ORC and
Parquet-formatted inventory files.

How Do I Know When an Inventory Is Complete?
You can set up an Amazon S3 event notification to receive notice when the manifest checksum file is
created, which indicates that an inventory list has been added to the destination bucket. The manifest is
an up-to-date list of all the inventory lists at the destination location.

Amazon S3 can publish events to an Amazon Simple Notification Service (Amazon SNS) topic, an
Amazon Simple Queue Service (Amazon SQS) queue, or an AWS Lambda function. For more information,
see Configuring Amazon S3 Event Notifications (p. 530).

The following notification configuration defines that all manifest.checksum files newly added to the
destination bucket are processed by the AWS Lambda cloud-function-list-write.

<NotificationConfiguration>
 <QueueConfiguration>
 <Id>1</Id>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>prefix</Name>
 <Value>destination-prefix/source-bucket</Value>
 </FilterRule>
 <FilterRule>
 <Name>suffix</Name>
 <Value>checksum</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 <Cloudcode>arn:aws:lambda:us-west-2:222233334444:cloud-function-list-write</Cloudcode>
 <Event>s3:ObjectCreated:*</Event>
 </QueueConfiguration>
 </NotificationConfiguration>

For more information, see Using AWS Lambda with Amazon S3 in the AWS Lambda Developer Guide.

Querying Inventory with Amazon Athena
You can query Amazon S3 inventory using standard SQL by using Amazon Athena in all Regions where
Athena is available. To check for AWS Region availability, see the AWS Region Table.

Athena can query Amazon S3 inventory files in ORC, Parquet, or CSV format. When you use Athena to
query inventory, we recommend that you use ORC-formatted or Parquet-formatted inventory files. ORC
and Parquet formats provide faster query performance and lower query costs. ORC and Parquet are self-
describing type-aware columnar file formats designed for Apache Hadoop. The columnar format lets the
reader read, decompress, and process only the columns that are required for the current query. The ORC
and Parquet formats for Amazon S3 inventory are available in all AWS Regions.

To get started using Athena to query Amazon S3 inventory

1. Create an Athena table. For information about creating a table, see Creating Tables in Amazon
Athena in the Amazon Athena User Guide.

The following sample query includes all optional fields in an ORC-formatted inventory report. Drop
any optional field that you did not choose for your inventory so that the query corresponds to the
fields chosen for your inventory. Also, you must use your bucket name and the location. The location
points to your inventory destination path; for example, s3://destination-prefix/source-
bucket/config-ID/hive/.

API Version 2006-03-01
429

https://hive.apache.org/
https://databricks.com/spark/about/
https://docs.aws.amazon.com/lambda/latest/dg/with-s3.html
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
http://hadoop.apache.org/
https://docs.aws.amazon.com/athena/latest/ug//creating-tables.html
https://docs.aws.amazon.com/athena/latest/ug//creating-tables.html

Amazon Simple Storage Service Developer Guide
Inventory

CREATE EXTERNAL TABLE your_table_name(
 `bucket` string,
 key string,
 version_id string,
 is_latest boolean,
 is_delete_marker boolean,
 size bigint,
 last_modified_date timestamp,
 e_tag string,
 storage_class string,
 is_multipart_uploaded boolean,
 replication_status string,
 encryption_status string,
 object_lock_retain_until_date timestamp,
 object_lock_mode string,
 object_lock_legal_hold_status string
)
 PARTITIONED BY (dt string)
 ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.orc.OrcSerde'
 STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.SymlinkTextInputFormat'
 OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.IgnoreKeyTextOutputFormat'
 LOCATION 's3://destination-prefix/source-bucket/config-ID/hive/';

When using Athena to query a Parquet-formatted inventory report, use the following Parquet SerDe
in place of the ORC SerDe in the ROW FORMAT SERDE statement.

ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'

2. To add new inventory lists to your table, use the following MSCK REPAIR TABLE command.

MSCK REPAIR TABLE your-table-name;

3. After performing the first two steps, you can run ad hoc queries on your inventory, as shown in the
following example.

SELECT encryption_status, count(*) FROM your-table-name GROUP BY encryption_status;

For more information about using Athena, see Amazon Athena User Guide.

Amazon S3 Inventory REST APIs
The following are the REST operations used for Amazon S3 inventory.

• DELETE Bucket Inventory
• GET Bucket Inventory
• List Bucket Inventory
• PUT Bucket Inventory

API Version 2006-03-01
430

https://docs.aws.amazon.com/athena/latest/ug/
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEInventoryConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETInventoryConfig.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketListInventoryConfigs.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTInventoryConfig.html

Amazon Simple Storage Service Developer Guide
Resilience

Resilience in Amazon S3
The AWS global infrastructure is built around Regions and Availability Zones. AWS Regions provide
multiple, physically separated and isolated Availability Zones that are connected with low latency,
high throughput, and highly redundant networking. These Availability Zones offer you an effective
way to design and operate applications and databases. They are more highly available, fault tolerant,
and scalable than traditional single data center infrastructures or multi-data center infrastructures.
If you specifically need to replicate your data over greater geographic distances, you can use
Replication (p. 551), which enables automatic, asynchronous copying of objects across buckets in
different AWS Regions.

Each AWS Region has multiple Availability Zones. You can deploy your applications across multiple
Availability Zones in the same Region for fault tolerance and low latency. Availability Zones are
connected to each other with fast, private fiber-optic networking, enabling you to easily architect
applications that automatically fail over between Availability Zones without interruption.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, Amazon S3 offers several features to help support your data
resiliency and backup needs.

Lifecycle configuration

A lifecycle configuration is a set of rules that define actions that Amazon S3 applies to a group
of objects. With lifecycle configuration rules, you can tell Amazon S3 to transition objects to less
expensive storage classes, archive them, or delete them. For more information, see Object Lifecycle
Management (p. 119).

Versioning

Versioning is a means of keeping multiple variants of an object in the same bucket. You can use
versioning to preserve, retrieve, and restore every version of every object stored in your Amazon S3
bucket. With versioning, you can easily recover from both unintended user actions and application
failures. For more information, see Using Versioning (p. 432).

Amazon S3 object lock

You can use Amazon S3 object lock to store objects using a write once, read many (WORM) model.
Using Amazon S3 object lock, you can prevent an object from being deleted or overwritten for
a fixed amount of time or indefinitely. Amazon S3 object lock enables you to meet regulatory
requirements that require WORM storage or simply to add an additional layer of protection against
object changes and deletion. For more information, see Locking Objects Using Amazon S3 Object
Lock (p. 453).

Storage classes

Amazon S3 offers a range of storage classes for the objects that you store. Two of these storage
classes (STANDARD_IA and ONEZONE_IA) are designed for long-lived and infrequently accessed
data, such as backups. You can also use the GLACIER storage class to archive objects that you don't
need to access in real time. For more information, see Amazon S3 Storage Classes (p. 103).

The following security best practices also address resilience:

• Enable versioning
• Consider Amazon S3 cross-region replication
• Identify and audit all your Amazon S3 buckets

API Version 2006-03-01
431

https://aws.amazon.com/about-aws/global-infrastructure/

Amazon Simple Storage Service Developer Guide
Backup Encryption

Encryption of Amazon S3 Backups
If you are storing backups using Amazon S3, the encryption of your backups depends on the
configuration of those buckets. Amazon S3 provides a way to set the default encryption behavior for
an S3 bucket. You can set default encryption on a bucket so that all objects are encrypted when they
are stored in the bucket. The default encyrption supports keys stored in AWS KMS (SSE-KMS). For more
information, see Amazon S3 Default Encryption for S3 Buckets (p. 66).

Using Versioning
Versioning is a means of keeping multiple variants of an object in the same bucket. You can use
versioning to preserve, retrieve, and restore every version of every object stored in your Amazon S3
bucket. With versioning, you can easily recover from both unintended user actions and application
failures.

In one bucket, for example, you can have two objects with the same key, but different version IDs, such as
photo.gif (version 111111) and photo.gif (version 121212).

Versioning-enabled buckets enable you to recover objects from accidental deletion or overwrite. For
example:

• If you delete an object, instead of removing it permanently, Amazon S3 inserts a delete marker, which
becomes the current object version. You can always restore the previous version. For more information,
see Deleting Object Versions (p. 444).

• If you overwrite an object, it results in a new object version in the bucket. You can always restore the
previous version.

Important
If you have an object expiration lifecycle policy in your non-versioned bucket and you want to
maintain the same permanent delete behavior when you enable versioning, you must add a
noncurrent expiration policy. The noncurrent expiration lifecycle policy will manage the deletes
of the noncurrent object versions in the version-enabled bucket. (A version-enabled bucket
maintains one current and zero or more noncurrent object versions.) For more information,
see How Do I Create a Lifecycle Policy for an S3 Bucket? in the Amazon Simple Storage Service
Console User Guide.

Buckets can be in one of three states: unversioned (the default), versioning-enabled, or versioning-
suspended.

Important
Once you version-enable a bucket, it can never return to an unversioned state. You can, however,
suspend versioning on that bucket.

The versioning state applies to all (never some) of the objects in that bucket. The first time you enable
a bucket for versioning, objects in it are thereafter always versioned and given a unique version ID. Note
the following:

• Objects stored in your bucket before you set the versioning state have a version ID of null. When you
enable versioning, existing objects in your bucket do not change. What changes is how Amazon S3

API Version 2006-03-01
432

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-lifecycle.html

Amazon Simple Storage Service Developer Guide
Versioning

handles the objects in future requests. For more information, see Managing Objects in a Versioning-
Enabled Bucket (p. 437).

• The bucket owner (or any user with appropriate permissions) can suspend versioning to stop accruing
object versions. When you suspend versioning, existing objects in your bucket do not change. What
changes is how Amazon S3 handles objects in future requests. For more information, see Managing
Objects in a Versioning-Suspended Bucket (p. 451).

How to Configure Versioning on a Bucket
You can configure bucket versioning using any of the following methods:

• Configure versioning using the Amazon S3 console.

• Configure versioning programmatically using the AWS SDKs.

Both the console and the SDKs call the REST API that Amazon S3 provides to manage versioning.

Note
If you need to, you can also make the Amazon S3 REST API calls directly from your code.
However, this can be cumbersome because it requires you to write code to authenticate your
requests.

Each bucket you create has a versioning subresource (see Bucket Configuration Options (p. 56))
associated with it. By default, your bucket is unversioned, and accordingly the versioning subresource
stores empty versioning configuration.

<VersioningConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
</VersioningConfiguration>

To enable versioning, you send a request to Amazon S3 with a versioning configuration that includes a
status.

<VersioningConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Status>Enabled</Status>
</VersioningConfiguration>

To suspend versioning, you set the status value to Suspended.

The bucket owner, an AWS account that created the bucket (root account), and authorized users can
configure the versioning state of a bucket. For more information about permissions, see Identity and
Access Management in Amazon S3 (p. 301).

For an example of configuring versioning, see Examples of Enabling Bucket Versioning (p. 434).

MFA Delete
You can optionally add another layer of security by configuring a bucket to enable MFA (multi-factor
authentication) Delete, which requires additional authentication for either of the following operations:

• Change the versioning state of your bucket

• Permanently delete an object version

MFA Delete requires two forms of authentication together:

• Your security credentials

API Version 2006-03-01
433

Amazon Simple Storage Service Developer Guide
Versioning

• The concatenation of a valid serial number, a space, and the six-digit code displayed on an approved
authentication device

MFA Delete thus provides added security in the event, for example, your security credentials are
compromised.

To enable or disable MFA Delete, you use the same API that you use to configure versioning on a bucket.
Amazon S3 stores the MFA Delete configuration in the same versioning subresource that stores the
bucket's versioning status.

MFA Delete can help prevent accidental bucket deletions by doing the following:

• Requiring the user who initiates the delete action to prove physical possession of an MFA device with
an MFA code.

• Adding an extra layer of friction and security to the delete action.

<VersioningConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Status>VersioningState</Status>
 <MfaDelete>MfaDeleteState</MfaDelete>
</VersioningConfiguration>

Note
The bucket owner, the AWS account that created the bucket (root account), and all authorized
IAM users can enable versioning, but only the bucket owner (root account) can enable MFA
Delete. For more information, see the AWS blog post on MFA Delete and Versioning.

To use MFA Delete, you can use either a hardware or virtual MFA device to generate an authentication
code. The following example shows a generated authentication code displayed on a hardware device.

Note
MFA Delete and MFA-protected API access are features intended to provide protection
for different scenarios. You configure MFA Delete on a bucket to ensure that data in your
bucket cannot be accidentally deleted. MFA-protected API access is used to enforce another
authentication factor (MFA code) when accessing sensitive Amazon S3 resources. You can require
any operations against these Amazon S3 resources be done with temporary credentials created
using MFA. For an example, see Adding a Bucket Policy to Require MFA (p. 375).
For more information on how to purchase and activate an authentication device, see https://
aws.amazon.com/iam/details/mfa/.

Related Topics
For more information, see the following topics:

• Examples of Enabling Bucket Versioning (p. 434)
• Managing Objects in a Versioning-Enabled Bucket (p. 437)
• Managing Objects in a Versioning-Suspended Bucket (p. 451)
• Significant Increases in HTTP 503 Responses to Amazon S3 Requests to Buckets with Versioning

Enabled (p. 643)

Examples of Enabling Bucket Versioning
Topics

API Version 2006-03-01
434

http://aws.amazon.com/blogs/security/securing-access-to-aws-using-mfa-part-3/
https://aws.amazon.com/iam/details/mfa/
https://aws.amazon.com/iam/details/mfa/

Amazon Simple Storage Service Developer Guide
Versioning

• Using the Amazon S3 Console (p. 435)

• Using the AWS SDK for Java (p. 435)

• Using the AWS SDK for .NET (p. 436)

• Using Other AWS SDKs (p. 437)

This section provides examples of enabling versioning on a bucket. The examples first enable versioning
on a bucket and then retrieve versioning status. For an introduction, see Using Versioning (p. 432).

Using the Amazon S3 Console

For more information about enabling versioning on a bucket using the Amazon S3 console, see How Do I
Enable or Suspend Versioning for an S3 Bucket? in the Amazon Simple Storage Service Console User Guide.

Using the AWS SDK for Java

Example

For instructions on how to create and test a working sample, see Testing the Amazon S3 Java Code
Examples (p. 677).

import java.io.IOException;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Region;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.AmazonS3Exception;
import com.amazonaws.services.s3.model.BucketVersioningConfiguration;
import com.amazonaws.services.s3.model.SetBucketVersioningConfigurationRequest;

public class BucketVersioningConfigurationExample {
 public static String bucketName = "*** bucket name ***";
 public static AmazonS3Client s3Client;

 public static void main(String[] args) throws IOException {
 s3Client = new AmazonS3Client(new ProfileCredentialsProvider());
 s3Client.setRegion(Region.getRegion(Regions.US_EAST_1));
 try {

 // 1. Enable versioning on the bucket.
 BucketVersioningConfiguration configuration =
 new BucketVersioningConfiguration().withStatus("Enabled");

 SetBucketVersioningConfigurationRequest setBucketVersioningConfigurationRequest =
 new SetBucketVersioningConfigurationRequest(bucketName,configuration);

 s3Client.setBucketVersioningConfiguration(setBucketVersioningConfigurationRequest);

 // 2. Get bucket versioning configuration information.
 BucketVersioningConfiguration conf =
 s3Client.getBucketVersioningConfiguration(bucketName);
 System.out.println("bucket versioning configuration status: " + conf.getStatus());

 } catch (AmazonS3Exception amazonS3Exception) {
 System.out.format("An Amazon S3 error occurred. Exception: %s",
 amazonS3Exception.toString());
 } catch (Exception ex) {
 System.out.format("Exception: %s", ex.toString());
 }
 }

API Version 2006-03-01
435

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-versioning.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-versioning.html

Amazon Simple Storage Service Developer Guide
Versioning

}

Using the AWS SDK for .NET

For information about how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 678).

Example

using System;
using Amazon.S3;
using Amazon.S3.Model;

namespace s3.amazon.com.docsamples
{
 class BucketVersioningConfiguration
 {
 static string bucketName = "*** bucket name ***";

 public static void Main(string[] args)
 {
 using (var client = new AmazonS3Client(Amazon.RegionEndpoint.USEast1))
 {
 try
 {
 EnableVersioningOnBucket(client);
 string bucketVersioningStatus =
 RetrieveBucketVersioningConfiguration(client);
 }
 catch (AmazonS3Exception amazonS3Exception)
 {
 if (amazonS3Exception.ErrorCode != null &&
 (amazonS3Exception.ErrorCode.Equals("InvalidAccessKeyId")
 ||
 amazonS3Exception.ErrorCode.Equals("InvalidSecurity")))
 {
 Console.WriteLine("Check the provided AWS Credentials.");
 Console.WriteLine(
 "To sign up for service, go to http://aws.amazon.com/s3");
 }
 else
 {
 Console.WriteLine(
 "Error occurred. Message:'{0}' when listing objects",
 amazonS3Exception.Message);
 }
 }
 }

 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }

 static void EnableVersioningOnBucket(IAmazonS3 client)
 {

 PutBucketVersioningRequest request = new PutBucketVersioningRequest
 {
 BucketName = bucketName,
 VersioningConfig = new S3BucketVersioningConfig
 {
 Status = VersionStatus.Enabled
 }
 };

API Version 2006-03-01
436

Amazon Simple Storage Service Developer Guide
Versioning

 PutBucketVersioningResponse response = client.PutBucketVersioning(request);
 }

 static string RetrieveBucketVersioningConfiguration(IAmazonS3 client)
 {
 GetBucketVersioningRequest request = new GetBucketVersioningRequest
 {
 BucketName = bucketName
 };

 GetBucketVersioningResponse response = client.GetBucketVersioning(request);
 return response.VersioningConfig.Status;
 }
 }
}

Using Other AWS SDKs

For information about using other AWS SDKs, see Sample Code and Libraries.

Managing Objects in a Versioning-Enabled Bucket
Topics

• Adding Objects to Versioning-Enabled Buckets (p. 437)
• Listing Objects in a Versioning-Enabled Bucket (p. 438)
• Retrieving Object Versions (p. 443)
• Deleting Object Versions (p. 444)
• Transitioning Object Versions (p. 449)
• Restoring Previous Versions (p. 449)
• Versioned Object Permissions (p. 450)

Objects that are stored in your bucket before you set the versioning state have a version ID of null.
When you enable versioning, existing objects in your bucket do not change. What changes is how
Amazon S3 handles the objects in future requests. The topics in this section explain various object
operations in a versioning-enabled bucket.

Adding Objects to Versioning-Enabled Buckets

Once you enable versioning on a bucket, Amazon S3 automatically adds a unique version ID to every
object stored (using PUT, POST, or COPY) in the bucket.

The following figure shows that Amazon S3 adds a unique version ID to an object when it is added to a
versioning-enabled bucket.

Topics

API Version 2006-03-01
437

https://aws.amazon.com/code/

Amazon Simple Storage Service Developer Guide
Versioning

• Using the Console (p. 438)
• Using the AWS SDKs (p. 438)
• Using the REST API (p. 438)

Using the Console

For instructions, see How Do I Upload an Object to an S3 Bucket? in the Amazon Simple Storage Service
Console User Guide.

Using the AWS SDKs

For examples of uploading objects using the AWS SDKs for Java, .NET, and PHP, see Uploading
Objects (p. 169). The examples for uploading objects in nonversioned and versioning-enabled buckets
are the same, although in the case of versioning-enabled buckets, Amazon S3 assigns a version number.
Otherwise, the version number is null.

For information about using other AWS SDKs, see Sample Code and Libraries.

Using the REST API

Adding Objects to Versioning-Enabled Buckets

1 Enable versioning on a bucket using a PUT Bucket versioning request. For more information,
see PUT Bucket versioning.

2 Send a PUT, POST, or COPY request to store an object in the bucket.

When you add an object to a versioning-enabled bucket, Amazon S3 returns the version ID of the object
in the x-amz-version-id response header, for example:

x-amz-version-id: 3/L4kqtJlcpXroDTDmJ+rmSpXd3dIbrHY

Note
Normal Amazon S3 rates apply for every version of an object stored and transferred. Each
version of an object is the entire object; it is not just a diff from the previous version. Thus, if you
have three versions of an object stored, you are charged for three objects.

Note
The version ID values that Amazon S3 assigns are URL safe (can be included as part of a URI).

Listing Objects in a Versioning-Enabled Bucket

Topics
• Using the Console (p. 438)
• Using the AWS SDKs (p. 439)
• Using the REST API (p. 441)

This section provides an example of listing object versions from a versioning-enabled bucket. Amazon S3
stores object version information in the versions subresource (see Bucket Configuration Options (p. 56))
that is associated with the bucket.

Using the Console

For information about listing object versions using the Amazon S3 console, see How Do I See the
Versions of an S3 Object? in the Amazon Simple Storage Service Console User Guide.

API Version 2006-03-01
438

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-objects.html
https://aws.amazon.com/code/
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTVersioningStatus.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/view-object-versions.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/view-object-versions.html

Amazon Simple Storage Service Developer Guide
Versioning

Using the AWS SDKs

The examples in this section show how to retrieve an object listing from a versioning-enabled bucket.
Each request returns up to 1,000 versions, unless you specify a lower number. If the bucket contains
more versions than this limit, you send a series of requests to retrieve the list of all versions. This process
of returning results in "pages" is called pagination. To show how pagination works, the examples limit
each response to two object versions. After retrieving the first page of results, each example checks to
determine whether the version list was truncated. If it was, the example continues retrieving pages until
all versions have been retrieved.

Note
The following examples also work with a bucket that isn't versioning-enabled, or for objects
that don't have individual versions. In those cases, Amazon S3 returns the object listing with a
version ID of null.

For information about using other AWS SDKs, see Sample Code and Libraries.

Using the AWS SDK for Java

For instructions on creating and testing a working sample, see Testing the Amazon S3 Java Code
Examples (p. 677).

Example

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.ListVersionsRequest;
import com.amazonaws.services.s3.model.S3VersionSummary;
import com.amazonaws.services.s3.model.VersionListing;

public class ListKeysVersioningEnabledBucket {

 public static void main(String[] args) {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String bucketName = "*** Bucket name ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 // Retrieve the list of versions. If the bucket contains more versions
 // than the specified maximum number of results, Amazon S3 returns
 // one page of results per request.
 ListVersionsRequest request = new ListVersionsRequest()
 .withBucketName(bucketName)
 .withMaxResults(2);
 VersionListing versionListing = s3Client.listVersions(request);
 int numVersions = 0, numPages = 0;
 while (true) {
 numPages++;
 for (S3VersionSummary objectSummary :
 versionListing.getVersionSummaries()) {
 System.out.printf("Retrieved object %s, version %s\n",
 objectSummary.getKey(),
 objectSummary.getVersionId());
 numVersions++;
 }

API Version 2006-03-01
439

https://aws.amazon.com/code/

Amazon Simple Storage Service Developer Guide
Versioning

 // Check whether there are more pages of versions to retrieve. If
 // there are, retrieve them. Otherwise, exit the loop.
 if (versionListing.isTruncated()) {
 versionListing = s3Client.listNextBatchOfVersions(versionListing);
 } else {
 break;
 }
 }
 System.out.println(numVersions + " object versions retrieved in " + numPages +
 " pages");
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Using the AWS SDK for .NET

For information about how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 678).

Example

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class ListObjectsVersioningEnabledBucketTest
 {
 static string bucketName = "*** bucket name ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 s3Client;

 public static void Main(string[] args)
 {
 s3Client = new AmazonS3Client(bucketRegion);
 GetObjectListWithAllVersionsAsync().Wait();
 }

 static async Task GetObjectListWithAllVersionsAsync()
 {
 try
 {
 ListVersionsRequest request = new ListVersionsRequest()
 {
 BucketName = bucketName,
 // You can optionally specify key name prefix in the request
 // if you want list of object versions of a specific object.

 // For this example we limit response to return list of 2 versions.
 MaxKeys = 2
 };

API Version 2006-03-01
440

Amazon Simple Storage Service Developer Guide
Versioning

 do
 {
 ListVersionsResponse response = await
 s3Client.ListVersionsAsync(request);
 // Process response.
 foreach (S3ObjectVersion entry in response.Versions)
 {
 Console.WriteLine("key = {0} size = {1}",
 entry.Key, entry.Size);
 }

 // If response is truncated, set the marker to get the next
 // set of keys.
 if (response.IsTruncated)
 {
 request.KeyMarker = response.NextKeyMarker;
 request.VersionIdMarker = response.NextVersionIdMarker;
 }
 else
 {
 request = null;
 }
 } while (request != null);
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Error encountered on server. Message:'{0}' when writing
 an object", e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown encountered on server. Message:'{0}' when
 writing an object", e.Message);
 }
 }
 }
}

Using the REST API

To list all the versions of all the objects in a bucket, you use the versions subresource in a GET Bucket
request. Amazon S3 can retrieve only a maximum of 1,000 objects, and each object version counts fully
as an object. Therefore, if a bucket contains two keys (for example, photo.gif and picture.jpg), and
the first key has 990 versions and the second key has 400 versions, a single request would retrieve all
990 versions of photo.gif and only the most recent 10 versions of picture.jpg.

Amazon S3 returns object versions in the order in which they were stored, with the most recently stored
returned first.

To list all object versions in a bucket

• In a GET Bucket request, include the versions subresource.

GET /?versions HTTP/1.1
Host: bucketName.s3.amazonaws.com
Date: Wed, 28 Oct 2009 22:32:00 +0000
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=

Retrieving a Subset of Objects in a Bucket

This section discusses the following two example scenarios:

API Version 2006-03-01
441

Amazon Simple Storage Service Developer Guide
Versioning

• You want to retrieve a subset of all object versions in a bucket, for example, retrieve all versions of a
specific object.

• The number of object versions in the response exceeds the value for max-key (1000 by default), so
that you have to submit a second request to retrieve the remaining object versions.

To retrieve a subset of object versions, you use the request parameters for GET Bucket. For more
information, see GET Bucket.

Example 1: Retrieving All Versions of Only a Specific Object

You can retrieve all versions of an object using the versions subresource and the prefix request
parameter using the following process. For more information about prefix, see GET Bucket.

Retrieving All Versions of a Key

1 Set the prefix parameter to the key of the object you want to retrieve.

2 Send a GET Bucket request using the versions subresource and prefix.

GET /?versions&prefix=objectName HTTP/1.1

Example Retrieving Objects Using a Prefix

The following example retrieves objects whose key is or begins with myObject.

GET /?versions&prefix=myObject HTTP/1.1
Host: bucket.s3.amazonaws.com
Date: Wed, 28 Oct 2009 22:32:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=

You can use the other request parameters to retrieve a subset of all versions of the object. For more
information, see GET Bucket.

Example 2: Retrieving a Listing of Additional Objects if the Response Is Truncated

If the number of objects that could be returned in a GET request exceeds the value of max-keys,
the response contains <isTruncated>true</isTruncated>, and includes the first key (in
NextKeyMarker) and the first version ID (in NextVersionIdMarker) that satisfy the request, but were
not returned. You use those returned values as the starting position in a subsequent request to retrieve
the additional objects that satisfy the GET request.

Use the following process to retrieve additional objects that satisfy the original GET Bucket
versions request from a bucket. For more information about key-marker, version-id-marker,
NextKeyMarker, and NextVersionIdMarker, see GET Bucket.

Retrieving Additional Responses that Satisfy the Original GET Request

1 Set the value of key-marker to the key returned in NextKeyMarker in the
previous response.

2 Set the value of version-id-marker to the version ID returned in
NextVersionIdMarker in the previous response.

3 Send a GET Bucket versions request using key-marker and version-
id-marker.

API Version 2006-03-01
442

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGET.html

Amazon Simple Storage Service Developer Guide
Versioning

Example Retrieving Objects Starting with a Specified Key and Version ID

GET /?versions&key-marker=myObject&version-id-marker=298459348571 HTTP/1.1
Host: bucket.s3.amazonaws.com
Date: Wed, 28 Oct 2009 22:32:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=

Retrieving Object Versions

A simple GET request retrieves the current version of an object. The following figure shows how GET
returns the current version of the object, photo.gif.

To retrieve a specific version, you have to specify its version ID. The following figure shows that a GET
versionId request retrieves the specified version of the object (not necessarily the current one).

Using the Console

For instructions see, How Do I See the Versions of an S3 Object? in the Amazon Simple Storage Service
Console User Guide.

Using the AWS SDKs

For examples of uploading objects using AWS SDKs for Java, .NET, and PHP, see Getting Objects (p. 161).
The examples for uploading objects in a nonversioned and versioning-enabled buckets are the same,
although in the case of versioning-enabled buckets, Amazon S3 assigns a version number. Otherwise, the
version number is null.

For information about using other AWS SDKs, see Sample Code and Libraries.

Using REST

To retrieve a specific object version

1. Set versionId to the ID of the version of the object you want to retrieve.

2. Send a GET Object versionId request.

API Version 2006-03-01
443

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/view-object-versions.html
https://aws.amazon.com/code/

Amazon Simple Storage Service Developer Guide
Versioning

Example Retrieving a Versioned Object

The following request retrieves version L4kqtJlcpXroDTDmpUMLUo of my-image.jpg.

GET /my-image.jpg?versionId=L4kqtJlcpXroDTDmpUMLUo HTTP/1.1
Host: bucket.s3.amazonaws.com
Date: Wed, 28 Oct 2009 22:32:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=

Related Topics

Retrieving the Metadata of an Object Version (p. 444)

Retrieving the Metadata of an Object Version

If you only want to retrieve the metadata of an object (and not its content), you use the HEAD operation.
By default, you get the metadata of the most recent version. To retrieve the metadata of a specific object
version, you specify its version ID.

To retrieve the metadata of an object version

1. Set versionId to the ID of the version of the object whose metadata you want to retrieve.
2. Send a HEAD Object versionId request.

Example Retrieving the Metadata of a Versioned Object

The following request retrieves the metadata of version 3HL4kqCxf3vjVBH40Nrjfkd of my-image.jpg.

HEAD /my-image.jpg?versionId=3HL4kqCxf3vjVBH40Nrjfkd HTTP/1.1
Host: bucket.s3.amazonaws.com
Date: Wed, 28 Oct 2009 22:32:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=

The following shows a sample response.

HTTP/1.1 200 OK
x-amz-id-2: ef8yU9AS1ed4OpIszj7UDNEHGran
x-amz-request-id: 318BC8BC143432E5
x-amz-version-id: 3HL4kqtJlcpXroDTDmjVBH40Nrjfkd
Date: Wed, 28 Oct 2009 22:32:00 GMT
Last-Modified: Sun, 1 Jan 2006 12:00:00 GMT
ETag: "fba9dede5f27731c9771645a39863328"
Content-Length: 434234
Content-Type: text/plain
Connection: close
Server: AmazonS3

Deleting Object Versions

You can delete object versions whenever you want. In addition, you can also define lifecycle
configuration rules for objects that have a well-defined lifecycle to request Amazon S3 to expire current
object versions or permanently remove noncurrent object versions. When your bucket is version-enabled
or versioning is suspended, the lifecycle configuration actions work as follows:

• The Expiration action applies to the current object version and instead of deleting the current
object version, Amazon S3 retains the current version as a noncurrent version by adding a delete
marker, which then becomes the current version.

API Version 2006-03-01
444

Amazon Simple Storage Service Developer Guide
Versioning

• The NoncurrentVersionExpiration action applies to noncurrent object versions, and Amazon S3
permanently removes these object versions. You cannot recover permanently removed objects.

For more information, see Object Lifecycle Management (p. 119).

A DELETE request has the following use cases:

• When versioning is enabled, a simple DELETE cannot permanently delete an object.

Instead, Amazon S3 inserts a delete marker in the bucket, and that marker becomes the current
version of the object with a new ID. When you try to GET an object whose current version is a delete
marker, Amazon S3 behaves as though the object has been deleted (even though it has not been
erased) and returns a 404 error.

The following figure shows that a simple DELETE does not actually remove the specified object.
Instead, Amazon S3 inserts a delete marker.

• To permanently delete versioned objects, you must use DELETE Object versionId.

The following figure shows that deleting a specified object version permanently removes that object.

Using the Console

For instructions see, How Do I See the Versions of an S3 Object? in the Amazon Simple Storage Service
Console User Guide.

Using the AWS SDKs

For examples of deleting objects using the AWS SDKs for Java, .NET, and PHP, see Deleting
Objects (p. 227). The examples for deleting objects in nonversioned and versioning-enabled buckets are
the same, although in the case of versioning-enabled buckets, Amazon S3 assigns a version number.
Otherwise, the version number is null.

For information about using other AWS SDKs, see Sample Code and Libraries.

API Version 2006-03-01
445

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/view-object-versions.html
https://aws.amazon.com/code/

Amazon Simple Storage Service Developer Guide
Versioning

Using REST

To a delete a specific version of an object

• In a DELETE, specify a version ID.

Example Deleting a Specific Version

The following example shows how to delete version UIORUnfnd89493jJFJ of photo.gif.

DELETE /photo.gif?versionId=UIORUnfnd89493jJFJ HTTP/1.1

Host: bucket.s3.amazonaws.com
Date: Wed, 12 Oct 2009 17:50:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:xQE0diMbLRepdf3YB+FIEXAMPLE=
Content-Type: text/plain
Content-Length: 0

Related Topics

Using MFA Delete (p. 446)

Working with Delete Markers (p. 446)

Removing Delete Markers (p. 448)

Using Versioning (p. 432)

Using MFA Delete

If a bucket's versioning configuration is MFA Delete–enabled, the bucket owner must include the x-amz-
mfa request header in requests to permanently delete an object version or change the versioning state of
the bucket. Requests that include x-amz-mfa must use HTTPS. The header's value is the concatenation
of your authentication device's serial number, a space, and the authentication code displayed on it. If you
do not include this request header, the request fails.

For more information about authentication devices, see https://aws.amazon.com/iam/details/mfa/.

Example Deleting an Object from an MFA Delete Enabled Bucket

The following example shows how to delete my-image.jpg (with the specified version), which is
in a bucket configured with MFA Delete enabled. Note the space between [SerialNumber] and
[AuthenticationCode]. For more information, see DELETE Object.

DELETE /my-image.jpg?versionId=3HL4kqCxf3vjVBH40Nrjfkd HTTPS/1.1
Host: bucketName.s3.amazonaws.com
x-amz-mfa: 20899872 301749
Date: Wed, 28 Oct 2009 22:32:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=

For more information about enabling MFA delete, see MFA Delete (p. 433).

Working with Delete Markers

A delete marker is a placeholder (marker) for a versioned object that was named in a simple DELETE
request. Because the object was in a versioning-enabled bucket, the object was not deleted. The delete
marker, however, makes Amazon S3 behave as if it had been deleted.

API Version 2006-03-01
446

https://aws.amazon.com/iam/details/mfa/
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html

Amazon Simple Storage Service Developer Guide
Versioning

A delete marker has a key name (or key) and version ID like any other object. However, a delete marker
differs from other objects in the following ways:

• It does not have data associated with it.

• It is not associated with an access control list (ACL) value.

• It does not retrieve anything from a GET request because it has no data; you get a 404 error.

• The only operation you can use on a delete marker is DELETE, and only the bucket owner can issue
such a request.

Delete markers accrue a nominal charge for storage in Amazon S3. The storage size of a delete marker is
equal to the size of the key name of the delete marker. A key name is a sequence of Unicode characters.
The UTF-8 encoding adds from 1 to 4 bytes of storage to your bucket for each character in the name.
For more information about key names, see Object Keys (p. 99). For information about deleting a delete
marker, see Removing Delete Markers (p. 448).

Only Amazon S3 can create a delete marker, and it does so whenever you send a DELETE Object
request on an object in a versioning-enabled or suspended bucket. The object named in the DELETE
request is not actually deleted. Instead, the delete marker becomes the current version of the object.
(The object's key name (or key) becomes the key of the delete marker.) If you try to get an object and its
current version is a delete marker, Amazon S3 responds with:

• A 404 (Object not found) error

• A response header, x-amz-delete-marker: true

The response header tells you that the object accessed was a delete marker. This response header never
returns false; if the value is false, Amazon S3 does not include this response header in the response.

The following figure shows how a simple GET on an object, whose current version is a delete marker,
returns a 404 No Object Found error.

The only way to list delete markers (and other versions of an object) is by using the versions
subresource in a GET Bucket versions request. A simple GET does not retrieve delete marker objects.
The following figure shows that a GET Bucket request does not return objects whose current version is
a delete marker.

API Version 2006-03-01
447

Amazon Simple Storage Service Developer Guide
Versioning

Removing Delete Markers

To delete a delete marker, you must specify its version ID in a DELETE Object versionId request.
If you use a DELETE request to delete a delete marker (without specifying the version ID of the delete
marker), Amazon S3 does not delete the delete marker, but instead, inserts another delete marker.

The following figure shows how a simple DELETE on a delete marker removes nothing, but adds a new
delete marker to a bucket.

In a versioning-enabled bucket, this new delete marker would have a unique version ID. So, it's possible
to have multiple delete markers of the same object in one bucket.

To permanently delete a delete marker, you must include its version ID in a DELETE Object
versionId request. The following figure shows how a DELETE Object versionId request
permanently removes a delete marker. Only the owner of a bucket can permanently remove a delete
marker.

API Version 2006-03-01
448

Amazon Simple Storage Service Developer Guide
Versioning

The effect of removing the delete marker is that a simple GET request will now retrieve the current
version (121212) of the object.

To permanently remove a delete marker

1. Set versionId to the ID of the version to the delete marker you want to remove.

2. Send a DELETE Object versionId request.

Example Removing a Delete Marker

The following example removes the delete marker for photo.gif version 4857693.

DELETE /photo.gif?versionId=4857693 HTTP/1.1
Host: bucket.s3.amazonaws.com
Date: Wed, 28 Oct 2009 22:32:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=

When you delete a delete marker, Amazon S3 includes in the response:

204 NoContent
x-amz-version-id: versionID
x-amz-delete-marker: true

Transitioning Object Versions

You can define lifecycle configuration rules for objects that have a well-defined lifecycle to transition
object versions to the GLACIER storage class at a specific time in the object's lifetime. For more
information, see Object Lifecycle Management (p. 119).

Restoring Previous Versions

One of the value propositions of versioning is the ability to retrieve previous versions of an object. There
are two approaches to doing so:

• Copy a previous version of the object into the same bucket

The copied object becomes the current version of that object and all object versions are preserved.

• Permanently delete the current version of the object

When you delete the current object version, you, in effect, turn the previous version into the current
version of that object.

Because all object versions are preserved, you can make any earlier version the current version by
copying a specific version of the object into the same bucket. In the following figure, the source object
(ID = 111111) is copied into the same bucket. Amazon S3 supplies a new ID (88778877) and it becomes
the current version of the object. So, the bucket has both the original object version (111111) and its
copy (88778877).

API Version 2006-03-01
449

Amazon Simple Storage Service Developer Guide
Versioning

A subsequent GET will retrieve version 88778877.

The following figure shows how deleting the current version (121212) of an object, which leaves the
previous version (111111) as the current object.

A subsequent GET will retrieve version 111111.

Versioned Object Permissions

Permissions are set at the version level. Each version has its own object owner; an AWS account that
creates the object version is the owner. So, you can set different permissions for different versions of the
same object. To do so, you must specify the version ID of the object whose permissions you want to set
in a PUT Object versionId acl request. For a detailed description and instructions on using ACLs,
see Identity and Access Management in Amazon S3 (p. 301).

Example Setting Permissions for an Object Version

The following request sets the permission of the grantee, BucketOwner@amazon.com, to
FULL_CONTROL on the key, my-image.jpg, version ID, 3HL4kqtJvjVBH40Nrjfkd.

PUT /my-image.jpg?acl&versionId=3HL4kqtJvjVBH40Nrjfkd HTTP/1.1
Host: bucket.s3.amazonaws.com
Date: Wed, 28 Oct 2009 22:32:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU=
Content-Length: 124

<AccessControlPolicy>
 <Owner>
 <ID>75cc57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID>
 <DisplayName>mtd@amazon.com</DisplayName>
 </Owner>
 <AccessControlList>
 <Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="CanonicalUser">

API Version 2006-03-01
450

Amazon Simple Storage Service Developer Guide
Versioning

 <ID>a9a7b886d6fd24a52fe8ca5bef65f89a64e0193f23000e241bf9b1c61be666e9</ID>
 <DisplayName>BucketOwner@amazon.com</DisplayName>
 </Grantee>
 <Permission>FULL_CONTROL</Permission>
 </Grant>
 </AccessControlList>
 </AccessControlPolicy>

Likewise, to get the permissions of a specific object version, you must specify its version ID in a GET
Object versionId acl request. You need to include the version ID because, by default, GET Object
acl returns the permissions of the current version of the object.

Example Retrieving the Permissions for a Specified Object Version

In the following example, Amazon S3 returns the permissions for the key, my-image.jpg, version ID,
DVBH40Nr8X8gUMLUo.

GET /my-image.jpg?versionId=DVBH40Nr8X8gUMLUo&acl HTTP/1.1
Host: bucket.s3.amazonaws.com
Date: Wed, 28 Oct 2009 22:32:00 GMT
Authorization: AWS AKIAIOSFODNN7EXAMPLE:0RQf4/cRonhpaBX5sCYVf1bNRuU

For more information, see GET Object acl.

Managing Objects in a Versioning-Suspended Bucket
Topics

• Adding Objects to Versioning-Suspended Buckets (p. 451)

• Retrieving Objects from Versioning-Suspended Buckets (p. 452)

• Deleting Objects from Versioning-Suspended Buckets (p. 452)

You suspend versioning to stop accruing new versions of the same object in a bucket. You might do this
because you only want a single version of an object in a bucket, or you might not want to accrue charges
for multiple versions.

When you suspend versioning, existing objects in your bucket do not change. What changes is how
Amazon S3 handles objects in future requests. The topics in this section explain various object operations
in a versioning-suspended bucket.

Adding Objects to Versioning-Suspended Buckets

Once you suspend versioning on a bucket, Amazon S3 automatically adds a null version ID to every
subsequent object stored thereafter (using PUT, POST, or COPY) in that bucket.

The following figure shows how Amazon S3 adds the version ID of null to an object when it is added to
a version-suspended bucket.

API Version 2006-03-01
451

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETacl.html

Amazon Simple Storage Service Developer Guide
Versioning

If a null version is already in the bucket and you add another object with the same key, the added object
overwrites the original null version.

If there are versioned objects in the bucket, the version you PUT becomes the current version of the
object. The following figure shows how adding an object to a bucket that contains versioned objects
does not overwrite the object already in the bucket. In this case, version 111111 was already in the
bucket. Amazon S3 attaches a version ID of null to the object being added and stores it in the bucket.
Version 111111 is not overwritten.

If a null version already exists in a bucket, the null version is overwritten, as shown in the following
figure.

Note that although the key and version ID (null) of null version are the same before and after the PUT,
the contents of the null version originally stored in the bucket is replaced by the contents of the object
PUT into the bucket.

Retrieving Objects from Versioning-Suspended Buckets

A GET Object request returns the current version of an object whether you've enabled versioning on a
bucket or not. The following figure shows how a simple GET returns the current version of an object.

Deleting Objects from Versioning-Suspended Buckets

If versioning is suspended, a DELETE request:

• Can only remove an object whose version ID is null

Doesn't remove anything if there isn't a null version of the object in the bucket.

API Version 2006-03-01
452

Amazon Simple Storage Service Developer Guide
Locking Objects

• Inserts a delete marker into the bucket.

The following figure shows how a simple DELETE removes a null version and Amazon S3 inserts a delete
marker in its place with a version ID of null.

Remember that a delete marker doesn't have content, so you lose the content of the null version when a
delete marker replaces it.

The following figure shows a bucket that doesn't have a null version. In this case, the DELETE removes
nothing; Amazon S3 just inserts a delete marker.

Even in a versioning-suspended bucket, the bucket owner can permanently delete a specified version.
The following figure shows that deleting a specified object version permanently removes that object.
Only the bucket owner can delete a specified object version.

Locking Objects Using Amazon S3 Object Lock
With Amazon S3 object lock, you can store objects using a write-once-read-many (WORM) model.
You can use it to prevent an object from being deleted or overwritten for a fixed amount of time or

API Version 2006-03-01
453

Amazon Simple Storage Service Developer Guide
Locking Objects

indefinitely. Amazon S3 object lock helps you meet regulatory requirements that require WORM storage,
or simply add another layer of protection against object changes and deletion.

Amazon S3 object lock has been assessed by Cohasset Associates for use in environments that are
subject to SEC 17a-4, CTCC, and FINRA regulations. For more information about how Amazon S3 object
lock relates to these regulations, see the Cohasset Associates Compliance Assessment.

Amazon S3 object lock provides two ways to manage object retention: retention periods and legal holds.

• A retention period specifies a fixed period of time during which an object remains locked. During this
period, your object is WORM-protected and can't be overwritten or deleted.

• A legal hold provides the same protection as a retention period, but it has no expiration date. Instead,
a legal hold remains in place until you explicitly remove it. Legal holds are independent from retention
periods.

An object version can have both a retention period and a legal hold, one but not the other, or neither. For
more information, see Amazon S3 Object Lock Overview (p. 454).

Amazon S3 object lock works only in versioned buckets, and retention periods and legal holds apply to
individual object versions. When you lock an object version, Amazon S3 stores the lock information in
the metadata for that object version. Placing a retention period or legal hold on an object protects only
the version specified in the request. It doesn't prevent new versions of the object from being created.
If you put an object into a bucket that has the same key name as an existing, protected object, Amazon
S3 creates a new version of that object, stores it in the bucket as requested, and reports the request as
completed successfully. The existing, protected version of the object remains locked according to its
retention configuration.

To use Amazon S3 object lock, follow these basic steps:

1. Create a new bucket with Amazon S3 object lock enabled.

2. (Optional) Configure a default retention period for objects placed in the bucket.

3. Place the objects that you want to lock in the bucket.

4. Apply a retention period, a legal hold, or both, to the objects that you want to protect.

For information about using Amazon S3 object lock on the AWS Management Console, see How Do I
Lock an Amazon S3 Object? in the Amazon Simple Storage Service Console User Guide.

Topics

• Amazon S3 Object Lock Overview (p. 454)

• Managing Amazon S3 Object Locks (p. 457)

Amazon S3 Object Lock Overview
You can use Amazon S3 object lock to store objects using a write-once-read-many (WORM) model. It can
help you prevent objects from being deleted or overwritten for a fixed amount of time or indefinitely.
You can use Amazon S3 object lock to meet regulatory requirements that require WORM storage, or add
an extra layer of protection against object changes and deletion.

For information about managing the lock status of your Amazon S3 objects, see the section called
“Managing Object Locks” (p. 457).

The following sections describe the main features of Amazon S3 object lock.

Topics

API Version 2006-03-01
454

https://d1.awsstatic.com/r2018/b/S3-Object-Lock/Amazon-S3-Compliance-Assessment.pdf
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/object-lock.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/object-lock.html

Amazon Simple Storage Service Developer Guide
Locking Objects

• Retention Modes (p. 455)
• Retention Periods (p. 455)
• Legal Holds (p. 456)
• Bucket Configuration (p. 456)
• Required Permissions (p. 457)

Retention Modes

Amazon S3 object lock provides two retention modes:

• Governance mode
• Compliance mode

These retention modes apply different levels of protection to your objects. You can apply either retention
mode to any object version that is protected by Amazon S3 object lock.

In governance mode, users can't overwrite or delete an object version or alter its lock settings unless
they have special permissions. With governance mode, you protect objects against being deleted by
most users, but you can still grant some users permission to alter the retention settings or delete the
object if necessary. You can also use governance mode to test retention-period settings before creating
a compliance-mode retention period. To override or remove governance-mode retention settings, a user
must have the s3:BypassGovernanceRetention permission and must explicitly include x-amz-
bypass-governance-retention:true as a request header with any request that requires overriding
governance mode.

Note
The Amazon S3 console by default includes the x-amz-bypass-governance-
retention:true header. If you try to delete objects protected by governance mode
and have s3:BypassGovernanceMode and s3:GetObjectLockConfiguration or,
s3:GetObjectRetention permissions, the operation will succeed.

In compliance mode, a protected object version can't be overwritten or deleted by any user, including the
root user in your AWS account. When an object is locked in compliance mode, its retention mode can't be
changed, and its retention period can't be shortened. Compliance mode ensures that an object version
can't be overwritten or deleted for the duration of the retention period.

Note
Updating an object version's metadata, as occurs when you place or alter an object lock, doesn't
overwrite the object version or reset its Last-Modified timestamp.

Retention Periods

A retention period protects an object version for a fixed amount of time. When you place a retention
period on an object version, Amazon S3 stores a timestamp in the object version's metadata to indicate
when the retention period expires. After the retention period expires, the object version can be
overwritten or deleted unless you also placed a legal hold on the object version.

You can place a retention period on an object version either explicitly or through a bucket default
setting. When you apply a retention period to an object version explicitly, you specify a Retain Until Date
for the object version. Amazon S3 stores the Retain Until Date setting in the object version's metadata
and protects the object version until the retention period expires.

When you use bucket default settings, you don't specify a Retain Until Date. Instead, you specify a
duration, in either days or years, for which every object version placed in the bucket should be protected.
When you place an object in the bucket, Amazon S3 calculates a Retain Until Date for the object version
by adding the specified duration to the object version's creation timestamp. It stores the Retain Until

API Version 2006-03-01
455

Amazon Simple Storage Service Developer Guide
Locking Objects

Date in the object version's metadata. The object version is then protected exactly as though you
explicitly placed a lock with that retention period on the object version.

Note
If your request to place an object version in a bucket contains an explicit retention mode and
period, those settings override any bucket default settings for that object version.

Like all other Amazon S3 object lock settings, retention periods apply to individual object versions.
Different versions of a single object can have different retention modes and periods.

For example, suppose that you have an object that is 15 days into a 30-day retention period, and you
PUT an object into Amazon S3 with the same name and a 60-day retention period. In this case, your PUT
succeeds, and Amazon S3 creates a new version of the object with a 60-day retention period. The older
version maintains its original retention period and becomes deletable in 15 days.

You can extend a retention period after you've applied a retention setting to an object version. To do
this, submit a new lock request for the object version with a Retain Until Date that is later than
the one currently configured for the object version. Amazon S3 replaces the existing retention period
with the new, longer period. Any user with permissions to place an object retention period can extend a
retention period for an object version locked in either mode.

Legal Holds

Amazon S3 object lock also enables you to place a legal hold on an object version. Like a retention
period, a legal hold prevents an object version from being overwritten or deleted. However, a legal hold
doesn't have an associated retention period and remains in effect until removed. Legal holds can be
freely placed and removed by any user who has the s3:PutObjectLegalHold permission.

Legal holds are independent from retention periods. As long as the bucket that contains the object
has Amazon S3 object lock enabled, you can place and remove legal holds regardless of whether the
specified object version has a retention period set. Placing a legal hold on an object version doesn't
affect the retention mode or retention period for that object version. For example, suppose that you
place a legal hold on an object version while the object version is also protected by a retention period.
If the retention period expires, the object doesn't lose its WORM protection. Rather, the legal hold
continues to protect the object until an authorized user explicitly removes it. Similarly, if you remove a
legal hold while an object version has a retention period in effect, the object version remains protected
until the retention period expires.

Bucket Configuration

To use Amazon S3 object lock, you must enable it for a bucket. You can also optionally configure a
default retention mode and period that applies to new objects that are placed in the bucket.

Enabling object lock

Before you can lock any objects, you have to configure a bucket to use Amazon S3 object lock. To do
this, you specify when you create the bucket that you want to enable Amazon S3 object lock. After
you configure a bucket for Amazon S3 object lock, you can lock objects in that bucket using retention
periods, legal holds, or both.

Note

• You can only enable Amazon S3 object lock for new buckets. If you want to turn on Amazon
S3 object lock for an existing bucket, contact AWS Support.

• When you create a bucket with Amazon S3 object lock enabled, Amazon S3 automatically
enables versioning for the bucket.

• Once you create a bucket with Amazon S3 object lock enabled, you can't disable object lock or
suspend versioning for the bucket.

API Version 2006-03-01
456

Amazon Simple Storage Service Developer Guide
Locking Objects

For information about enabling Amazon S3 object lock on the console, see How Do I Lock an Amazon S3
Object? in the Amazon Simple Storage Service Console User Guide.

Default Retention Settings

When you turn on Amazon S3 object lock for a bucket, the bucket can store protected objects.
However, the setting doesn't automatically protect objects that you put into the bucket. If you want to
automatically protect object versions that are placed in the bucket, you can configure a default retention
period. Default settings apply to all new objects that are placed in the bucket, unless you explicitly
specify a different retention mode and period for an object when you create it.

Tip
If you want to enforce the bucket default retention mode and period for all new object versions
placed in a bucket, set the bucket defaults and deny users permission to configure object
retention settings. Amazon S3 then applies the default retention mode and period to new object
versions placed in the bucket, and rejects any request to put an object that includes a retention
mode and setting.

Bucket default settings require both a mode and a period. A bucket default mode is either governance or
compliance. For more information, see Retention Modes (p. 455).

A default retention period is described not as a timestamp, but as a period either in days or in years.
When you place an object version in a bucket with a default retention period, Amazon S3 object lock
calculates a Retain Until Date. It does this by adding the default retention period to the creation
timestamp for the object version. Amazon S3 stores the resulting timestamp as the object version's
Retain Until Date, as if you had calculated the timestamp manually and placed it on the object version
yourself.

Default settings apply only to new objects that are placed in the bucket. Placing a default retention
setting on a bucket doesn't place any retention settings on objects that already exist in the bucket.

Important
Object locks apply to individual object versions only. If you place an object in a bucket that has
a default retention period, and you don't explicitly specify a retention period for that object,
Amazon S3 creates the object with a retention period that matches the bucket default. After the
object is created, its retention period is independent from the bucket's default retention period.
Changing a bucket's default retention period doesn't change the existing retention period for
any objects in that bucket.

Note
If you configure a default retention period on a bucket, requests to upload objects in such a
bucket must include the Content-MD5 header. For more information, see Put Object in the
Amazon Simple Storage Service API Reference.

Required Permissions

Amazon S3 object lock operations require specific permissions. For more information, see Permissions for
Object Operations (p. 345).

Managing Amazon S3 Object Locks
Amazon S3 object lock lets you store objects in Amazon S3 using a write once, read many (WORM) model.
You can use it to view, configure, and manage the object lock status of your Amazon S3 objects. For more
information about Amazon S3 object lock capabilities, see Amazon S3 Object Lock Overview (p. 454).

Topics
• Viewing the Lock Information for an Object (p. 458)
• Bypassing Governance Mode (p. 458)
• Configuring Events and Notifications (p. 458)

API Version 2006-03-01
457

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/object-lock.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/object-lock.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

Amazon Simple Storage Service Developer Guide
Locking Objects

• Setting Retention Limits (p. 459)
• Managing Delete Markers and Object Lifecycles (p. 459)
• Using Object Lock with Replication (p. 459)

Viewing the Lock Information for an Object

You can view the object lock status of an Amazon S3 object version using the GET Object or HEAD
Object commands. Both commands return the retention mode, Retain Until Date, and the legal-
hold status for the specified object version.

To view an object version's retention mode and retention period, you must have the
s3:GetObjectRetention permission. To view an object version's legal hold status, you must have
the s3:GetObjectLegalHold permission. If you GET or HEAD an object version but don't have
the necessary permissions to view its lock status, the request succeeds. However, it doesn't return
information that you don't have permission to view.

To view a bucket's default retention configuration (if it has one), request the bucket's object lock
configuration. To do this, you must have the s3:GetBucketObjectLockConfiguration permission. If
you make a request for an object lock configuration against a bucket that doesn't have Amazon S3 object
lock enabled, Amazon S3 returns an error.

You can configure Amazon S3 inventory reports on your buckets to include the Retain Until Date,
object lock Mode, and Legal Hold Status for all objects in a bucket. For more information, see
Amazon S3 Inventory (p. 422).

Bypassing Governance Mode

You can perform operations on object versions that are locked in governance mode as if they were
unprotected if you have the s3:BypassGovernanceRetention permission. These operations include
deleting an object version, shortening the retention period, or removing the object lock by placing
a new lock with empty parameters. To bypass governance mode, you must explicitly indicate in your
request that you want to bypass this mode. To do this, include the x-amz-bypass-governance-
retention:true header with your request, or use the equivalent parameter with requests made
through the AWS CLI, or AWS SDKs. The AWS Management Console automatically applies this header for
requests made through the console if you have the permission required to bypass governance mode.

Note
Bypassing governance mode doesn't affect an object version's legal hold status. If an object
version has a legal hold enabled, the legal hold remains in force and prevents requests to
overwrite or delete the object version.

Configuring Events and Notifications

You can configure Amazon S3 events for object-level operations in an object lock bucket. When PUT
Object, HEAD Object, and GET Object calls include object lock metadata, events for these calls
include those metadata values. When object lock metadata is added to or updated for an object, those
actions also trigger events. These events occur whenever you PUT or GET object retention or legal-hold
information.

For more information about Amazon S3 events, see Configuring Amazon S3 Event
Notifications (p. 530).

You can use Amazon S3 event notifications to track access and changes to your object lock
configurations and data using AWS CloudTrail. For information about CloudTrail, see the AWS CloudTrail
Documentation.

You can also use Amazon CloudWatch to generate alerts based on this data. For information about
CloudWatch, see the Amazon CloudWatch Documentation.

API Version 2006-03-01
458

https://docs.aws.amazon.com/cloudtrail/index.html
https://docs.aws.amazon.com/cloudtrail/index.html
https://docs.aws.amazon.com/cloudwatch/index.html

Amazon Simple Storage Service Developer Guide
Locking Objects

Setting Retention Limits

You can set minimum and maximum allowable retention periods for a bucket using a bucket policy.
You do this using the s3:object-lock-remaining-retention-days condition key. The following
example shows a bucket policy that sets a maximum retention period of 10 days.

{
 "Version": "2012-10-17",
 "Id": "<Policy1436912751980>",
 "Statement": [
 {
 "Sid": "<Stmt1436912698057>",
 "Effect": "Deny",
 "Principal": "*",
 "Action": [
 "s3:PutObjectRetention"
],
 "Resource": "arn:aws:s3:::<example-bucket>/*",
 "Condition": {
 "NumericGreaterThan": {
 "s3:object-lock-remaining-retention-days": "10"
 }
 }
 }
]
}

Note
If your bucket is the destination bucket for a replication policy and you want to set up minimum
and maximum allowable retention periods for object replicas that are created using replication,
you must include the s3:ReplicateObject action in your bucket policy.

For more information about using bucket policies, see Using Bucket Policies and User Policies (p. 341).

Managing Delete Markers and Object Lifecycles

Although you can't delete a protected object version, you can still create a delete marker for that object.
Placing a delete marker on an object doesn't delete any object version. However, it makes Amazon S3
behave in most ways as though the object has been deleted. For more information, see Working with
Delete Markers (p. 446).

Note
Delete markers are not WORM-protected, regardless of any retention period or legal hold in
place on the underlying object.

Object lifecycle management configurations continue to function normally on protected objects,
including placing delete markers. However, protected object versions remain safe from being deleted
or overwritten by a lifecycle configuration. For more information about managing object lifecycles, see
Object Lifecycle Management (p. 119).

Using Object Lock with Replication

You can use Amazon S3 object lock with replication to enable automatic, asynchronous copying of locked
objects and their retention metadata, across S3 buckets in different or the same AWS Regions. When you
use replication, objects in a source bucket are replicated to a destination bucket. For more information,
see Replication (p. 551).

To set up object lock with replication, you can choose one of the following options.

Option 1: Enable object lock first.

API Version 2006-03-01
459

Amazon Simple Storage Service Developer Guide
Locking Objects

1. Enable object lock on the destination bucket, or on both the source and the destination bucket.
2. Set up replication between the source and the destination buckets.

Option 2: Set up replication first.

1. Set up replication between the source and destination buckets.
2. Enable object lock on just the destination bucket, or on both the source and destination buckets.

To complete step 2 in the preceding options, you must contact AWS Support. This is required to make
sure that replication is configured correctly.

Before you contact AWS Support, review the following requirements for setting up object lock with
replication:

• The Amazon S3 destination bucket must have object lock enabled on it.
• You must grant two new permissions on the source S3 bucket in the AWS Identity and Access

Management (IAM) role that you use to set up replication. The two new permissions are
s3:GetObjectRetention and s3:GetObjectLegalHold. If the role has an s3:Get* permission, it
satisfies the requirement. For more information, see Setting Up Permissions for Replication (p. 564).

For more information about Amazon S3 object lock, see Locking Objects Using Amazon S3 Object
Lock (p. 453).

API Version 2006-03-01
460

https://console.aws.amazon.com//support/home

Amazon Simple Storage Service Developer Guide
Infrastructure Security

Infrastructure Security in Amazon S3
As a managed service, Amazon S3 is protected by the AWS global network security procedures that are
described in the Amazon Web Services: Overview of Security Processes whitepaper.

Access to Amazon S3 via the network is through AWS published APIs. Clients must support Transport
Layer Security (TLS) 1.0. We recommend TLS 1.2. Clients must also support cipher suites with Perfect
Forward Secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Diffie-Hellman
Ephemeral (ECDHE). Additionally, requests must be signed using AWS Signature V4 or AWS Signature V2,
requiring valid credentials to be provided.

These APIs are callable from any network location. However, Amazon S3 does support resource-based
access policies, which can include restrictions based on the source IP address. You can also use Amazon
S3 bucket policies to control access to buckets from specific Amazon Virtual Private Cloud (Amazon VPC)
endpoints, or specific VPCs. Effectively, this isolates network access to a given Amazon S3 bucket from
only the specific VPC within the AWS network. For more information, see Example Bucket Policies for
VPC Endpoints for Amazon S3 (p. 378).

The following security best practices also address infrastructure security in Amazon S3:

• Consider VPC endpoints for Amazon S3 access
• Identify and audit all your Amazon S3 buckets

API Version 2006-03-01
461

https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf

Amazon Simple Storage Service Developer Guide
Configuration and Vulnerability Analysis

Configuration and Vulnerability Analysis in
Amazon S3

AWS handles basic security tasks like guest operating system (OS) and database patching, firewall
configuration, and disaster recovery. These procedures have been reviewed and certified by the
appropriate third parties. For more details, see the following resources:

• Compliance Validation for Amazon S3 (p. 422)
• Shared Responsibility Model
• Amazon Web Services: Overview of Security Processes (whitepaper)

The following security best practices also address configuration and vulnerability analysis in Amazon S3:

• Identify and audit all your Amazon S3 buckets
• Enable AWS Config

API Version 2006-03-01
462

https://aws.amazon.com/compliance/shared-responsibility-model/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf

Amazon Simple Storage Service Developer Guide
Security Best Practices

Security Best Practices for Amazon S3
Amazon S3 provides a number of security features to consider as you develop and implement your
own security policies. The following best practices are general guidelines and don’t represent a
complete security solution. Because these best practices might not be appropriate or sufficient for your
environment, treat them as helpful considerations rather than prescriptions.

Topics

• Amazon S3 Preventative Security Best Practices (p. 463)

• Amazon S3 Monitoring and Auditing Best Practices (p. 465)

Amazon S3 Preventative Security Best Practices
The following best practices for Amazon S3 can help prevent security incidents.

Ensure that your Amazon S3 buckets use the correct policies and are not publicly accessible

Unless you explicitly require anyone on the internet to be able to read or write to your S3 bucket,
you should ensure that your S3 bucket is not public. The following are some of the steps you can
take:

• Use Amazon S3 block public access. With Amazon S3 block public access, account administrators
and bucket owners can easily set up centralized controls to limit public access to their Amazon S3
resources that are enforced regardless of how the resources are created. For more information, see
Using Amazon S3 Block Public Access (p. 414).

• Identify Amazon S3 bucket policies that allow a wildcard identity such as Principal “*” (which
effectively means “anyone”) or allows a wildcard action “*” (which effectively allows the user to
perform any action in the Amazon S3 bucket).

• Similarly, note Amazon S3 bucket access control lists (ACLs) that provide read, write, or full-access
to “Everyone” or “Any authenticated AWS user.”

• Use the ListBuckets API to scan all of your Amazon S3 buckets. Then use GetBucketAcl,
GetBucketWebsite, and GetBucketPolicy to determine whether the bucket has compliant
access controls and configuration.

• Use AWS Trusted Advisor to inspect your Amazon S3 implementation.

• Consider implementing on-going detective controls using the s3-bucket-public-read-prohibited
and s3-bucket-public-write-prohibited managed AWS Config Rules.

For more information, see Setting Bucket and Object Access Permissions in the Amazon Simple
Storage Service Console User Guide.

Implement least privilege access

When granting permissions, you decide who is getting what permissions to which Amazon S3
resources. You enable specific actions that you want to allow on those resources. Therefore you
should grant only the permissions that are required to perform a task. Implementing least privilege
access is fundamental in reducing security risk and the impact that could result from errors or
malicious intent.

The following tools are available to implement least privilege access:

• IAM user policies and Permissions Boundaries for IAM Entities

• Amazon S3 bucket policies

• Amazon S3 access control lists (ACLs)

• Service Control Policies

API Version 2006-03-01
463

https://docs.aws.amazon.com/awssupport/latest/user/getting-started.html#trusted-advisor
https://docs.aws.amazon.com/config/latest/developerguide/s3-bucket-public-read-prohibited.html
https://docs.aws.amazon.com/config/latest/developerguide/s3-bucket-public-write-prohibited.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/set-permissions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-iam-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/S3_ACLs_UsingACLs.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scp.html

Amazon Simple Storage Service Developer Guide
Amazon S3 Preventative Security Best Practices

For guidance on what to consider when choosing one or more of the preceding mechanisms, see
Introduction to Managing Access Permissions to Your Amazon S3 Resources (p. 301).

Use IAM roles for applications and AWS services that require Amazon S3 access

For applications on Amazon EC2 or other AWS services to access Amazon S3 resources, they must
include valid AWS credentials in their AWS API requests. You should not store AWS credentials
directly in the application or Amazon EC2 instance. These are long-term credentials that are not
automatically rotated and could have a significant business impact if they are compromised.

Instead, you should use an IAM role to manage temporary credentials for applications or services
that need to access Amazon S3. When you use a role, you don't have to distribute long-term
credentials (such as a user name and password or access keys) to an Amazon EC2 instance or AWS
service such as AWS Lambda. The role supplies temporary permissions that applications can use
when they make calls to other AWS resources.

For more information, see the following topics in the IAM User Guide:
• IAM Roles
• Common Scenarios for Roles: Users, Applications, and Services

Enable multi-factor authentication (MFA) Delete

MFA Delete can help prevent accidental bucket deletions. If MFA Delete is not enabled, any user with
the password of a sufficiently privileged root or IAM user could permanently delete an Amazon S3
object.

MFA Delete requires additional authentication for either of the following operations:
• Changing the versioning state of your bucket
• Permanently deleting an object version

For more information, see MFA Delete (p. 433).
Consider encryption of data at rest

You have the following options for protecting data at rest in Amazon S3:
• Server-Side Encryption – Request Amazon S3 to encrypt your object before saving it on disks

in its data centers and then decrypt it when you download the objects. Server-side encryption
can help reduce risk to your data by encrypting the data with a key that is stored in a different
mechanism than the mechanism that stores the data itself.

Amazon S3 provides multiple server-side encryption options. For more information, see Protecting
Data Using Server-Side Encryption (p. 265).

• Client-Side Encryption – Encrypt data client-side and upload the encrypted data to Amazon S3.
In this case, you manage the encryption process, the encryption keys, and related tools. As with
server-side encryption, client-side encryption can help reduce risk by encrypting the data with a
key that is stored in a different mechanism than the mechanism that stores the data itself.

Amazon S3 provides multiple client-side encryption options. For more information, see Protecting
Data Using Client-Side Encryption (p. 293).

Enforce encryption of data in transit

You can use HTTPS (TLS) to help prevent potential attackers from eavesdropping on or manipulating
network traffic using person-in-the-middle or similar attacks. You should allow only encrypted
connections over HTTPS (TLS) using the aws:SecureTransport condition on Amazon S3 bucket
policies.

Also consider implementing on-going detective controls using the s3-bucket-ssl-requests-only
managed AWS Config rule.

API Version 2006-03-01
464

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_Boolean
https://docs.aws.amazon.com/config/latest/developerguide/s3-bucket-ssl-requests-only.html

Amazon Simple Storage Service Developer Guide
Amazon S3 Monitoring and Auditing Best Practices

Consider Amazon S3 Object Lock

Amazon S3 Object Lock enables you to store objects using a "Write Once Read Many" (WORM)
model. Amazon S3 Object Lock can help prevent accidental or inappropriate deletion of data. For
example, you could use Amazon S3 Object Lock to help protect your AWS CloudTrail logs.

Enable versioning

Versioning is a means of keeping multiple variants of an object in the same bucket. You can use
versioning to preserve, retrieve, and restore every version of every object stored in your Amazon S3
bucket. With versioning, you can easily recover from both unintended user actions and application
failures.

Also consider implementing on-going detective controls using the s3-bucket-versioning-enabled
managed AWS Config rule.

For more information, see Using Versioning (p. 432).
Consider Amazon S3 cross-region replication

Although Amazon S3 stores your data across multiple geographically diverse Availability Zones by
default, compliance requirements might dictate that you store data at even greater distances. Cross-
region replication (CRR) allows you to replicate data between distant AWS Regions to help satisfy
these requirements. CRR enables automatic, asynchronous copying of objects across buckets in
different AWS Regions. For more information, see Replication (p. 551).

Note
CRR requires that both source and destination S3 buckets have versioning enabled.

Also consider implementing on-going detective controls using the s3-bucket-replication-enabled
managed AWS Config rule.

Consider VPC endpoints for Amazon S3 access

A VPC endpoint for Amazon S3 is a logical entity within an Amazon Virtual Private Cloud (Amazon
VPC) that allows connectivity only to Amazon S3. You can use Amazon S3 bucket policies to control
access to buckets from specific Amazon VPC endpoints, or specific VPCs. A VPC endpoint can help
prevent traffic from potentially traversing the open internet and being subject to open internet
environment.

VPC endpoints for Amazon S3 provide two ways to control access to your Amazon S3 data:
• You can control the requests, users, or groups that are allowed through a specific VPC endpoint.
• You can control which VPCs or VPC endpoints have access to your S3 buckets by using S3 bucket

policies.
• You can help prevent data exfiltration by using a VPC that does not have an internet gateway.

For more information, see Example Bucket Policies for VPC Endpoints for Amazon S3 (p. 378).

Amazon S3 Monitoring and Auditing Best Practices
The following best practices for Amazon S3 can help detect potential security weaknesses and incidents.

Identify and audit all your Amazon S3 buckets

Identification of your IT assets is a crucial aspect of governance and security. You need to have
visibility of all your Amazon S3 resources to assess their security posture and take action on
potential areas of weakness.

Use Tag Editor to identify security-sensitive or audit-sensitive resources, then use those tags when
you need to search for these resources. For more information, see Searching for Resources to Tag.

API Version 2006-03-01
465

https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lock.html
https://docs.aws.amazon.com/config/latest/developerguide/s3-bucket-versioning-enabled.html
https://docs.aws.amazon.com/config/latest/developerguide/s3-bucket-replication-enabled.html
https://docs.aws.amazon.com/ARG/latest/userguide/tag-editor.html

Amazon Simple Storage Service Developer Guide
Amazon S3 Monitoring and Auditing Best Practices

Use Amazon S3 inventory to audit and report on the replication and encryption status of your
objects for business, compliance, and regulatory needs. For more information, see Amazon S3
Inventory (p. 422).

Create resource groups for your Amazon S3 resources. For more information, see What Is AWS
Resource Groups?

Implement monitoring using AWS monitoring tools

Monitoring is an important part of maintaining the reliability, security, availability, and performance
of Amazon S3 and your AWS solutions. AWS provides several tools and services to help you monitor
Amazon S3 and your other AWS services. For example, you can monitor CloudWatch metrics for
Amazon S3, particularly PutRequests, GetRequests, 4xxErrors, and DeleteRequests. For
more information, see Monitoring Metrics with Amazon CloudWatch (p. 611).For more information,
see Monitoring Amazon S3 (p. 610).

For a second example, see Example: Amazon S3 Bucket Activity. This example describes how to
create an Amazon CloudWatch alarm that is triggered when an Amazon S3 API call is made to PUT
or DELETE bucket policy, bucket lifecycle, or bucket replication, or to PUT a bucket ACL.

Enable Amazon S3 server access logging

Server access logging provides detailed records of the requests that are made to a bucket. Server
access logs can assist you in security and access audits, help you learn about your customer base, and
understand your Amazon S3 bill. For instructions on enabling server access logging, see Amazon S3
Server Access Logging (p. 647).

Also consider implementing on-going detective controls using the s3-bucket-logging-enabled AWS
Config managed rule.

Use AWS CloudTrail

AWS CloudTrail provides a record of actions taken by a user, role, or an AWS service in Amazon
S3. Using the information collected by CloudTrail, you can determine the request that was made
to Amazon S3, the IP address from which the request was made, who made the request, when it
was made, and additional details. For example, you can identify CloudTrail entries for Put actions
that impact data access, in particular PutBucketAcl, PutObjectAcl, PutBucketPolicy, and
PutBucketWebsite. For more information, see Logging Amazon S3 API Calls by Using AWS
CloudTrail (p. 621).

You can also use CloudTrail in conjunction with Amazon S3 server access logging. Amazon S3
server access logging provides an access log of requests made to the bucket, but does not provide
visibility into API operations at the object-level. CloudTrail supports Amazon S3 object-level API
operations such as GetObject, DeleteObject, and PutObject. Monitoring these events, called
data events, can provide valuable insight into operations involving your Amazon S3 objects. For
more information, see Data Events in the AWS CloudTrail User Guide.

Enable AWS Config

Several of the best practices listed in this topic suggest creating AWS Config rules. AWS Config
enables you to assess, audit, and evaluate the configurations of your AWS resources. AWS Config
monitors resource configurations, allowing you to evaluate the recorded configurations against
the desired secure configurations. Using AWS Config, you can review changes in configurations and
relationships between AWS resources, investigate detailed resource configuration histories, and
determine your overall compliance against the configurations specified in your internal guidelines.
This can help you simplify compliance auditing, security analysis, change management, and
operational troubleshooting. For more information, see Setting Up AWS Config with the Console
in the AWS Config Developer Guide. When specifying the resource types to record, ensure that you
include Amazon S3 resources.

For an example of how to use AWS Config to monitor for and respond to Amazon S3 buckets that
allow public access, see How to Use AWS Config to Monitor for and Respond to Amazon S3 Buckets
Allowing Public Access on the AWS Security Blog.

API Version 2006-03-01
466

https://docs.aws.amazon.com/ARG/latest/userguide/welcome.html
https://docs.aws.amazon.com/ARG/latest/userguide/welcome.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html#cloudwatch-alarms-for-cloudtrail-s3-bucket-activity
https://docs.aws.amazon.com/config/latest/developerguide/s3-bucket-logging-enabled.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-and-data-events-with-cloudtrail.html?icmpid=docs_cloudtrail_console#logging-data-events
https://docs.aws.amazon.com/config/latest/developerguide/gs-console.html
https://aws.amazon.com/blogs/security/how-to-use-aws-config-to-monitor-for-and-respond-to-amazon-s3-buckets-allowing-public-access/
https://aws.amazon.com/blogs/security/how-to-use-aws-config-to-monitor-for-and-respond-to-amazon-s3-buckets-allowing-public-access/

Amazon Simple Storage Service Developer Guide
Amazon S3 Monitoring and Auditing Best Practices

Consider using Amazon Macie with Amazon S3

Macie uses machine learning to automatically discover, classify, and protect sensitive data in AWS.
Macie recognizes sensitive data such as personally identifiable information (PII) or intellectual
property. It provides you with dashboards and alerts that give visibility into how this data is being
accessed or moved. For more information, see What Is Amazon Macie?

Monitor AWS security advisories

You should regularly check security advisories posted in Trusted Advisor for your AWS account. In
particular, note warnings about Amazon S3 buckets with “open access permissions.” You can do this
programmatically using describe-trusted-advisor-checks.

Further, actively monitor the primary email address registered to each of your AWS accounts. AWS
will contact you, using this email address, about emerging security issues that might affect you.

AWS operational issues with broad impact are posted on the AWS Service Health Dashboard.
Operational issues are also posted to individual accounts via the Personal Health Dashboard. For
more information, see the AWS Health Documentation.

API Version 2006-03-01
467

https://docs.aws.amazon.com/macie/latest/userguide/what-is-macie.html
https://docs.aws.amazon.com/cli/latest/reference/support/describe-trusted-advisor-checks.html
https://status.aws.amazon.com/
https://docs.aws.amazon.com/health/

Amazon Simple Storage Service Developer Guide
Terminology

Performing Batch Operations
You can use Amazon S3 batch operations to perform large-scale batch operations on Amazon S3 objects.
Amazon S3 batch operations can execute a single operation on lists of Amazon S3 objects that you
specify. A single job can perform the specified operation on billions of objects containing exabytes of
data. Amazon S3 tracks progress, sends notifications, and stores a detailed completion report of all
actions, providing a fully managed, auditable, serverless experience. You can use Amazon S3 batch
operations through the AWS Management Console, AWS CLI, AWS SDKs, or REST API.

Use Amazon S3 batch operations to copy objects and set object tags or access control lists (ACLs). You
can also initiate object restores from Amazon S3 Glacier or invoke an AWS Lambda function to perform
custom actions using your objects. You can perform these operations on a custom list of objects, or
you can use an Amazon S3 inventory report to make generating even the largest lists of objects easy.
Amazon S3 batch operations use the same Amazon S3 APIs that you already use with Amazon S3, so
you'll find the interface familiar.

Topics
• Terminology (p. 468)
• The Basics: Amazon S3 Batch Operations Jobs (p. 468)
• Creating an Amazon S3 Batch Operations Job (p. 470)
• Operations (p. 475)
• Managing Batch Operations Jobs (p. 485)
• Amazon S3 Batch Operations Examples (p. 489)

Terminology
This section uses the terms jobs, operations, and tasks, which are defined as follows:

Job

A job is the basic unit of work for Amazon S3 batch operations. A job contains all of the information
necessary to execute the specified operation on the objects listed in the manifest. After you provide
this information and request that the job begin, the job executes the operation for each object in the
manifest.

Operation

An operation is a single command that you want a job to execute. Each job contains only one type of
operation with one set of parameters, which Amazon S3 batch operations execute for each object.

Task

A task is the unit of execution for a job. A task represents a single call to an Amazon S3 or AWS
Lambda API operation to perform the job's operation on a single object. Over the course of a job's
lifetime, Amazon S3 batch operations create one task for each object specified in the manifest.

The Basics: Amazon S3 Batch Operations Jobs
You can use Amazon S3 batch operations to perform large-scale batch operations on Amazon S3 objects.
Amazon S3 batch operations can execute a single operation on lists of Amazon S3 objects that you
specify.

API Version 2006-03-01
468

Amazon Simple Storage Service Developer Guide
How a Job Works

Topics
• How an Amazon S3 Batch Operations Job Works (p. 469)
• Specifying a Manifest (p. 469)

How an Amazon S3 Batch Operations Job Works
A job is the basic unit of work for Amazon S3 batch operations. A job contains all of the information
necessary to execute the specified operation on a list of objects.

To create a job, you give Amazon S3 batch operations a list of objects and specify the action to perform
on those objects. Amazon S3 batch operations support the following operations:

• PUT copy object
• PUT object tagging
• PUT object ACL
• Initiate Glacier restore
• Invoke an AWS Lambda function

The objects that you want a job to act on are listed in a manifest object. A job performs the specified
operation on each object that is included in its manifest. You can use a CSV-formatted Amazon S3
Inventory (p. 422) report as a manifest, which makes it easy to create large lists of objects located in
a bucket. You can also specify a manifest in a simple CSV format that enables you to perform batch
operations on a customized list of objects contained within a single bucket.

After you create a job, Amazon S3 processes the list of objects in the manifest and executes the specified
operation against each object. While a job is executing, you can monitor its progress programmatically
or through the Amazon S3 console. You can also configure a job to generate a completion report when it
finishes. The completion report describes the results of each task that was executed by the job. For more
information about monitoring jobs, see Managing Batch Operations Jobs (p. 485).

Specifying a Manifest
A manifest is an Amazon S3 object that lists object keys that you want Amazon S3 to act upon. To create
a manifest for a job, you specify the manifest object key, ETag, and optional version ID. The contents of
the manifest must be URL encoded. Manifests that use server-side encryption with customer-provided
keys (SSE-C) and server-side encryption with AWS KMS managed keys (SSE-KMS) are not supported. Your
manifest must contain the bucket name, object key, and optionally, the object version for each object.
Any other fields in the manifest are not used by Amazon S3 batch operations.

You can specify a manifest in a create job request using one of the following two formats.

• Amazon S3 inventory report — must be a CSV-formatted Amazon S3 inventory report. You must
specify the manifest.json file that is associated with the inventory report. For more information
about inventory reports, see Amazon S3 Inventory (p. 422). If the inventory report includes version
IDs, Amazon S3 batch operations operate on the specific object versions.

• CSV file — Each row in the file must include the bucket name, object key, and optionally, the object
version. Object keys must be URL-encoded, as shown in the following examples. The manifest must
either include version IDs for all objects or omit version IDs for all objects. For more information about
the CSV manifest format, see JobManifestSpec in the Amazon Simple Storage Service API Reference.

The following is an example manifest in CSV format without version IDs:

Examplebucket,objectkey1
Examplebucket,objectkey2

API Version 2006-03-01
469

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html
https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_control_JobManifestSpec.html

Amazon Simple Storage Service Developer Guide
Creating a Job

Examplebucket,objectkey3
Examplebucket,photos/jpgs/objectkey4
Examplebucket,photos/jpgs/newjersey/objectkey5
Examplebucket,object%20key%20with%20spaces

The following is an example manifest in CSV format including version IDs:

Examplebucket,objectkey1,PZ9ibn9D5lP6p298B7S9_ceqx1n5EJ0p
Examplebucket,objectkey2,YY_ouuAJByNW1LRBfFMfxMge7XQWxMBF
Examplebucket,objectkey3,jbo9_jhdPEyB4RrmOxWS0kU0EoNrU_oI
Examplebucket,photos/jpgs/objectkey4,6EqlikJJxLTsHsnbZbSRffn24_eh5Ny4
Examplebucket,photos/jpgs/newjersey/objectkey5,imHf3FAiRsvBW_EHB8GOu.NHunHO1gVs
Examplebucket,object%20key%20with%20spaces,9HkPvDaZY5MVbMhn6TMn1YTb5ArQAo3w

Important
If the objects in your manifest are in a versioned bucket, you should specify the version IDs
for the objects. When you create a job, Amazon S3 batch operations parse the entire manifest
before running the job. However, it doesn't take a "snapshot" of the state of the bucket.
Because manifests can contain billions of objects, jobs might take a long time to run. If you
overwrite an object with a new version while a job is running, and you didn't specify a version
ID for that object, Amazon S3 performs the operation on the latest version of the object, and
not the version that existed when you created the job. The only way to avoid this behavior is to
specify version IDs for the objects that are listed in the manifest.

Creating an Amazon S3 Batch Operations Job
This section describes the information that you need to create an Amazon S3 batch operations job. It
also describes the results of a Create Job request.

Creating a Job Request
To create a job, you must provide the following information:

Operation

Specify the operation that you want Amazon S3 batch operations to execute against the objects
in the manifest. Each operation type accepts parameters that are specific to that operation, which
enables you to perform the same tasks as if you performed the operation one-by-one on each
object.

Manifest

The manifest is a list of all of the objects that you want Amazon S3 batch operations to execute
the specified action on. You can use a CSV-formatted Amazon S3 Inventory (p. 422) report as a
manifest or use your own customized CSV list of objects. For more information about manifests, see
Specifying a Manifest (p. 469).

Priority

Use job priorities to indicate the relative priority of this job to others running in your account. A
higher number indicates higher priority.

Job priorities only have meaning relative to the priorities set for other jobs in the same account and
Region, so you can choose whatever numbering system works for you. For example, you might want
to assign all Initiate Restore Object jobs a priority of 1, all PUT Object Copy jobs a priority
of 2, and all Put Object ACL jobs a priority of 3. Batch operations prioritize jobs according to
priority numbers, but strict ordering isn't guaranteed. Thus, you shouldn't use job priorities to ensure

API Version 2006-03-01
470

Amazon Simple Storage Service Developer Guide
Creating a Job Response

that any one job will start or finish before any other job. If you need to ensure strict ordering, wait
until one job has finished before starting the next.

RoleArn

You must specify an IAM role to run the job. The IAM role that you use must have sufficient
permissions to perform the operation that is specified in the job. For example, to run an PUT
Object Copy job, the IAM role must have s3:GetObject permissions for the source bucket and
s3:PutObject permissions for the destination bucket. The role also needs permissions to read the
manifest and write the job-completion report. For more information about IAM roles, see IAM Roles.
For more information about Amazon S3 permissions, see Specifying Permissions in a Policy (p. 345).

Report

Specify whether you want Amazon S3 batch operations to generate a completion report. If you
request a job-completion report, then you must also provide the parameters for the report in this
element. The necessary information includes the bucket where you want to store the report, the
format of the report, whether you want the report to include the details of all tasks or only failed
tasks, and an optional prefix string.

Description (Optional)

You can also provide a description of up to 256 characters to help you track and monitor your
job. Amazon S3 includes this description whenever it returns information about a job or displays
job details on the Amazon S3 console. You can then easily sort and filter jobs according to the
descriptions that you assigned. Descriptions don't need to be unique, so you can use descriptions as
categories (for example, "Weekly Log Copy Jobs") to help you track groups of similar jobs.

Creating a Job Response
If the Create Job request succeeds, Amazon S3 returns a job ID. The job ID is a unique identifier that
Amazon S3 generates automatically so that you can identify your batch operations job and monitor its
status.

When you create a job through the AWS CLI, AWS SDKs, or REST API, you can set Amazon S3 batch
operations to begin processing the job automatically. The job runs as soon as it's ready and not waiting
behind higher-priority jobs. When you create a job through the AWS Management Console, you must
review the job details and confirm that you want to run it before batch operations can begin to process
it. After you confirm that you want to run the job, it progresses as though you had created it through one
of the other methods. If a job remains in the suspended state for over 30 days, it will fail.

Granting Permissions for Amazon S3 Batch
Operations
This section describes how to grant the necessary permissions required for creating and performing
batch operations jobs.

Topics
• Required Permissions for Creating an Amazon S3 Batch Operations Job (p. 471)
• Creating an Amazon S3 Batch Operations IAM Role (p. 472)

Required Permissions for Creating an Amazon S3 Batch
Operations Job
To create an Amazon S3 batch operations job, the s3:CreateJob permission is required. The same
entity creating the job must also have the iam:PassRole permission to pass the AWS Identity and

API Version 2006-03-01
471

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon Simple Storage Service Developer Guide
Granting Permissions for Batch Operations

Access Management (IAM) role specified for the job to Amazon S3 batch operations. For information
about creating this IAM role, see the next topic Creating an Amazon S3 Batch Operations IAM
Role (p. 472).

Creating an Amazon S3 Batch Operations IAM Role
Amazon S3 must have your permissions to perform batch operations on your behalf. You grant these
permissions through an AWS Identity and Access Management (IAM) role. This section provides examples
of the trust and permissions policies you use when creating an IAM role. For more information, see IAM
Roles.

Trust Policy

You attach the following trust policy to the IAM role to allow the Amazon S3 batch operations service
principal to assume the role.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":"batchoperations.s3.amazonaws.com"
 },
 "Action":"sts:AssumeRole"
 }
]
}

Permissions Policies

Depending on the type of operations, you can attach one of the following policies.

Note

• Regardless of the operation, Amazon S3 needs permissions to read your manifest object from
your S3 bucket and optionally write a report to your bucket. Therefore, all of the following
policies include these permissions.

• For Amazon S3 inventory report manifests, Amazon S3 batch operations require permission to
read the manifest.json object and all associated CSV data files.

• Version-specific permissions such as s3:GetObjectVersion are only required when you are
specifying the version ID of the objects.

• PUT copy object

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:PutObjectTagging"
],
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::{{DestinationBucket}}/*"
 },
 {
 "Action": [

API Version 2006-03-01
472

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon Simple Storage Service Developer Guide
Granting Permissions for Batch Operations

 "s3:GetObject",
 "s3:GetObjectAcl",
 "s3:GetObjectTagging"
],
 "Effect": "Allow",
 "Resource": "arn:aws:s3:::{{SourceBucket}}/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::{{ManifestBucket}}/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::{{ReportBucket}}/*"
]
 }
]
}

• PUT object tagging

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:PutObjectTagging",
 "s3:PutObjectVersionTagging"
],
 "Resource": "arn:aws:s3:::{{TargetResource}}/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::{{ManifestBucket}}/*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:PutObject",
 "s3:GetBucketLocation"
],
 "Resource":[
 "arn:aws:s3:::{{ReportBucket}}/*"
]
 }

API Version 2006-03-01
473

Amazon Simple Storage Service Developer Guide
Granting Permissions for Batch Operations

]
}

• PUT object ACL

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:PutObjectAcl",
 "s3:PutObjectVersionAcl"
],
 "Resource": "arn:aws:s3:::{{TargetResource}}/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::{{ManifestBucket}}/*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:PutObject",
 "s3:GetBucketLocation"
],
 "Resource":[
 "arn:aws:s3:::{{ReportBucket}}/*"
]
 }
]
}

• Initiate Glacier restore

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:RestoreObject"
],
 "Resource": "arn:aws:s3:::{{TargetResource}}/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::{{ManifestBucket}}/*"
]
 },
 {

API Version 2006-03-01
474

Amazon Simple Storage Service Developer Guide
Related Resources

 "Effect":"Allow",
 "Action":[
 "s3:PutObject",
 "s3:GetBucketLocation"
],
 "Resource":[
 "arn:aws:s3:::{{ReportBucket}}/*"
]
 }
]
}

Related Resources
• The Basics: Amazon S3 Batch Operations Jobs (p. 468)
• Operations (p. 475)
• Managing Batch Operations Jobs (p. 485)

Operations
Amazon S3 batch operations support five different operations. The topics in this section describe each of
the operations.

Topics
• PUT Object Copy (p. 475)
• Initiate Restore Object (p. 476)
• Invoking a Lambda Function from Amazon S3 Batch Operations (p. 477)
• Put Object ACL (p. 484)
• Put Object Tagging (p. 484)

PUT Object Copy
The PUT object copy operation copies each object specified in the manifest. You can copy objects
to a different bucket in the same AWS Region or to a bucket in a different Region. Amazon S3 batch
operations support most options available through Amazon S3 for copying objects. These options
include setting object metadata, setting permissions, and changing an object's storage class. For more
information about the functionality available through Amazon S3 for copying objects, see Copying
Objects (p. 210).

Restrictions and Limitations
• All source objects must be in one bucket.
• All destination objects must be in one bucket.
• You must have read permissions for the source bucket and write permissions for the destination

bucket.
• Objects to be copied can be up to 5 GB in size.
• PUT Object Copy jobs must best created in the destination region, i.e. the region you intend to copy

the objects to.
• All PUT Object Copy options are supported except for conditional checks on ETags and server-side

encryption with customer-provided encryption keys.

API Version 2006-03-01
475

Amazon Simple Storage Service Developer Guide
Initiate Restore Object

• If the buckets are unversioned, you will overwrite objects with the same key names.

• Objects are not necessarily copied in the same order as they are listed in the manifest. So for versioned
buckets, if preserving current/non-current version order is important, you should copy all non-current
versions first and later copy the current versions in a subsequent job after the first job is complete.

Initiate Restore Object
The InitiateRestore operation sends a restore request to Amazon S3 Glacier for each object that is
specified in the manifest. To create an Initiate Restore Object job, you must include two elements with
your request:

• ExpirationInDays

When you restore an object from S3 Glacier, the restored object is only a temporary copy, which
Amazon S3 deletes after a fixed period of time. This element specifies how long the temporary
copy will remain available in Amazon S3. After the temporary copy expires, you can only retrieve
the object by restoring it from S3 Glacier again. For more information about object restoration, see
Restoring Archived Objects (p. 248).

• GlacierJobTier

Amazon S3 can restore objects from S3 Glacier according to three different retrieval tiers: Expedited,
Standard, and Bulk. Amazon S3 batch operations support only the Standard and Bulk tiers. For
more information about S3 Glacier retrieval tiers, see Archive Retrieval Options (p. 249). For more
information about pricing for each tier, see the "Retrieval pricing" section at Amazon S3 Glacier
pricing.

Important
The Initiate Restore Object job only initiates the request to restore objects. Amazon S3 batch
operations report the job as complete for each object after the request has been initiated
for that object. Amazon S3 doesn't update the job or otherwise notify you when the objects
have been restored. However, you can use event notifications to receive notifications when the
objects are available in Amazon S3. For more information, see Configuring Amazon S3 Event
Notifications (p. 530).

Overlapping Restores

If your Initiate Restore Object job tries to restore an object that is already in the process of being
restored, Amazon S3 batch operations will behave as follows:

The restore operation succeeds for the object if either of the following conditions are true:

• Compared to the restoration request already in progress, this job's ExpirationInDays is the same
and GlacierJobTier is faster.

• The previous restoration request has already completed and the object is currently available in
Reduced Redundancy Storage mode. In this case, Amazon S3 batch operations update the expiration
date of the restored object to match the ExpirationInDays specified in this job.

The restore operation fails for the object if any of the following conditions are true:

• The restoration request already in progress has not yet completed and the restoration duration for this
job (specified by ExpirationInDays) is different than the restoration duration that is specified in the
in-progress restoration request.

• The restoration tier for this job (specified by GlacierJobTier) is the same or slower than the
restoration tier that is specified in the in-progress restoration request.

API Version 2006-03-01
476

https://aws.amazon.com/glacier/pricing/
https://aws.amazon.com/glacier/pricing/

Amazon Simple Storage Service Developer Guide
Invoke a Lambda Function

Limitations

Initiate Restore Object jobs have the following limitations:

• You must create an Initiate Restore Object job in the same Region as the archived objects.

• Amazon S3 batch operations do not support S3 Glacier SELECT.

• Amazon S3 batch operations do not support the Expedited retrieval tier.

Invoking a Lambda Function from Amazon S3 Batch
Operations
Amazon S3 batch operations can invoke AWS Lambda functions to perform custom actions on objects
that are listed in a manifest. This section describes how to create a Lambda function to use with Amazon
S3 batch operations and how to create a job to invoke the function. The Amazon S3 batch operations job
uses the LambdaInvoke operation to run a Lambda function on each object listed in a manifest.

You can work with Amazon S3 batch operations for Lambda using the AWS Management Console, AWS
Command Line Interface (AWS CLI), AWS SDKs, or REST APIs. For more information about using Lambda,
see Getting Started with AWS Lambda in the AWS Lambda Developer Guide.

The following sections explain how you can get started using Amazon S3 batch operations with Lambda.

Topics

• Using Lambda with Amazon S3 Batch Operations (p. 477)

• Creating a Lambda Function to Use with Amazon S3 Batch Operations (p. 478)

• Creating an Amazon S3 Batch Operations Job That Invokes a Lambda Function (p. 481)

• Providing Task-Level Information in Lambda Manifests (p. 482)

Using Lambda with Amazon S3 Batch Operations

When using Amazon S3 batch operations with AWS Lambda, you must create new Lambda functions
specifically for use with Amazon S3 batch operations. You can't reuse existing Amazon S3 event-based
functions with Amazon S3 batch operations. Event functions can only receive messages; they don't
return messages. The Lambda functions that are used with Amazon S3 batch operations must accept
and return messages. For more information about using Lambda with Amazon S3 events, see Using AWS
Lambda with Amazon S3 in the AWS Lambda Developer Guide.

You create an Amazon S3 batch operations job that invokes your Lambda function. The job runs the
same Lambda function on all of the objects listed in your manifest. You can control what versions
of your Lambda function to use while processing the objects in your manifest. Amazon S3 batch
operations support unqualified Amazon Resource Names (ARNs), aliases, and specific versions. For more
information, see Introduction to AWS Lambda Versioning in the AWS Lambda Developer Guide.

If you provide the Amazon S3 batch operations job with a function ARN that uses an alias or the
$LATEST qualifier, and you update the version that either of those points to, Amazon S3 batch
operations starts calling the new version of your Lambda function. This can be useful when you want to
update functionality part of the way through a large job. If you don't want Amazon S3 batch operations
to change the version that is used, provide the specific version in the FunctionARN parameter when you
create your job.

API Version 2006-03-01
477

https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://docs.aws.amazon.com/lambda/latest/dg/with-s3.html
https://docs.aws.amazon.com/lambda/latest/dg/with-s3.html
https://docs.aws.amazon.com/lambda/latest/dg/versioning-intro.html

Amazon Simple Storage Service Developer Guide
Invoke a Lambda Function

Response and Result Codes

There are two levels of codes that Amazon S3 batch operations expect from Lambda functions. The first
is the response code for the entire request, and the second is a per-task result code. The following table
contains the response codes.

Response Code Description

Succeeded The task completed normally. If you requested a
job completion report, the task's result string is
included in the report.

TemporaryFailure The task suffered a temporary failure and will
be redriven before the job completes. The result
string is ignored. If this is the final redrive, the
error message is included in the final report.

PermanentFailure The task suffered a permanent failure. If you
requested a job-completion report, the task is
marked as Failed and includes the error message
string. Result strings from failed tasks are ignored.

Creating a Lambda Function to Use with Amazon S3 Batch
Operations
This section provides example AWS Identity and Access Management (IAM) permissions that you must
use with your Lambda function. It also contains an example Lambda function to use with Amazon S3
batch operations. If you have never created a Lambda function before, see Tutorial: Using AWS Lambda
with Amazon S3 in the AWS Lambda Developer Guide.

You must create Lambda functions specifically for use with Amazon S3 batch operations. You can't reuse
existing Amazon S3 event-based Lambda functions. This is because Lambda functions that are used for
Amazon S3 batch operations must accept and return special data fields.

Example IAM Permissions

The following are examples of the IAM permissions that are necessary to use a Lambda function with
Amazon S3 batch operations.

Example — Amazon S3 batch operations trust policy

The following is an example of the trust policy that you can use for the execution role. It gives Lambda
permission to execute the function invoked by an Amazon S3 batch operations job.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "batchoperations.s3.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

API Version 2006-03-01
478

https://docs.aws.amazon.com/lambda/latest/dg/with-s3-example.html
https://docs.aws.amazon.com/lambda/latest/dg/with-s3-example.html

Amazon Simple Storage Service Developer Guide
Invoke a Lambda Function

Example — Lambda IAM policy

The following is an example of an IAM policy that gives Amazon S3 batch operations permission to
invoke the Lambda function and read the input manifest.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "BatchOperationsLambdaPolicy",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:PutObject",
 "lambda:InvokeFunction"
],
 "Resource": "*"
 }
]
}

Example Request and Response

This section provides request and response examples for the Lambda function.

Example Request

The following is a JSON example of a request for the Lambda function.

{
 "invocationSchemaVersion": "1.0",
 "invocationId": "YXNkbGZqYWRmaiBhc2RmdW9hZHNmZGpmaGFzbGtkaGZza2RmaAo",
 "job": {
 "id": "f3cc4f60-61f6-4a2b-8a21-d07600c373ce"
 },
 "tasks": [
 {
 "taskId": "dGFza2lkZ29lc2hlcmUK",
 "s3Key": "customerImage1.jpg",
 "s3VersionId": "1",
 "s3BucketArn": "arn:aws:s3:us-east-1:0123456788:awsexamplebucket"
 }
]
}

Example Response

The following is a JSON example of a response for the Lambda function.

{
 "invocationSchemaVersion": "1.0",
 "treatMissingKeysAs" : "PermanentFailure",
 "invocationId" : "YXNkbGZqYWRmaiBhc2RmdW9hZHNmZGpmaGFzbGtkaGZza2RmaAo",
 "results": [
 {
 "taskId": "dGFza2lkZ29lc2hlcmUK",
 "resultCode": "Succeeded",
 "resultString": "[\"Mary Major", \"John Stiles\"]"
 }

API Version 2006-03-01
479

Amazon Simple Storage Service Developer Guide
Invoke a Lambda Function

]
}

Example Lambda Function for Amazon S3 Batch Operations

The following example Python Lambda function iterates through the manifest, copying and renaming
each object.

As the example shows, keys from Amazon S3 batch operations are URL encoded. To use Amazon S3 with
other AWS services, it's important that you URL decode the key that is passed from Amazon S3 batch
operations.

import boto3
import urllib
from botocore.exceptions import ClientError

def lambda_handler(event, context):
 # Instantiate boto client
 s3Client = boto3.client('s3')

 # Parse job parameters from Amazon S3 batch operations
 jobId = event['job']['id']
 invocationId = event['invocationId']
 invocationSchemaVersion = event['invocationSchemaVersion']

 # Prepare results
 results = []

 # Parse Amazon S3 Key, Key Version, and Bucket ARN
 taskId = event['tasks'][0]['taskId']
 s3Key = urllib.unquote(event['tasks'][0]['s3Key']).decode('utf8')
 s3VersionId = event['tasks'][0]['s3VersionId']
 s3BucketArn = event['tasks'][0]['s3BucketArn']
 s3Bucket = s3BucketArn.split(':::')[-1]

 # Construct CopySource with VersionId
 copySrc = {'Bucket': s3Bucket, 'Key': s3Key}
 if s3VersionId is not None:
 copySrc['VersionId'] = s3VersionId

 # Copy object to new bucket with new key name
 try:
 # Prepare result code and string
 resultCode = None
 resultString = None

 # Construct New Key
 newKey = rename_key(s3Key)
 newBucket = 'destination-bucket-name'

 # Copy Object to New Bucket
 response = s3Client.copy_object(
 CopySource = copySrc,
 Bucket = newBucket,
 Key = newKey
)

 # Mark as succeeded
 resultCode = 'Succeeded'
 resultString = str(response)
 except ClientError as e:
 # If request timed out, mark as a temp failure
 # and Amason S3 batch operations will make the task for retry. If
 # any other exceptions are received, mark as permanent failure.

API Version 2006-03-01
480

Amazon Simple Storage Service Developer Guide
Invoke a Lambda Function

 errorCode = e.response['Error']['Code']
 errorMessage = e.response['Error']['Message']
 if errorCode == 'RequestTimeout':
 resultCode = 'TemporaryFailure'
 resultString = 'Retry request to Amazon S3 due to timeout.'
 else:
 resultCode = 'PermanentFailure'
 resultString = '{}: {}'.format(errorCode, errorMessage)
 except Exception as e:
 # Catch all exceptions to permanently fail the task
 resultCode = 'PermanentFailure'
 resultString = 'Exception: {}'.format(e.message)
 finally:
 results.append({
 'taskId': taskId,
 'resultCode': resultCode,
 'resultString': resultString
 })

 return {
 'invocationSchemaVersion': invocationSchemaVersion,
 'treatMissingKeysAs': 'PermanentFailure',
 'invocationId': invocationId,
 'results': results
 }

def rename_key(s3Key):
 # Rename the key by adding additional suffix
 return s3Key + '_new_suffix'

Creating an Amazon S3 Batch Operations Job That Invokes a
Lambda Function
When creating an Amazon S3 batch operations job to invoke a Lambda function, you must provide the
following:

• The ARN of your Lambda function (which might include the function alias or a specific version number)

• An IAM role with permission to invoke the function

• The action parameter LambdaInvokeFunction

For more information about creating an Amazon S3 batch operations job, see Creating an Amazon S3
Batch Operations Job (p. 470) and Operations (p. 475).

The following example creates an Amazon S3 batch operations job that invokes a Lambda function using
the AWS CLI.

aws s3control create-job
 --account-id <AccountID>
 --operation '{"LambdaInvoke": { "FunctionArn":
 "arn:aws:lambda:Region:AccountID:function:LambdaFunctionName" } }'
 --manifest '{"Spec":{"Format":"S3BatchOperations_CSV_20180820","Fields":
["Bucket","Key"]},"Location":
{"ObjectArn":"arn:aws:s3:::ManifestLocation","ETag":"ManifestETag"}}'
 --report
 '{"Bucket":"arn:aws:s3:::awsexamplebucket","Format":"Report_CSV_20180820","Enabled":true,"Prefix":"ReportPrefix","ReportScope":"AllTasks"}'
 --priority 2
 --role-arn arn:aws:iam::AccountID:role/BatchOperationsRole
 --region Region
 --description “Lambda Function"

API Version 2006-03-01
481

Amazon Simple Storage Service Developer Guide
Invoke a Lambda Function

Providing Task-Level Information in Lambda Manifests
When you use AWS Lambda functions with Amazon S3 batch operations, you might want additional
data to accompany each task/key that is operated on. For example, you might want to have both a
source object key and new object key provided. Your Lambda function could then copy the source key
to a new S3 bucket under a new name. By default, Amazon S3 batch operations let you specify only the
destination bucket and a list of source keys in the input manifest to your job. The following describes
how you can include additional data in your manifest so that you can run more complex Lambda
functions.

To specify per-key parameters in your Amazon S3 batch operations manifest to use in your Lambda
function's code, use the following URL-encoded JSON format. The key field is passed to your Lambda
function as if it were an Amazon S3 object key. But it can be interpreted by the Lambda function to
contain other values or multiple keys, as shown following.

Note
The maximum number of characters for the key field in the manifest is 1,024.

Example — Manifest substituting the "Amazon S3 keys" with JSON strings

The URL-encoded version must be provided to Amazon S3 batch operations.

my-bucket,{"origKey": "object1key", "newKey": "newObject1Key"}
my-bucket,{"origKey": "object2key", "newKey": "newObject2Key"}
my-bucket,{"origKey": "object3key", "newKey": "newObject3Key"}

Example — Manifest URL-encoded

This URL-encoded version must be provided to Amazon S3 batch operations. The non-URL-encoded
version does not work.

my-bucket,%7B%22origKey%22%3A%20%22object1key%22%2C%20%22newKey%22%3A%20%22newObject1Key
%22%7D
my-bucket,%7B%22origKey%22%3A%20%22object2key%22%2C%20%22newKey%22%3A%20%22newObject2Key
%22%7D
my-bucket,%7B%22origKey%22%3A%20%22object3key%22%2C%20%22newKey%22%3A%20%22newObject3Key
%22%7D

Example — Lambda function with manifest format writing results to the job report

import json
from urllib.parse import unquote_plus

This example Lambda function shows how to parse JSON that is encoded into the Amazon S3
 batch
operations manifest containing lines like this:
#
bucket,encoded-json
bucket,encoded-json
bucket,encoded-json
#
For example, if we wanted to send the following JSON to this Lambda function:
#
bucket,{"origKey": "object1key", "newKey": "newObject1Key"}
bucket,{"origKey": "object2key", "newKey": "newObject2Key"}
bucket,{"origKey": "object3key", "newKey": "newObject3Key"}

API Version 2006-03-01
482

Amazon Simple Storage Service Developer Guide
Invoke a Lambda Function

#
We would simply URL-encode the JSON like this to create the real manifest to create a
 batch
operations job with:
#
my-bucket,%7B%22origKey%22%3A%20%22object1key%22%2C%20%22newKey%22%3A%20%22newObject1Key
%22%7D
my-bucket,%7B%22origKey%22%3A%20%22object2key%22%2C%20%22newKey%22%3A%20%22newObject2Key
%22%7D
my-bucket,%7B%22origKey%22%3A%20%22object3key%22%2C%20%22newKey%22%3A%20%22newObject3Key
%22%7D
#
def lambda_handler(event, context):
 # Parse job parameters from Amazon S3 batch operations
 jobId = event['job']['id']
 invocationId = event['invocationId']
 invocationSchemaVersion = event['invocationSchemaVersion']

 # Prepare results
 results = []

 # S3 batch operations currently only passes a single task at a time in the array of
 tasks.
 task = event['tasks'][0]

 # Extract the task values we might want to use
 taskId = task['taskId']
 s3Key = task['s3Key']
 s3VersionId = task['s3VersionId']
 s3BucketArn = task['s3BucketArn']
 s3BucketName = s3BucketArn.split(':::')[-1]

 try:
 # Assume it will succeed for now
 resultCode = 'Succeeded'
 resultString = ''

 # Decode the JSON string that was encoded into the S3 Key value and convert the
 # resulting string into a JSON structure.
 s3Key_decoded = unquote_plus(s3Key)
 keyJson = json.loads(s3Key_decoded)

 # Extract some values from the JSON that we might want to operate on. In this
 example
 # we won't do anything except return the concatenated string as a fake result.
 newKey = keyJson['newKey']
 origKey = keyJson['origKey']
 resultString = origKey + " --> " + newKey

 except Exception as e:
 # If we run into any exceptions, fail this task so batch operations does retry it
 and
 # return the exception string so we can see the failure message in the final report
 # created by batch operations.
 resultCode = 'PermanentFailure'
 resultString = 'Exception: {}'.format(e)
 finally:
 # Send back the results for this task.
 results.append({
 'taskId': taskId,
 'resultCode': resultCode,
 'resultString': resultString
 })

 return {
 'invocationSchemaVersion': invocationSchemaVersion,

API Version 2006-03-01
483

Amazon Simple Storage Service Developer Guide
Put Object ACL

 'treatMissingKeysAs': 'PermanentFailure',
 'invocationId': invocationId,
 'results': results
 }

Put Object ACL
The Put Object Acl operation replaces the Amazon S3 access control lists (ACLs) for each object that is
listed in the manifest. Using ACLs, you can define who can access an object and what actions they can
perform.

Amazon S3 batch operations support custom ACLs that you define and canned ACLs that Amazon S3
provides with a predefined set of access permissions.

If the objects in your manifest are in a versioned bucket, you can apply the ACLs to specific versions of
each object. You do this by specifying a version ID for each object in the manifest. If you don't include a
version ID for any object, then Amazon S3 batch operations applies the ACL to the latest version of the
object.

Note
If you want to limit public access to all objects in a bucket, you should use Amazon S3 block
public access instead of Amazon S3 batch operations. Block public access can limit public access
on a per-bucket or account-wide basis with a single, simple operation that takes effect quickly.
This make it a better choice when your goal is to control public access to all objects in a bucket
or account. Use Amazon S3 batch operations when you need to apply a customized ACL to each
object in the manifest. For more information about Amazon S3 block public access, see Using
Amazon S3 Block Public Access (p. 414).

Restrictions and Limitations
• The role that you specify to run the Put Object Acl job must have permissions to perform the

underlying Amazon S3 PUT Object acl operation. For more information about the permissions
required, see PUT Object acl in the Amazon Simple Storage Service API Reference.

• Amazon S3 batch operations use the Amazon S3 PUT Object acl operation to apply the specified ACL
to each object in the manifest. Therefore, all restrictions and limitations that apply to the underlying
PUT Object acl operation also apply to Amazon S3 batch operations Put Object Acl jobs. For more
information, see the Related Resources (p. 484) section of this page.

Related Resources
• Managing Access with ACLs (p. 403)
• GET Object ACL in the Amazon Simple Storage Service API Reference

Put Object Tagging
The Put Object Tagging operation replaces the Amazon S3 object tags of each object listed in the
manifest. An Amazon S3 object tag is a key-value pair of strings that you can use to store metadata
about an object.

To create a Put Object Tagging job, you provide a set of tags that you want to apply. Amazon S3 batch
operations apply the same set of tags to each object. The tag set that you provide replaces whatever tag
sets are already associated with the objects in the manifest. Amazon S3 batch operations do not support
adding tags to objects while leaving the existing tags in place.

API Version 2006-03-01
484

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETacl.html

Amazon Simple Storage Service Developer Guide
Managing Jobs

If the objects in your manifest are in a versioned bucket, you can apply the tag set to specific versions of
each object. You do this by specifying a version ID for each object in the manifest. If you don't include a
version ID for any object, then Amazon S3 batch operations will apply the tag set to the latest version of
each object.

Restrictions and Limitations
• The role that you specify to run the Put Object Tagging job must have permissions to perform the

underlying Amazon S3 PUT Object tagging operation. For more information about the permissions
required, see PUT Object tagging in the Amazon Simple Storage Service API Reference.

• Amazon S3 batch operations use the Amazon S3 PUT Object tagging operation to apply tags to each
object in the manifest. Therefore, all restrictions and limitations that apply to the underlying PUT
Object tagging operation also apply to Amazon S3 batch operations Put Object Tagging jobs. For more
information, see the Related Resources (p. 485) section of this page.

Related Resources
• Object Tagging (p. 110)
• GET Object tagging in the Amazon Simple Storage Service API Reference
• PUT Object tagging in the Amazon Simple Storage Service API Reference

Managing Batch Operations Jobs
Amazon S3 provides a robust set of tools to help you manage your batch operations jobs after you have
created them. This section describes the operations you can use to manage your jobs. You can perform
all of the operations listed in this section using the AWS Management Console, AWS CLI, AWS SDKs, or
REST APIs.

Topics
• Listing Jobs (p. 485)
• Viewing Job Details (p. 485)
• Assigning Job Priority (p. 486)
• Job Status (p. 486)
• Tracking Job Failure (p. 488)
• Notifications and Logging (p. 488)
• Completion Reports (p. 489)

Listing Jobs
You can retrieve a list of your batch operations jobs. The list includes jobs that haven't yet finished and
jobs that finished within the last 90 days. The job list includes information for each job, such as its ID,
description, priority, current status, and the number of tasks that have succeeded and failed. You can
filter your job list by status. When you retrieve a job list through the console, you can also search your
jobs by description or ID and filter them by AWS Region.

Viewing Job Details
If you want more information about a job than you can retrieve by listing jobs, you can view all of the
details for a single job. In addition to the information returned in a job list, a single job's details include
other items. This information includes the operation parameters, details about the manifest, information

API Version 2006-03-01
485

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTtagging.html

Amazon Simple Storage Service Developer Guide
Assigning Job Priority

about the completion report (if you configured one when you created the job), and the Amazon Resource
Name (ARN) of the user role that you assigned to run the job. By viewing an individual job's details, you
can access a job's entire configuration.

Assigning Job Priority
You can assign each job a numeric priority, which can be any positive integer. Amazon S3 batch
operations prioritize jobs according to the assigned priority. Jobs with a higher priority (or a higher
numeric value for the priority parameter) are evaluated first. Priority is determined in descending order.
For example, a job queue with a priority value of 10 is given scheduling preference over a job queue with
a priority value of 1.

You can change a job's priority while it is running. If you submit a new job with a higher priority while a
job is running, the lower-priority job can pause to allow the higher-priority job to run.

Note
Amazon S3 batch operations honor job priorities on a best-effort basis. Although jobs with
higher priorities generally take precedence over jobs with lower priorities, Amazon S3 does not
guarantee strict ordering of jobs.

Job Status
After you create a job, it progresses through a series of statuses. The following table describes the
statuses that jobs can have and the possible transitions between job statuses.

Status Description Transitions

New A job begins in the New state
when you create it.

A job automatically moves to
the Preparing state when
Amazon S3 begins processing
the manifest object.

Preparing Amazon S3 is processing the
manifest object and other job
parameters to set up and run the
job.

A job automatically moves to
the Ready state after Amazon
S3 finishes processing the
manifest and other parameters.
It is then ready to begin running
the specified operation on the
objects listed in the manifest.

If the job requires confirmation
before running, such as when
you create a job using the
Amazon S3 console, then the
job transitions from Preparing
to Suspended. It remains in
the Suspended state until you
confirm that you want to run it.

Suspended The job requires confirmation,
but you have not yet confirmed
that you want to run it. Only
jobs that you create using the
Amazon S3 console require
confirmation. A job that is
created using the console
enters the Suspended state

After you confirm that you want
to run the job, its status changes
to Ready.

API Version 2006-03-01
486

Amazon Simple Storage Service Developer Guide
Job Status

Status Description Transitions

immediately after Preparing.
After you confirm that you
want to run the job and the job
becomes Ready, it never returns
to the Suspended state.

Ready Amazon S3 is ready to begin
running the requested object
operations.

A job automatically moves to
Active when Amazon S3 begins
to run it. The amount of time
that a job remains in the Ready
state depends on whether
you have higher-priority jobs
running already and how long
those jobs take to complete.

Active Amazon S3 is executing the
requested operation on the
objects listed in the manifest.
While a job is Active, you
can monitor its progress using
the Amazon S3 console or
the DescribeJob operation
through the REST API, AWS CLI,
or AWS SDKs.

A job moves out of the Active
state when it is no longer
running operations on objects.
This can happen automatically,
such as when a job completes
successfully or fails. Or it can
occur as a result of user actions,
such as canceling a job. The
state that the job moves to
depends on the reason for the
transition.

Pausing The job is transitioning to
Paused from another state.

A job automatically moves to
Paused when the Pausing
stage is finished.

Paused A job can become Paused if you
submit another job with a higher
priority while the current job is
running.

A Paused job automatically
returns to Active after any
higher-priority jobs that are
blocking the job's' execution
complete, fail, or are suspended.

Complete The job has finished executing
the requested operation on all
objects in the manifest. The
operation might have succeeded
or failed for each object. If you
configured the job to generate
a completion report, the report
is available as soon as the job is
Complete.

Complete is a terminal state.
Once a job reaches Complete, it
does not transition to any other
state.

Cancelling The job is transitioning to the
Cancelled state.

A job automatically moves
to Cancelled when the
Cancelling stage is finished.

API Version 2006-03-01
487

Amazon Simple Storage Service Developer Guide
Tracking Job Failure

Status Description Transitions

Cancelled You requested that the job be
cancelled, and Amazon S3 batch
operations has successfully
cancelled the job. The job will
not submit any new requests to
Amazon S3.

Cancelled is a terminal state.
After a job reaches Cancelled,
it will not transition to any other
state.

Failing The job is transitioning to the
Failed state.

A job automatically moves to
Failed once the Failing stage
is finished.

Failed The job has failed and is
no longer running. For
more information about job
failures, see Tracking Job
Failure (p. 488).

Failed is a terminal state. After
a job reaches Failed, it will not
transition to any other state.

Tracking Job Failure
If a batch operations job encounters a problem that prevents it from running successfully, such as not
being able to read the specified manifest, the job fails. When a job fails, it generates one or more failure
codes or failure reasons. Amazon S3 batch operations store the failure codes and reasons with the job so
that you can view them by requesting the job's details. If you requested a completion report for the job,
the failure codes and reasons also appear there.

To prevent jobs from running a large number of unsuccessful operations, Amazon S3 imposes a task-
failure threshold on every batch operations job. When a job has executed at least 1,000 tasks, Amazon
S3 monitors the task failure rate. If, at any point, the failure rate (the number of tasks that have failed
as a proportion of the total number of tasks that have executed) exceeds 50 percent, then the job fails.
If your job fails because it exceeded the task-failure threshold, you can identify the cause of the failures.
For example, you might have accidentally included some objects in the manifest that don't exist in the
specified bucket. After fixing the errors, you can resubmit the job.

Note
Amazon S3 batch operations operate asynchronously and the tasks don't necessarily execute
in the order that the objects are listed in the manifest. Therefore, you can't use the manifest
ordering to determine which objects' tasks succeeded and which ones failed. Instead, you can
examine the job's completion report (if you requested one) or view your AWS CloudTrail event
logs to help determine the source of the failures.

Notifications and Logging
In addition to requesting completion reports, you can also capture, review, and audit batch operations
activity using Amazon S3 events. As a job progresses, it emits events that you can capture using AWS
CloudTrail, Amazon Simple Notification Service (Amazon SNS), and Amazon Simple Queue Service
(Amazon SQS). Because batch operations use existing Amazon S3 APIs to perform tasks, those tasks
also emit the same events that they would if you called them directly. Thus, you can track and record
the progress of your job and all of its tasks using the same notification, logging, and auditing tools and
processes that you already use with Amazon S3. For more information about Amazon S3 events, see
Configuring Amazon S3 Event Notifications (p. 530).

API Version 2006-03-01
488

Amazon Simple Storage Service Developer Guide
Completion Reports

Completion Reports
When you create a job, you can request a completion report. Then as long as Amazon S3 batch
operations successfully invoke at least one task, Amazon S3 generates a completion report after it
finishes running tasks, fails, or is canceled. You can configure the completion report to include all tasks or
only failed tasks.

The completion report includes the job configuration and status and information for each task, including
the object key and version, status, error codes, and descriptions of any errors. If you don't configure
a completion report, you can still monitor and audit your job and its tasks using CloudTrail, Amazon
CloudWatch, Amazon SNS, and Amazon SQS. However, completion reports provide an easy way to view
the results of your tasks in a consolidated format with no additional setup required. For an example of a
completion report, see Amazon S3 Batch Operations Completion Report Examples (p. 489).

Amazon S3 Batch Operations Examples
Topics

• Amazon S3 Batch Operations Completion Report Examples (p. 489)
• Cross-Account Copy Examples for Amazon S3 Batch Operations (p. 491)
• AWS CLI Examples for Amazon S3 Batch Operations (p. 495)
• Java Examples for Amazon S3 Batch Operations (p. 498)

Amazon S3 Batch Operations Completion Report
Examples
When you create an Amazon S3 batch operations job, you can request a completion report for all tasks
or just for failed tasks. As long as at least one task has been invoked successfully, Amazon S3 Batch
Operations generates a report for jobs that have completed, failed, or have been cancelled.

The completion report contains additional information for each task, including the object key name and
version, status, error codes, and descriptions of any errors. The description of errors for each failed task
can be used to diagnose issues during job creation such as permissions.

Example Top-Level Manifest Result File

The top-level manifest.json file contains the locations of each succeeded report and (if the job had
any failures) the location of failed reports, as shown in the following example.

{
 "Format": "Report_CSV_20180820",
 "ReportCreationDate": "2019-04-05T17:48:39.725Z",
 "Results": [
 {
 "TaskExecutionStatus": "succeeded",
 "Bucket": "my-job-reports",
 "MD5Checksum": "83b1c4cbe93fc893f54053697e10fd6e",
 "Key": "job-f8fb9d89-a3aa-461d-bddc-ea6a1b131955/
results/6217b0fab0de85c408b4be96aeaca9b195a7daa5.csv"
 },
 {
 "TaskExecutionStatus": "failed",
 "Bucket": "my-job-reports",
 "MD5Checksum": "22ee037f3515975f7719699e5c416eaa",

API Version 2006-03-01
489

Amazon Simple Storage Service Developer Guide
Completion Report Examples

 "Key": "job-f8fb9d89-a3aa-461d-bddc-ea6a1b131955/results/
b2ddad417e94331e9f37b44f1faf8c7ed5873f2e.csv"
 }
],
 "ReportSchema": "Bucket, Key, VersionId, TaskStatus, ErrorCode, HTTPStatusCode,
 ResultMessage"
}

Example Failed Tasks Reports

Failed tasks reports contain the Bucket, Key, VersionId, TaskStatus, ErrorCode,
HTTPStatusCode, and ResultMessage for all failed tasks.

The following example report shows a case in which the AWS Lambda function timed out, causing
failures to exceed the failure threshold. It was then marked as a PermanentFailure.

awsexamplebucket,image_14975,,failed,200,PermanentFailure,"Lambda returned function error:
 {""errorMessage"":""2019-04-05T17:35:21.155Z 2845ca0d-38d9-4c4b-abcf-379dc749c452 Task
 timed out after 3.00 seconds""}"
awsexamplebucket,image_15897,,failed,200,PermanentFailure,"Lambda returned function error:
 {""errorMessage"":""2019-04-05T17:35:29.610Z 2d0a330b-de9b-425f-b511-29232fde5fe4 Task
 timed out after 3.00 seconds""}"
awsexamplebucket,image_14819,,failed,200,PermanentFailure,"Lambda returned function error:
 {""errorMessage"":""2019-04-05T17:35:22.362Z fcf5efde-74d4-4e6d-b37a-c7f18827f551 Task
 timed out after 3.00 seconds""}"
awsexamplebucket,image_15930,,failed,200,PermanentFailure,"Lambda returned function error:
 {""errorMessage"":""2019-04-05T17:35:29.809Z 3dd5b57c-4a4a-48aa-8a35-cbf027b7957e Task
 timed out after 3.00 seconds""}"
awsexamplebucket,image_17644,,failed,200,PermanentFailure,"Lambda returned function error:
 {""errorMessage"":""2019-04-05T17:35:46.025Z 10a764e4-2b26-4d8c-9056-1e1072b4723f Task
 timed out after 3.00 seconds""}"
awsexamplebucket,image_17398,,failed,200,PermanentFailure,"Lambda returned function error:
 {""errorMessage"":""2019-04-05T17:35:44.661Z 1e306352-4c54-4eba-aee8-4d02f8c0235c Task
 timed out after 3.00 seconds""}"

Example Succeeded Tasks Report

Succeeded tasks reports contain the Bucket, Key, VersionId, TaskStatus, ErrorCode,
HTTPStatusCode, and ResultMessage for the completed tasks.

In the following example, the Lambda function successfully copied the Amazon S3 object to another
bucket. The returned Amazon S3 response is passed back to Amazon S3 batch operations and is then
written into the final completion report.

awsexamplebucket,image_17775,,succeeded,200,,"{u'CopySourceVersionId':
 'xVR78haVKlRnurYofbTfYr3ufYbktF8h', u'CopyObjectResult': {u'LastModified':
 datetime.datetime(2019, 4, 5, 17, 35, 39, tzinfo=tzlocal()), u'ETag':
 '""fe66f4390c50f29798f040d7aae72784""'}, 'ResponseMetadata': {'HTTPStatusCode':
 200, 'RetryAttempts': 0, 'HostId': 'nXNaClIMxEJzWNmeMNQV2KpjbaCJLn0OGoXWZpuVOFS/
iQYWxb3QtTvzX9SVfx2lA3oTKLwImKw=', 'RequestId': '3ED5852152014362', 'HTTPHeaders':
 {'content-length': '234', 'x-amz-id-2': 'nXNaClIMxEJzWNmeMNQV2KpjbaCJLn0OGoXWZpuVOFS/
iQYWxb3QtTvzX9SVfx2lA3oTKLwImKw=', 'x-amz-copy-source-version-id':
 'xVR78haVKlRnurYofbTfYr3ufYbktF8h', 'server': 'AmazonS3', 'x-amz-request-id':
 '3ED5852152014362', 'date': 'Fri, 05 Apr 2019 17:35:39 GMT', 'content-type': 'application/
xml'}}}"
awsexamplebucket,image_17763,,succeeded,200,,"{u'CopySourceVersionId':
 '6HjOUSim4Wj6BTcbxToXW44pSZ.40pwq', u'CopyObjectResult': {u'LastModified':
 datetime.datetime(2019, 4, 5, 17, 35, 39, tzinfo=tzlocal()),
 u'ETag': '""fe66f4390c50f29798f040d7aae72784""'}, 'ResponseMetadata':
 {'HTTPStatusCode': 200, 'RetryAttempts': 0, 'HostId': 'GiCZNYr8LHd/
Thyk6beTRP96IGZk2sYxujLe13TuuLpq6U2RD3we0YoluuIdm1PRvkMwnEW1aFc=', 'RequestId':
 '1BC9F5B1B95D7000', 'HTTPHeaders': {'content-length': '234', 'x-amz-id-2': 'GiCZNYr8LHd/

API Version 2006-03-01
490

Amazon Simple Storage Service Developer Guide
Cross Account Copy

Thyk6beTRP96IGZk2sYxujLe13TuuLpq6U2RD3we0YoluuIdm1PRvkMwnEW1aFc=', 'x-amz-copy-source-
version-id': '6HjOUSim4Wj6BTcbxToXW44pSZ.40pwq', 'server': 'AmazonS3', 'x-amz-request-id':
 '1BC9F5B1B95D7000', 'date': 'Fri, 05 Apr 2019 17:35:39 GMT', 'content-type': 'application/
xml'}}}"
awsexamplebucket,image_17860,,succeeded,200,,"{u'CopySourceVersionId':
 'm.MDD0g_QsUnYZ8TBzVFrp.TmjN8PJyX', u'CopyObjectResult': {u'LastModified':
 datetime.datetime(2019, 4, 5, 17, 35, 40, tzinfo=tzlocal()), u'ETag':
 '""fe66f4390c50f29798f040d7aae72784""'}, 'ResponseMetadata': {'HTTPStatusCode':
 200, 'RetryAttempts': 0, 'HostId': 'F9ooZOgpE5g9sNgBZxjdiPHqB4+0DNWgj3qbsir
+sKai4fv7rQEcF2fBN1VeeFc2WH45a9ygb2g=', 'RequestId': '8D9CA56A56813DF3', 'HTTPHeaders':
 {'content-length': '234', 'x-amz-id-2': 'F9ooZOgpE5g9sNgBZxjdiPHqB4+0DNWgj3qbsir
+sKai4fv7rQEcF2fBN1VeeFc2WH45a9ygb2g=', 'x-amz-copy-source-version-id':
 'm.MDD0g_QsUnYZ8TBzVFrp.TmjN8PJyX', 'server': 'AmazonS3', 'x-amz-request-id':
 '8D9CA56A56813DF3', 'date': 'Fri, 05 Apr 2019 17:35:40 GMT', 'content-type': 'application/
xml'}}}"

Cross-Account Copy Examples for Amazon S3 Batch
Operations
You can use Amazon S3 batch operations to create a PUT copy job to copy objects to a different AWS
account (the destination account). When doing this, you can use Amazon S3 inventory to deliver the
inventory report to the destination account for use during job creation or you can use a comma-
separated values (CSV) manifest in the source or destination account. The following sections explain how
to store and use a manifest that is in a different AWS account.

Topics

• Using an Inventory Report Delivered to the Destination AWS Account (p. 491)

• Using a CSV Manifest Stored in the Source AWS Account (p. 493)

Using an Inventory Report Delivered to the Destination AWS
Account
The Amazon S3 inventory generates inventories of the objects in a bucket. The resulting list is published
to an output file. The bucket that is inventoried is called the source bucket, and the bucket where the
inventory report file is stored is called the destination bucket. The Amazon S3 inventory report can
be configured to deliver the inventory report to another AWS account. This allows Amazon S3 batch
operations to read the inventory report when the job is created in the destination AWS account. For more
information about Amazon S3 inventory source and destination buckets, see How Do I Set Up Amazon S3
Inventory? (p. 423).

The easiest way to set up an inventory is by using the AWS Management Console, but you can also use
the REST API, AWS CLI, or AWS SDKs.

In the following console procedure, you set up permissions for an Amazon S3 batch operations job to
copy objects from a source account to a destination account, with the inventory report stored in the
destination AWS account.

To set up Amazon S3 inventory for source and destination buckets that are owned by
different AWS accounts

1. Choose a destination bucket to store the inventory report in.

Decide on a destination manifest bucket for storing the inventory report. In this procedure, the
destination account is the account that owns both the destination manifest bucket and the bucket
that the objects are copied to.

API Version 2006-03-01
491

Amazon Simple Storage Service Developer Guide
Cross Account Copy

2. Configure an inventory to list the objects in a source bucket and publish the list to the destination
manifest bucket.

Configure an inventory list for a source bucket. When you do this, you specify the destination bucket
where you want the list to be stored. The inventory report for the source bucket is published to the
destination bucket. In this procedure, the source account is the account that owns the source bucket.

For information about how to use the console to configure an inventory, see How Do I Configure
Amazon S3 Inventory? in the Amazon Simple Storage Service Console User Guide.

Choose CSV for the output format.

When you enter information for the destination bucket, choose Buckets in another account. Then
enter the name of the destination manifest bucket. Optionally, you can enter the account ID of the
destination account.

After the inventory configuration is saved, the console displays a message similar to the following:

Amazon S3 could not create a bucket policy on the destination bucket. Ask the destination bucket
owner to add the following bucket policy to allow Amazon S3 to place data in that bucket.

The console then displays a bucket policy that you can use for the destination bucket.
3. Copy the destination bucket policy that appears on the console.
4. In the destination account, add the copied bucket policy to the destination manifest bucket where

the inventory report is stored.
5. Create a role in the destination account that is based on the Amazon S3 batch operations trust

policy. For more information about the trust policy, see Trust Policy (p. 472). For more information
about creating a role, see Creating a Role to Delegate Permissions to an AWS Service in the IAM
User Guide.

Enter a name for the role (the example role uses the name
BatchOperationsDestinationRoleCOPY). Choose the S3 service, and then choose the S3
bucket Batch Operations use case, which applies the trust policy to the role.

Then choose Create policy to attach the following policy to the role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowBatchOperationsDestinationObjectCOPY",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:PutObjectVersionAcl",
 "s3:PutObjectAcl",
 "s3:PutObjectVersionTagging",
 "s3:PutObjectTagging",
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:GetObjectAcl",
 "s3:GetObjectTagging",
 "s3:GetObjectVersionAcl",
 "s3:GetObjectVersionTagging"
],
 "Resource": [
 "arn:aws:s3:::ObjectDestinationBucket/*",
 "arn:aws:s3:::ObjectSourceBucket/*",
 "arn:aws:s3:::ObjectDestinationManifestBucket/*"
]
 }

API Version 2006-03-01
492

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/configure-inventory.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/configure-inventory.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Simple Storage Service Developer Guide
Cross Account Copy

]
}

The role uses the policy to grant batchoperations.s3.amazonaws.com permission to read the
manifest in the destination bucket. It also grants permissions to GET objects, access control lists
(ACLs), tags, and versions in the source object bucket. And it grants permissions to PUT objects,
ACLs, tags, and versions into the destination object bucket.

6. In the source account, create a bucket policy for the source bucket that grants the role that you
created in the previous step to GET objects, ACLs, tags, and versions in the source bucket. This step
allows Amazon S3 batch operations to get objects from the source bucket through the trusted role.

The following is an example of the bucket policy for the source account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowBatchOperationsSourceObjectCOPY",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::DestinationAccountNumber:role/
BatchOperationsDestinationRoleCOPY"
 },
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:GetObjectAcl",
 "s3:GetObjectTagging",
 "s3:GetObjectVersionAcl",
 "s3:GetObjectVersionTagging"
],
 "Resource": "arn:aws:s3:::ObjectSourceBucket/*"
 }
]
}

7. After the inventory report is available, create an Amazon S3 batch operations PUT object copy job
in the destination account, choosing the inventory report from the destination manifest bucket. You
need the ARN for the role that you created in the destination account.

For general information about creating a job, see Creating an Amazon S3 Batch Operations
Job (p. 470). For information about creating a job using the console, see Creating an Amazon S3
Batch Operations Job in the Amazon Simple Storage Service Console User Guide.

Using a CSV Manifest Stored in the Source AWS Account

You can use a CSV file that is stored in a different AWS account as a manifest for an Amazon S3 batch
operations job.

The following procedure shows how to set up permissions when using an Amazon S3 batch operations
job to copy objects from a source account to a destination account with the CSV manifest file stored in
the source account.

To set up a CSV manifest stored in a different AWS account

1. Create a role in the destination account that is based on the Amazon S3 batch operations trust
policy. In this procedure, the destination account is the account that the objects are being copied to.

API Version 2006-03-01
493

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/batch-ops-create-job.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/batch-ops-create-job.html

Amazon Simple Storage Service Developer Guide
Cross Account Copy

For more information about the trust policy, see Trust Policy (p. 472). For more information about
creating a role, see Creating a Role to Delegate Permissions to an AWS Service in the IAM User
Guide.

If you create the role using the console, enter a name for the role (the example role uses the name
BatchOperationsDestinationRoleCOPY). Choose the S3 service, and then choose the S3
bucket Batch Operations use case, which applies the trust policy to the role. Then choose Create
policy to attach the following policy to the role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowBatchOperationsDestinationObjectCOPY",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:PutObjectVersionAcl",
 "s3:PutObjectAcl",
 "s3:PutObjectVersionTagging",
 "s3:PutObjectTagging",
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:GetObjectAcl",
 "s3:GetObjectTagging",
 "s3:GetObjectVersionAcl",
 "s3:GetObjectVersionTagging"
],
 "Resource": [
 "arn:aws:s3:::ObjectDestinationBucket/*",
 "arn:aws:s3:::ObjectSourceBucket/*",
 "arn:aws:s3:::ObjectSourceManifestBucket/*"
]
 }
]
}

Using the policy, the role grants batchoperations.s3.amazonaws.com permission to read
the manifest in the source manifest bucket. It grants permissions to GET objects, ACLs, tags, and
versions in the source object bucket. It also grants permissions to PUT objects, ACLs, tags, and
versions into the destination object bucket.

2. In the source account, create a bucket policy for the bucket that contains the manifest to grant the
role that you created in the previous step to GET objects and versions in the source manifest bucket.
This step allows Amazon S3 batch operations to read the manifest using the trusted role. Apply the
bucket policy to the bucket that contains the manifest.

The following is an example of the bucket policy to apply to the source manifest bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowBatchOperationsSourceManfiestRead",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::DestinationAccountNumber:user/
ConsoleUserCreatingJob",
 "arn:aws:iam::DestinationAccountNumber:role/
BatchOperationsDestinationRoleCOPY"

API Version 2006-03-01
494

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Simple Storage Service Developer Guide
AWS CLI Examples

]
 },
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": "arn:aws:s3:::ObjectSourceManifestBucket/*"
 }
]
}

This policy also grants permissions to allow a console user who is creating a job in the destination
account the same permissions in the source manifest bucket through the same bucket policy.

3. In the source account, create a bucket policy for the source bucket that grants the role you created
to GET objects, ACLs, tags, and versions in the source object bucket. Amazon S3 batch operations
can then get objects from the source bucket through the trusted role.

The following is an example of the bucket policy for the bucket that contains the source objects.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowBatchOperationsSourceObjectCOPY",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::DestinationAccountNumber:role/
BatchOperationsDestinationRoleCOPY"
 },
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:GetObjectAcl",
 "s3:GetObjectTagging",
 "s3:GetObjectVersionAcl",
 "s3:GetObjectVersionTagging"
],
 "Resource": "arn:aws:s3:::ObjectSourceBucket/*"
 }
]
}

4. Create an Amazon S3 batch operations job in the destination account. You need the ARN for the role
that you created in the destination account.

For general information about creating a job, see Creating an Amazon S3 Batch Operations
Job (p. 470). For information about creating a job using the console, see Creating an Amazon S3
Batch Operations Job in the Amazon Simple Storage Service Console User Guide.

AWS CLI Examples for Amazon S3 Batch Operations
The following example creates an Amazon S3 batch operations S3PutObjectTagging job using the
AWS Command Line Interface (AWS CLI).

1. Create an IAM role and assign permissions. This role grants Amazon S3 permission to add object
tags, for which you create a job in the next step.

a. Create an IAM role as follows:

API Version 2006-03-01
495

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/batch-ops-create-job.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/batch-ops-create-job.html

Amazon Simple Storage Service Developer Guide
AWS CLI Examples

aws iam create-role \
 --role-name S3BatchJobRole \
 --assume-role-policy-document '{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":"batchoperations.s3.amazonaws.com"
 },
 "Action":"sts:AssumeRole"
 }
]
}'

Record the role's Amazon Resource Name (ARN). You need the ARN when you create a job.

b. Create an IAM policy with permissions and attach it to the IAM role that you created in the
previous step. For more information about permissions, see Granting Permissions for Amazon
S3 Batch Operations (p. 471).

aws iam put-role-policy \
 --role-name S3BatchJobRole \
 --policy-name PutObjectTaggingBatchJobPolicy \
 --policy-document '{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:PutObjectTagging",
 "s3:PutObjectVersionTagging"
],
 "Resource": "arn:aws:s3:::{{TargetResource}}/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectVersion",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::{{ManifestBucket}}/*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:PutObject",
 "s3:GetBucketLocation"
],
 "Resource":[
 "arn:aws:s3:::{{ReportBucket}}/*"
]
 }
]
}'

2. Create an S3PutObjectTagging job. The manifest.csv file provides a list of bucket and object
key values. The job applies the specified tags to objects identified in the manifest. The ETag is the
ETag of the manifest.csv object, which you can get from the Amazon S3 console. The request

API Version 2006-03-01
496

Amazon Simple Storage Service Developer Guide
AWS CLI Examples

specifies the no-confirmation-required parameter. Therefore, Amazon S3 makes the job
eligible for execution without you having to confirm it using the udpate-job-status command.

aws s3control create-job \
 --region us-west-2 \
 --account-id acct-id \
 --operation '{"S3PutObjectTagging": { "TagSet": [{"Key":"keyOne",
 "Value":"ValueOne"}] }}' \
 --manifest '{"Spec":{"Format":"S3BatchOperations_CSV_20180820","Fields":
["Bucket","Key"]},"Location":{"ObjectArn":"arn:aws:s3:::my_manifests/
manifest.csv","ETag":"60e460c9d1046e73f7dde5043ac3ae85"}}' \
 --report '{"Bucket":"arn:aws:s3:::bucket-where-
completion-report-goes","Prefix":"final-reports",
 "Format":"Report_CSV_20180820","Enabled":true,"ReportScope":"AllTasks"}' \
 --priority 42 \
 --role-arn IAM-role \
 --client-request-token $(uuidgen) \
 --description "job Description" \
 --no-confirmation-required

In response, Amazon S3 returns a job ID (for example, 00e123a4-c0d8-41f4-a0eb-
b46f9ba5b07c). You need the ID in the next commands.

3. Get the job description.

aws s3control describe-job \
 --region us-west-2 \
 --account-id acct-id \
 --job-id 00e123a4-c0d8-41f4-a0eb-b46f9ba5b07c

4. Get a list of Active and Complete jobs.

aws s3control list-jobs \
 --region us-west-2 \
 --account-id acct-id \
 --job-statuses '["Active","Complete"]' \
 --max-results 20

5. Update the job priority (a higher number indicates a higher execution priority).

aws s3control update-job-priority \
 --region us-west-2 \
 --account-id acct-id \
 --priority 98 \
 --job-id 00e123a4-c0d8-41f4-a0eb-b46f9ba5b07c

6. If you didn't specify the --no-confirmation-required parameter in the create-job, the job
remains in a suspended state until you confirm the job by setting its status to Ready. Amazon S3
then makes the job eligible for execution.

aws s3control update-job-status \
 --region us-west-2 \
 --account-id 181572960644 \
 --job-id 00e123a4-c0d8-41f4-a0eb-b46f9ba5b07c \
 --requested-job-status 'Ready'

7. Cancel the job by setting the job status to Cancelled.

aws s3control update-job-status \
 --region us-west-2 \
 --account-id 181572960644 \

API Version 2006-03-01
497

Amazon Simple Storage Service Developer Guide
Java Examples

 --job-id 00e123a4-c0d8-41f4-a0eb-b46f9ba5b07c \
 --status-update-reason "No longer needed" \
 --requested-job-status Cancelled

Java Examples for Amazon S3 Batch Operations
This section provides examples of how to create and manage Amazon S3 batch operations jobs using the
AWS SDK for Java. For instructions on creating and testing a working sample, see Testing the Amazon S3
Java Code Examples (p. 677).

Topics
• Creating an Amazon S3 batch operations Job Using the AWS SDK for Java (p. 498)
• Canceling an Amazon S3 batch operations Job Using the AWS SDK for Java (p. 499)
• Updating the Status of a Amazon S3 batch operations Job Using the AWS SDK for Java (p. 500)
• Updating the Priority of a Amazon S3 batch operations Job Using the AWS SDK for Java (p. 501)

Creating an Amazon S3 batch operations Job Using the AWS
SDK for Java
The following example shows how to create an Amazon S3 batch operations job. For information about
creating a job, see Creating an Amazon S3 Batch Operations Job (p. 470).

For information about setting up the permissions you need to create a job, see Granting Permissions for
Amazon S3 Batch Operations (p. 471).

Example

package aws.example.s3control;

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3control.AWSS3Control;
import com.amazonaws.services.s3control.AWSS3ControlClient;
import com.amazonaws.services.s3control.model.*;

import java.util.UUID;
import java.util.ArrayList;

import static com.amazonaws.regions.Regions.US_WEST_2;

public class CreateJob {
 public static void main(String[] args) {
 String accountId = "Account ID";
 String iamRoleArn = "IAM Role ARN";
 String reportBucketName = "arn:aws:s3:::bucket-where-completion-report-goes";
 String uuid = UUID.randomUUID().toString();

 ArrayList tagSet = new ArrayList<S3Tag>();
 tagSet.add(new S3Tag().withKey("keyOne").withValue("ValueOne"));

 try {
 JobOperation jobOperation = new JobOperation()

API Version 2006-03-01
498

Amazon Simple Storage Service Developer Guide
Java Examples

 .withS3PutObjectTagging(new S3SetObjectTaggingOperation()
 .withTagSet(tagSet)
);

 JobManifest manifest = new JobManifest()
 .withSpec(new JobManifestSpec()
 .withFormat("S3BatchOperations_CSV_20180820")
 .withFields(new String[]{
 "Bucket", "Key"
 }))
 .withLocation(new JobManifestLocation()
 .withObjectArn("arn:aws:s3:::my_manifests/manifest.csv")
 .withETag("60e460c9d1046e73f7dde5043ac3ae85"));
 JobReport jobReport = new JobReport()
 .withBucket(reportBucketName)
 .withPrefix("reports")
 .withFormat("Report_CSV_20180820")
 .withEnabled(true)
 .withReportScope("AllTasks");

 AWSS3Control s3ControlClient = AWSS3ControlClient.builder()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(US_WEST_2)
 .build();

 s3ControlClient.createJob(new CreateJobRequest()
 .withAccountId(accountId)
 .withOperation(jobOperation)
 .withManifest(manifest)
 .withReport(jobReport)
 .withPriority(42)
 .withRoleArn(iamRoleArn)
 .withClientRequestToken(uuid)
 .withDescription("job description")
 .withConfirmationRequired(false)
);

 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it and returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Canceling an Amazon S3 batch operations Job Using the AWS
SDK for Java
The following example shows how to cancel an Amazon S3 batch operations job.

Example

package aws.example.s3control;

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;

API Version 2006-03-01
499

Amazon Simple Storage Service Developer Guide
Java Examples

import com.amazonaws.services.s3control.AWSS3Control;
import com.amazonaws.services.s3control.AWSS3ControlClient;
import com.amazonaws.services.s3control.model.UpdateJobStatusRequest;

import static com.amazonaws.regions.Regions.US_WEST_2;

public class CancelJob {
 public static void main(String[] args) {
 String accountId = "Account ID";
 String jobId = "00e123a4-c0d8-41f4-a0eb-b46f9ba5b07c";

 try {
 AWSS3Control s3ControlClient = AWSS3ControlClient.builder()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(US_WEST_2)
 .build();

 s3ControlClient.updateJobStatus(new UpdateJobStatusRequest()
 .withAccountId(accountId)
 .withJobId(jobId)
 .withStatusUpdateReason("No longer needed")
 .withRequestedJobStatus("Cancelled"));

 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it and returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Updating the Status of a Amazon S3 batch operations Job Using
the AWS SDK for Java
The following example shows how to update the status of an Amazon S3 batch operations job. For more
information about job status. see Job Status (p. 486).

Example

package aws.example.s3control;

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3control.AWSS3Control;
import com.amazonaws.services.s3control.AWSS3ControlClient;
import com.amazonaws.services.s3control.model.UpdateJobStatusRequest;

import static com.amazonaws.regions.Regions.US_WEST_2;

public class UpdateJobStatus {
 public static void main(String[] args) {
 String accountId = "Account ID";
 String jobId = "00e123a4-c0d8-41f4-a0eb-b46f9ba5b07c";

 try {
 AWSS3Control s3ControlClient = AWSS3ControlClient.builder()

API Version 2006-03-01
500

Amazon Simple Storage Service Developer Guide
Java Examples

 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(US_WEST_2)
 .build();

 s3ControlClient.updateJobStatus(new UpdateJobStatusRequest()
 .withAccountId(accountId)
 .withJobId(jobId)
 .withRequestedJobStatus("Ready"));

 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it and returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Updating the Priority of a Amazon S3 batch operations Job
Using the AWS SDK for Java
The following example shows how to update the priority of an Amazon S3 batch operations job. For
more information about job priority, see Assigning Job Priority (p. 486).

Example

package aws.example.s3control;

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.s3control.AWSS3Control;
import com.amazonaws.services.s3control.AWSS3ControlClient;
import com.amazonaws.services.s3control.model.UpdateJobPriorityRequest;

import static com.amazonaws.regions.Regions.US_WEST_2;

public class UpdateJobPriority {
 public static void main(String[] args) {
 String accountId = "Account ID";
 String jobId = "00e123a4-c0d8-41f4-a0eb-b46f9ba5b07c";

 try {
 AWSS3Control s3ControlClient = AWSS3ControlClient.builder()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(US_WEST_2)
 .build();

 s3ControlClient.updateJobPriority(new UpdateJobPriorityRequest()
 .withAccountId(accountId)
 .withJobId(jobId)
 .withPriority(98));

 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it and returned an error response.
 e.printStackTrace();

API Version 2006-03-01
501

Amazon Simple Storage Service Developer Guide
Java Examples

 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

API Version 2006-03-01
502

Amazon Simple Storage Service Developer Guide

Hosting a Static Website on Amazon
S3

You can host a static website on Amazon Simple Storage Service (Amazon S3). On a static website,
individual webpages include static content. They might also contain client-side scripts. By contrast,
a dynamic website relies on server-side processing, including server-side scripts such as PHP, JSP, or
ASP.NET. Amazon S3 does not support server-side scripting. Amazon Web Services (AWS) also has
resources for hosting dynamic websites. To learn more about website hosting on AWS, go to Websites
and Website Hosting.

Topics

• Website Endpoints (p. 504)

• Configuring a Bucket for Website Hosting (p. 505)

• Example Walkthroughs - Hosting Websites on Amazon S3 (p. 517)

To host a static website, you configure an Amazon S3 bucket for website hosting, and then upload your
website content to the bucket. This bucket must have public read access. It is intentional that everyone
in the world will have read access to this bucket. The website is then available at the AWS Region-specific
website endpoint of the bucket, which is in one of the following formats:

<bucket-name>.s3-website-<AWS-region>.amazonaws.com

<bucket-name>.s3-website.<AWS-region>.amazonaws.com

For a list of AWS Region-specific website endpoints for Amazon S3, see Website Endpoints (p. 504).
For example, suppose you create a bucket called examplebucket in the US West (Oregon) Region, and
configure it as a website. The following example URLs provide access to your website content:

• This URL returns a default index document that you configured for the website.

http://examplebucket.s3-website-us-west-2.amazonaws.com/

• This URL requests the photo.jpg object, which is stored at the root level in the bucket.

http://examplebucket.s3-website-us-west-2.amazonaws.com/photo.jpg

• This URL requests the docs/doc1.html object in your bucket.

http://examplebucket.s3-website-us-west-2.amazonaws.com/docs/doc1.html

Using Your Own Domain

Instead of accessing the website by using an Amazon S3 website endpoint, you can use your own
domain, such as example.com to serve your content. Amazon S3, along with Amazon Route 53,
supports hosting a website at the root domain. For example, if you have the root domain example.com

API Version 2006-03-01
503

https://aws.amazon.com/websites/
https://aws.amazon.com/websites/

Amazon Simple Storage Service Developer Guide
Website Endpoints

and you host your website on Amazon S3, your website visitors can access the site from their browser by
typing either http://www.example.com or http://example.com. For an example walkthrough, see
Example: Setting up a Static Website Using a Custom Domain (p. 519).

To configure a bucket for website hosting, you add website configuration to the bucket. For more
information, see Configuring a Bucket for Website Hosting (p. 505).

Note
The Amazon S3 website endpoints do not support HTTPS. For information about using HTTPS
with an Amazon S3 bucket, see How do I use CloudFront to serve HTTPS requests for my
Amazon S3 bucket? and Requiring HTTPS for Communication Between CloudFront and Your
Amazon S3 Origin.

Website Endpoints
When you configure a bucket for website hosting, the website is available via the region-specific website
endpoint. Website endpoints are different from the endpoints where you send REST API requests.
For more information about the differences between the endpoints, see Key Differences Between the
Amazon Website and the REST API Endpoint (p. 505).

Note
The Amazon S3 website endpoints do not support HTTPS. For information about using HTTPS
with an Amazon S3 bucket, see How do I use CloudFront to serve HTTPS requests for my
Amazon S3 bucket? and Requiring HTTPS for Communication Between CloudFront and Your
Amazon S3 Origin.

The two general forms of an Amazon S3 website endpoint are as follows:

bucket-name.s3-website-region.amazonaws.com

bucket-name.s3-website.region.amazonaws.com

Which form is used for the endpoint depends on what Region the bucket is in. For example, if your
bucket is named example-bucket and it resides in the US West (Oregon) region, the website is
available at the following Amazon S3 website endpoint:

http://example-bucket.s3-website-us-west-2.amazonaws.com/

Or, if your bucket is named example-bucket and it resides in the EU (Frankfurt) region, the website is
available at the following Amazon S3 website endpoint:

http://example-bucket.s3-website.eu-central-1.amazonaws.com/

For a list of the Amazon S3 website endpoints by Region, see Amazon Simple Storage Service Website
Endpoints in the AWS General Reference.

In order for your customers to access content at the website endpoint, you must make all your content
publicly readable. To do so, you can use a bucket policy or an ACL on an object to grant the necessary
permissions.

Note
Requester Pays buckets do not allow access through the website endpoint. Any request to such
a bucket receives a 403 Access Denied response. For more information, see Requester Pays
Buckets (p. 80).

API Version 2006-03-01
504

https://aws.amazon.com/premiumsupport/knowledge-center/cloudfront-https-requests-s3
https://aws.amazon.com/premiumsupport/knowledge-center/cloudfront-https-requests-s3
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https-cloudfront-to-s3-origin.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https-cloudfront-to-s3-origin.html
https://aws.amazon.com/premiumsupport/knowledge-center/cloudfront-https-requests-s3
https://aws.amazon.com/premiumsupport/knowledge-center/cloudfront-https-requests-s3
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https-cloudfront-to-s3-origin.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https-cloudfront-to-s3-origin.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_website_region_endpoints
https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_website_region_endpoints

Amazon Simple Storage Service Developer Guide
Key Differences Between the Amazon
Website and the REST API Endpoint

If you have a registered domain, you can add a DNS CNAME entry to point to the Amazon S3 website
endpoint. For example, if you have registered domain, www.example-bucket.com, you could create
a bucket www.example-bucket.com, and add a DNS CNAME record that points to www.example-
bucket.com.s3-website-<region>.amazonaws.com. All requests to http://www.example-
bucket.com are routed to www.example-bucket.com.s3-website-<region>.amazonaws.com.
For more information, see Virtual Hosting of Buckets (p. 45).

Key Differences Between the Amazon Website and
the REST API Endpoint
The website endpoint is optimized for access from a web browser. The following table describes the key
differences between the Amazon REST API endpoint and the website endpoint.

Key Difference REST API Endpoint Website Endpoint

Access control Supports both public and private
content.

Supports only publicly readable
content.

Error message
handling

Returns an XML-formatted error
response.

Returns an HTML document.

Redirection
support

Not applicable Supports both object-level and bucket-
level redirects.

Requests
supported

Supports all bucket and object
operations

Supports only GET and HEAD requests
on objects.

Responses to GET
and HEAD requests
at the root of a
bucket

Returns a list of the object keys in the
bucket.

Returns the index document that is
specified in the website configuration.

Secure Sockets
Layer (SSL)
support

Supports SSL connections. Does not support SSL connections.

For a list of the Amazon S3 endpoints, see Request Endpoints (p. 11).

Configuring a Bucket for Website Hosting
You can host a static website in an Amazon Simple Storage Service (Amazon S3) bucket. However, to
do so requires some configuration. Some optional configurations are also available, depending on your
website requirements.

Required configurations:

• Enabling Website Hosting (p. 506)
• Configuring Index Document Support (p. 506)
• Permissions Required for Website Access (p. 508)

Optional configurations:

• (Optional) Configuring Web Traffic Logging (p. 508)

API Version 2006-03-01
505

Amazon Simple Storage Service Developer Guide
Enabling Website Hosting

• (Optional) Custom Error Document Support (p. 509)

• (Optional) Configuring a Webpage Redirect (p. 510)

Enabling Website Hosting
Follow these steps to enable website hosting for your Amazon S3 buckets using the Amazon S3 console:

To enable website hosting for an Amazon S3 bucket

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. In the list, choose the bucket that you want to use for your hosted website.

3. Choose the Properties tab.

4. Choose Static website hosting, and then choose Use this bucket to host a website.

5. You are prompted to provide the index document and any optional error documents and redirection
rules that are needed.

For information about what an index document is, see Configuring Index Document
Support (p. 506).

Configuring Index Document Support
An index document is a webpage that Amazon S3 returns when a request is made to the root of a website
or any subfolder. For example, if a user enters http://www.example.com in the browser, the user
is not requesting any specific page. In that case, Amazon S3 serves up the index document, which is
sometimes referred to as the default page.

When you configure your bucket as a website, provide the name of the index document. You then upload
an object with this name and configure it to be publicly readable.

The trailing slash at the root-level URL is optional. For example, if you configure your website with
index.html as the index document, either of the following two URLs return index.html.

http://example-bucket.s3-website-region.amazonaws.com/
http://example-bucket.s3-website-region.amazonaws.com

For more information about Amazon S3 website endpoints, see Website Endpoints (p. 504).

Index Documents and Folders

In Amazon S3, a bucket is a flat container of objects; it does not provide any hierarchical organization as
the file system on your computer does. You can create a logical hierarchy by using object key names that
imply a folder structure. For example, consider a bucket with three objects and the following key names.

• sample1.jpg

• photos/2006/Jan/sample2.jpg

• photos/2006/Feb/sample3.jpg

Although these are stored with no physical hierarchical organization, you can infer the following logical
folder structure from the key names.

API Version 2006-03-01
506

https://console.aws.amazon.com/s3/home
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
Configuring Index Document Support

• sample1.jpg object is at the root of the bucket.
• sample2.jpg object is in the photos/2006/Jan subfolder.
• sample3.jpg object is in the photos/2006/Feb subfolder.

The folder concept that Amazon S3 console supports is based on object key names. To continue the
previous example, the console displays the examplebucket with a photos folder.

You can upload objects to the bucket or to the photos folder within the bucket. If you add the object
sample.jpg to the bucket, the key name is sample.jpg. If you upload the object to the photos folder,
the object key name is photos/sample.jpg.

If you create such a folder structure in your bucket, you must have an index document at each level.
When a user specifies a URL that resembles a folder lookup, the presence or absence of a trailing slash
determines the behavior of the website. For example, the following URL, with a trailing slash, returns the
photos/index.html index document.

http://example-bucket.s3-website-region.amazonaws.com/photos/

However, if you exclude the trailing slash from the preceding URL, Amazon S3 first looks for an object
photos in the bucket. If the photos object is not found, then it searches for an index document,

API Version 2006-03-01
507

Amazon Simple Storage Service Developer Guide
Permissions Required for Website Access

photos/index.html. If that document is found, Amazon S3 returns a 302 Found message and points
to the photos/ key. For subsequent requests to photos/, Amazon S3 returns photos/index.html. If
the index document is not found, Amazon S3 returns an error.

Permissions Required for Website Access
When you configure a bucket as a website, you must make the objects that you want to serve publicly
readable. To do this, you write a bucket policy that grants everyone s3:GetObject permission. On
the website endpoint, if a user requests an object that doesn't exist, Amazon S3 returns HTTP response
code 404 (Not Found). If the object exists but you haven't granted read permission on it, the website
endpoint returns HTTP response code 403 (Access Denied). The user can use the response code
to infer whether a specific object exists. If you don't want this behavior, you should not enable website
support for your bucket.

The following sample bucket policy grants everyone access to the objects in the specified folder. For
more information about bucket policies, see Using Bucket Policies and User Policies (p. 341).

{
 "Version":"2012-10-17",
 "Statement":[{
 "Sid":"PublicReadGetObject",
 "Effect":"Allow",
 "Principal": "*",
 "Action":["s3:GetObject"],
 "Resource":["arn:aws:s3:::example-bucket/*"
]
 }
]
}

Note
Keep the following in mind:

• To host a website, your bucket must have public read access. It is intentional that everyone in
the world will have read access to this bucket.

• The bucket policy applies only to objects that are owned by the bucket owner. If your bucket
contains objects that aren't owned by the bucket owner, public READ permission on those
objects should be granted using the object access control list (ACL).

You can grant public read permission to your objects by using either a bucket policy or an object ACL. To
make an object publicly readable using an ACL, grant READ permission to the AllUsers group, as shown in
the following grant element. Add this grant element to the object ACL. For information about managing
ACLs, see Managing Access with ACLs (p. 403).

<Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="Group">
 <URI>http://acs.amazonaws.com/groups/global/AllUsers</URI>
 </Grantee>
 <Permission>READ</Permission>
</Grant>

(Optional) Configuring Web Traffic Logging
If you want to track the number of visitors who access your website, enable logging for the root domain
bucket. Enabling logging is optional.

API Version 2006-03-01
508

Amazon Simple Storage Service Developer Guide
(Optional) Custom Error Document Support

To enable logging for your root domain bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. Create a bucket for logging named logs.example.com in the same AWS Region that the
example.com and www.example.com buckets were created in.

3. Create two folders in the logs.example.com bucket; one named root, and the other named cdn.
If you configure Amazon CloudFront to speed up your website, you will use the cdn folder.

4. In the Bucket name list, choose your root domain bucket, choose Properties, and then choose
Server access logging.

5. Choose Enable logging.

6. For Target bucket, choose the bucket that you created for the log files, logs.example.com.

7. For Target prefix, type root/. This setting groups the log data files in the bucket in a folder named
root so that they are easy to locate.

8. Choose Save.

You can now review your logs in the logs.example.com bucket, in both the root and cdn folders.

(Optional) Custom Error Document Support
The following table lists the subset of HTTP response codes that Amazon S3 returns when an error
occurs.

HTTP Error Code Description

301 Moved
Permanently

When a user sends a request directly to the Amazon S3 website endpoints
(http://s3-website-<region>.amazonaws.com/), Amazon S3 returns a
301 Moved Permanently response and redirects those requests to https://
aws.amazon.com/s3/.

302 Found When Amazon S3 receives a request for a key x, http://<bucket>.s3-
website-<region>.amazonaws.com/x, without a trailing slash, it first
looks for the object with the key name x. If the object is not found, Amazon
S3 determines that the request is for subfolder x and redirects the request by
adding a slash at the end, and returns 302 Found.

304 Not Modified Amazon S3 users request headers If-Modified-Since, If-Unmodified-
Since, If-Match and/or If-None-Match to determine whether the requested
object is same as the cached copy held by the client. If the object is the same, the
website endpoint returns a 304 Not Modified response.

400 Malformed
Request

The website endpoint responds with a 400 Malformed Request when a user
attempts to access a bucket through the incorrect regional endpoint.

403 Forbidden The website endpoint responds with a 403 Forbidden when a user request
translates to an object that is not publicly readable. The object owner must make
the object publicly readable using a bucket policy or an ACL.

404 Not Found The website endpoint responds with 404 Not Found for the following reasons:

• Amazon S3 determines that the URL of the website refers to an object key that
does not exist.

• Amazon infers that the request is for an index document that does not exist.
• A bucket specified in the URL does not exist.

API Version 2006-03-01
509

https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
(Optional) Configuring a Redirect

HTTP Error Code Description

• A bucket specified in the URL exists, but isn't configured as a website.

You can create a custom document that is returned for 404 Not Found. Make
sure that the document is uploaded to the bucket configured as a website, and
that the website hosting configuration is set to use the document.

For information on how Amazon S3 interprets the URL as a request for an object
or an index document, see Configuring Index Document Support (p. 506).

500 Service Error The website endpoint responds with a 500 Service Error when an internal server
error occurs.

503 Service
Unavailable

The website endpoint responds with a 503 Service Unavailable when Amazon
S3 determines that you need to reduce your request rate.

For each of these errors, Amazon S3 returns a predefined HTML message. The following is an example
HTML message that is returned for a 403 Forbidden response.

Custom Error Document

You can optionally provide a custom error document that contains a user-friendly error message and
additional help. You provide this custom error document as part of adding website configuration to your
bucket. Amazon S3 returns your custom error document for only the HTTP 4XX class of error codes.

Error Documents and Browser Behavior

When an error occurs, Amazon S3 returns an HTML error document. If you configured your website with
a custom error document, Amazon S3 returns that error document. However, some browsers display
their own error message when an error occurs, ignoring the error document that Amazon S3 returns. For
example, when an HTTP 404 Not Found error occurs, Google Chrome might ignore the error document
that Amazon S3 returns and display its own error.

(Optional) Configuring a Webpage Redirect
If your Amazon S3 bucket is configured for website hosting, you can redirect requests for an object to
another object in the same bucket or to an external URL.

Topics
• Page Redirect Support in the Amazon S3 Console (p. 511)
• Setting a Page Redirect from the REST API (p. 512)
• Advanced Conditional Redirects (p. 513)

API Version 2006-03-01
510

Amazon Simple Storage Service Developer Guide
(Optional) Configuring a Redirect

You set the redirect by adding the x-amz-website-redirect-location property to the object
metadata. The website then interprets the object as 301 redirect. To redirect a request to another object,
you set the redirect location to the key of the target object. To redirect a request to an external URL, you
set the redirect location to the URL that you want. For more information about object metadata, see
System-Defined Object Metadata (p. 102).

A bucket configured for website hosting has both the website endpoint and the REST endpoint. A
request for a page that is configured as a 301 redirect has the following possible outcomes, depending
on the endpoint of the request:

• Region-specific website endpoint – Amazon S3 redirects the page request according to the value of
the x-amz-website-redirect-location property.

• REST endpoint – Amazon S3 doesn't redirect the page request. It returns the requested object.

For more information about the endpoints, see Key Differences Between the Amazon Website and the
REST API Endpoint (p. 505).

You can set a page redirect from the Amazon S3 console or by using the Amazon S3 REST API.

Page Redirect Support in the Amazon S3 Console

You can use the Amazon S3 console to set the website redirect location in the metadata of the object.
When you set a page redirect, you can either keep or delete the source object content. For example,
suppose that you have a page1.html object in your bucket. To redirect any requests for this page to
another object, page2.html, you can do one of the following:

• To keep the content of the page1.html object and only redirect page requests, choose the
page1.html object.

Choose the Properties tab for page1.html, and then choose the Metadata box. Add Website
Redirect Location to the metadata, as shown in the following example, and set its value to /
page2.html. The / prefix in the value is required.

API Version 2006-03-01
511

Amazon Simple Storage Service Developer Guide
(Optional) Configuring a Redirect

You can also set the value to an external URL, such as http://www.example.com. For example, if
your root domain is example.com, and you want to serve requests for both http://example.com
and http://www.example.com, you can create two buckets named example.com and
www.example.com. Then, maintain the content in one of the buckets (say example.com), and
configure the other bucket to redirect all requests to the example.com bucket.

• To delete the content of the page1.html object and redirect requests, you can upload a new zero-
byte object with the same key, page1.html, to replace the existing object. Then specify Website
Redirect Location for page1.html in the upload process. For information about uploading an
object, see Uploading S3 Objects in the Amazon Simple Storage Service Console User Guide.

Setting a Page Redirect from the REST API
The following Amazon S3 API actions support the x-amz-website-redirect-location header in
the request. Amazon S3 stores the header value in the object metadata as x-amz-website-redirect-
location.

• PUT Object

• Initiate Multipart Upload

• POST Object

• PUT Object - Copy

When setting a page redirect, you can either keep or delete the object content. For example, suppose you
have a page1.html object in your bucket.

• To keep the content of page1.html and only redirect page requests, you can submit a PUT Object -
Copy request to create a new page1.html object that uses the existing page1.html object as the
source. In your request, you set the x-amz-website-redirect-location header. When the request
is complete, you have the original page with its content unchanged, but Amazon S3 redirects any
requests for the page to the redirect location that you specify.

• To delete the content of the page1.html object and redirect requests for the page, you can send a
PUT Object request to upload a zero-byte object that has the same object key:page1.html. In the
PUT request, you set x-amz-website-redirect-location for page1.html to the new object.
When the request is complete, page1.html has no content, and requests are redirected to the
location that is specified by x-amz-website-redirect-location.

API Version 2006-03-01
512

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html

Amazon Simple Storage Service Developer Guide
(Optional) Configuring a Redirect

When you retrieve the object using the GET Object action, along with other object metadata, Amazon S3
returns the x-amz-website-redirect-location header in the response.

Advanced Conditional Redirects

Using advanced redirection rules, you can route requests conditionally according to specific object key
names, prefixes in the request, or response codes. For example, suppose that you delete or rename an
object in your bucket. You can add a routing rule that redirects the request to another object. If you want
to make a folder unavailable, you can add a routing rule to redirect the request to another webpage. You
can also add a routing rule to handle error conditions by routing requests that return the error to another
domain when the error is processed.

When configuring a bucket for website hosting, you have the option of specifying advanced redirection
rules.

To redirect all requests to the bucket's website endpoint to another host, you only need to provide the
host name.

API Version 2006-03-01
513

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html

Amazon Simple Storage Service Developer Guide
(Optional) Configuring a Redirect

You describe the rules using XML. The following section provides general syntax and examples of
specifying redirection rules.

Syntax for Specifying Routing Rules

The following is general syntax for defining the routing rules in a website configuration:

<RoutingRules> =
 <RoutingRules>
 <RoutingRule>...</RoutingRule>
 [<RoutingRule>...</RoutingRule>
 ...]
 </RoutingRules>

<RoutingRule> =
 <RoutingRule>
 [<Condition>...</Condition>]
 <Redirect>...</Redirect>
 </RoutingRule>

<Condition> =
 <Condition>
 [<KeyPrefixEquals>...</KeyPrefixEquals>]
 [<HttpErrorCodeReturnedEquals>...</HttpErrorCodeReturnedEquals>]
 </Condition>
 Note: <Condition> must have at least one child element.

<Redirect> =
 <Redirect>
 [<HostName>...</HostName>]
 [<Protocol>...</Protocol>]
 [<ReplaceKeyPrefixWith>...</ReplaceKeyPrefixWith>]
 [<ReplaceKeyWith>...</ReplaceKeyWith>]
 [<HttpRedirectCode>...</HttpRedirectCode>]
 </Redirect>

API Version 2006-03-01
514

Amazon Simple Storage Service Developer Guide
(Optional) Configuring a Redirect

 Note: <Redirect> must have at least one child element.
 Also, you can have either ReplaceKeyPrefix with or ReplaceKeyWith,
 but not both.

The following table describes the elements in the routing rule.

Name Description

RoutingRules Container for a collection of RoutingRule elements.

RoutingRule A rule that identifies a condition and the redirect that is applied when
the condition is met.

Condition: A RoutingRules container must contain at least one
routing rule.

Condition Container for describing a condition that must be met for the
specified redirect to be applied. If the routing rule does not include a
condition, the rule is applied to all requests.

KeyPrefixEquals The prefix of the object key name from which requests are redirected.

KeyPrefixEquals is required if HttpErrorCodeReturnedEquals
is not specified. If both KeyPrefixEquals and
HttpErrorCodeReturnedEquals are specified, both must be true
for the condition to be met.

HttpErrorCodeReturnedEqualsThe HTTP error code that must match for the redirect to apply. If an
error occurs, and if the error code meets this value, then the specified
redirect applies.

HttpErrorCodeReturnedEquals is required if
KeyPrefixEquals is not specified. If both KeyPrefixEquals and
HttpErrorCodeReturnedEquals are specified, both must be true
for the condition to be met.

Redirect Container element that provides instructions for redirecting the
request. You can redirect requests to another host or another
page, or you can specify another protocol to use. A RoutingRule
must have a Redirect element. A Redirect element must
contain at least one of the following sibling elements: Protocol,
HostName, ReplaceKeyPrefixWith, ReplaceKeyWith, or
HttpRedirectCode.

Protocol The protocol, http or https, to be used in the Location header that
is returned in the response.

If one of its siblings is supplied, Protocol is not required.

HostName The hostname to be used in the Location header that is returned in
the response.

If one of its siblings is supplied, HostName is not required.

ReplaceKeyPrefixWith The prefix of the object key name that replaces the value of
KeyPrefixEquals in the redirect request.

If one of its siblings is supplied, ReplaceKeyPrefixWith is not
required. It can be supplied only if ReplaceKeyWith is not supplied.

API Version 2006-03-01
515

Amazon Simple Storage Service Developer Guide
(Optional) Configuring a Redirect

Name Description

ReplaceKeyWith The object key to be used in the Location header that is returned in
the response.

If one of its siblings is supplied, ReplaceKeyWith is not required. It
can be supplied only if ReplaceKeyPrefixWith is not supplied.

HttpRedirectCode The HTTP redirect code to be used in the Location header that is
returned in the response.

If one of its siblings is supplied, HttpRedirectCode is not required.

The following examples explain common redirection tasks:

Example 1: Redirect after renaming a key prefix

Suppose that your bucket contains the following objects:

• index.html

• docs/article1.html

• docs/article2.html

You decide to rename the folder from docs/ to documents/. After you make this change, you need to
redirect requests for prefix docs/ to documents/. For example, request for docs/article1.html will
be redirected to documents/article1.html.

In this case, you add the following routing rule to the website configuration:

 <RoutingRules>
 <RoutingRule>
 <Condition>
 <KeyPrefixEquals>docs/</KeyPrefixEquals>
 </Condition>
 <Redirect>
 <ReplaceKeyPrefixWith>documents/</ReplaceKeyPrefixWith>
 </Redirect>
 </RoutingRule>
 </RoutingRules>

Example 2: Redirect requests for a deleted folder to a page

Suppose that you delete the images/ folder (that is, you delete all objects with the key prefix images/).
You can add a routing rule that redirects requests for any object with the key prefix images/ to a page
named folderdeleted.html.

 <RoutingRules>
 <RoutingRule>
 <Condition>
 <KeyPrefixEquals>images/</KeyPrefixEquals>
 </Condition>
 <Redirect>
 <ReplaceKeyWith>folderdeleted.html</ReplaceKeyWith>
 </Redirect>
 </RoutingRule>
 </RoutingRules>

API Version 2006-03-01
516

Amazon Simple Storage Service Developer Guide
Example Walkthroughs

Example 3: Redirect for an HTTP error

Suppose that when a requested object is not found, you want to redirect requests to an Amazon Elastic
Compute Cloud (Amazon EC2) instance. Add a redirection rule so that when an HTTP status code 404
(Not Found) is returned, the site visitor is redirected to an Amazon EC2 instance that handles the request.
The following example also inserts the object key prefix report-404/ in the redirect. For example, if
you request a page ExamplePage.html and it results in an HTTP 404 error, the request is redirected to
a page report-404/ExamplePage.html on the specified Amazon EC2 instance. If there is no routing
rule and the HTTP error 404 occurs, the error document that is specified in the configuration is returned.

 <RoutingRules>
 <RoutingRule>
 <Condition>
 <HttpErrorCodeReturnedEquals>404</HttpErrorCodeReturnedEquals >
 </Condition>
 <Redirect>
 <HostName>ec2-11-22-333-44.compute-1.amazonaws.com</HostName>
 <ReplaceKeyPrefixWith>report-404/</ReplaceKeyPrefixWith>
 </Redirect>
 </RoutingRule>
 </RoutingRules>

Example Walkthroughs - Hosting Websites on
Amazon S3

Topics

• Example: Setting up a Static Website (p. 517)

• Example: Setting up a Static Website Using a Custom Domain (p. 519)

• Example: Speed Up Your Website with Amazon CloudFront (p. 525)

• Clean Up Your Example Resources (p. 528)

This section provides two examples. In the first example, you configure a bucket for website hosting,
upload a sample index document, and test the website using the Amazon S3 website endpoint for the
bucket. The second example shows how you can use your own domain, such as example.com, instead of
the S3 bucket website endpoint, and serve content from an Amazon S3 bucket configured as a website.
The example also shows how Amazon S3 offers the root domain support.

Example: Setting up a Static Website
You can configure an Amazon S3 bucket to function like a website. This example walks you through the
steps of hosting a website on Amazon S3.

Topics

• Step 1: Creating a Bucket and Configuring It as a Website (p. 518)

• Step 2: Adding a Bucket Policy That Makes Your Bucket Content Publicly Available (p. 518)

• Step 3: Uploading an Index Document (p. 518)

• Step 4: Testing Your Website (p. 519)

API Version 2006-03-01
517

Amazon Simple Storage Service Developer Guide
Example: Setting up a Static Website

Step 1: Creating a Bucket and Configuring It as a Website
1. Sign in to the AWS Management Console and open the Amazon S3 console at https://

console.aws.amazon.com/s3/.
2. Create a bucket.

For step-by-step instructions, see How Do I Create an S3 Bucket? in Amazon Simple Storage Service
Console User Guide.

For bucket naming guidelines, see Bucket Restrictions and Limitations (p. 58). If you have a
registered domain name, for additional information about bucket naming, see Customizing Amazon
S3 URLs with CNAMEs (p. 48).

3. Open the bucket Properties pane, choose Static Website Hosting, and do the following:

a. Choose Use this bucket to host a website.
b. In the Index Document box, type the name of your index document. The name is typically

index.html.
c. Choose Save to save the website configuration.
d. Write down the Endpoint.

This is the Amazon S3-provided website endpoint for your bucket. You use this endpoint in the
following steps to test your website.

Step 2: Adding a Bucket Policy That Makes Your Bucket Content
Publicly Available
1. In the Properties pane for the bucket, choose Permissions.
2. Choose Add Bucket Policy.
3. To host a website, your bucket must have public read access. It is intentional that everyone in the

world will have read access to this bucket. Copy the following bucket policy, and then paste it in the
Bucket Policy Editor.

{
 "Version":"2012-10-17",
 "Statement":[{
 "Sid":"PublicReadForGetBucketObjects",
 "Effect":"Allow",
 "Principal": "*",
 "Action":["s3:GetObject"],
 "Resource":["arn:aws:s3:::example-bucket/*"
]
 }
]
 }

4. In the policy, replace example-bucket with the name of your bucket.
5. Choose Save.

Step 3: Uploading an Index Document
1. Create a document. Give it the same name that you gave the index document earlier.
2. Using the console, upload the index document to your bucket.

For instructions, see Uploading S3 Objects in the Amazon Simple Storage Service Console User Guide.

API Version 2006-03-01
518

https://console.aws.amazon.com/s3
https://console.aws.amazon.com/s3
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-objects.html

Amazon Simple Storage Service Developer Guide
Example: Setting up a Static

Website Using a Custom Domain

Step 4: Testing Your Website
Type the following URL in the browser, replacing example-bucket with the name of your bucket and
website-region with the name of the AWS Region where you deployed your bucket. For information
about AWS Region names, see Website Endpoints (p. 504)).

The two general forms of an Amazon S3 website endpoint are as follows:

http://example-bucket.s3-website-region.amazonaws.com

http://example-bucket.s3-website.region.amazonaws.com

If your browser displays your index.html page, the website was successfully deployed.

Note
HTTPS access to the website is not supported.

You now have a website hosted on Amazon S3. This website is available at the Amazon S3 website
endpoint. However, you might have a domain, such as example.com, that you want to use to serve
the content from the website you created. You might also want to use Amazon S3 root domain
support to serve requests for both http://www.example.com and http://example.com. This
requires additional steps. For an example, see Example: Setting up a Static Website Using a Custom
Domain (p. 519).

Example: Setting up a Static Website Using a Custom
Domain
Suppose that you want to host your static website on Amazon S3. You registered a domain (for example,
example.com), and you want requests for http://www.example.com and http://example.com to
be served from your Amazon S3 content. Whether you have an existing static website that you want to
host on Amazon S3, or you are starting from scratch, use this example to learn how to host websites on
Amazon S3.

Topics

• Before You Begin (p. 519)

• Step 1: Register a Domain (p. 520)

• Step 2: Create and Configure Buckets and Upload Data (p. 520)

• Step 3: Add Alias Records for example.com and www.example.com (p. 523)

• Step 4: Testing (p. 525)

Before You Begin
As you follow the steps in this example, you work with the following services:

Amazon Route 53 – You use Route 53 to register domains and to define where you want to route
internet traffic for your domain. We explain how to create Route 53 alias records that route traffic for
your domain (example.com) and subdomain (www.example.com) to an Amazon S3 bucket that contains
an HTML file.

Amazon S3 – You use Amazon S3 to create buckets, upload a sample website page, configure
permissions so that everyone can see the content, and then configure the buckets for website hosting.

API Version 2006-03-01
519

Amazon Simple Storage Service Developer Guide
Example: Setting up a Static

Website Using a Custom Domain

Step 1: Register a Domain

If you don't already have a registered domain name, such as example.com, register one with Route 53.
For more information, see Registering a New Domain in the Amazon Route 53 Developer Guide. When
you have a registered domain name, your next tasks are to create and configure Amazon S3 buckets for
website hosting and to upload your website content.

Step 2: Create and Configure Buckets and Upload Data

To support requests from both the root domain such as example.com and subdomain such as
www.example.com, you create two buckets. One bucket contains the content. You configure the other
bucket to redirect requests.

Step 2.1: Create Two Buckets

The bucket names must match the names of the website that you are hosting. For example, to host
your example.com website on Amazon S3, you would create a bucket named example.com. To host
a website under www.example.com, you would name the bucket www.example.com. In this example,
your website supports requests from both example.com and www.example.com.

In this step, you sign in to the Amazon S3 console with your AWS account credentials and create the
following two buckets.

• example.com

• www.example.com

Note
Like domains, subdomains must have their own S3 buckets, and the buckets must share the
exact names as the subdomains. In this example, we are creating the www.example.com
subdomain, so we also need an S3 bucket named www.example.com.

To create your buckets and upload your website content for hosting

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Create two buckets that match your domain name and subdomain. For instance, example.com and
www.example.com.

For step-by-step instructions, see How Do I Create an S3 Bucket? in the Amazon Simple Storage
Service Console User Guide.

3. Upload your website data to the example.com bucket.

You will host your content out of the root domain bucket (example.com), and you will redirect
requests for www.example.com to the root domain bucket. You can store content in either bucket.
For this example, you host content in the example.com bucket. The content can be text files,
family photos, videos—whatever you want. If you have not yet created a website, then you only
need one file for this example. You can upload any file. For example, you can create a file using the
following HTML and upload it to the bucket. The file name of the home page of a website is typically
index.html, but you can give it any name. In a later step, you provide this file name as the index
document name for your website.

<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>My Website Home Page</title>
</head>

API Version 2006-03-01
520

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/domain-register.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html

Amazon Simple Storage Service Developer Guide
Example: Setting up a Static

Website Using a Custom Domain

<body>
 <h1>Welcome to my website</h1>
 <p>Now hosted on Amazon S3!</p>
</body>
</html>

For step-by-step instructions, see How Do I Upload an Object to an S3 Bucket? in the Amazon Simple
Storage Service Console User Guide.

4. To host a website, your bucket must have public read access. It is intentional that everyone in the
world will have read access to this bucket. To grant public read access, attach the following bucket
policy to the example.com bucket, substituting the name of your bucket for example.com. For
step-by-step instructions to attach a bucket policy, see How Do I Add an S3 Bucket Policy? in the
Amazon Simple Storage Service Console User Guide.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"PublicReadGetObject",
 "Effect":"Allow",
 "Principal":"*",
 "Action":[
 "s3:GetObject"
],
 "Resource":[
 "arn:aws:s3:::example.com/*"
]
 }
]
}

You now have two buckets, example.com and www.example.com, and you have uploaded your
website content to the example.com bucket. In the next step, you configure www.example.com to
redirect requests to your example.com bucket. By redirecting requests, you can maintain only one
copy of your website content. Visitors who type www in their browsers and those who specify only
the root domain are routed to the same website content in your example.com bucket.

Step 2.2: Configure Buckets for Website Hosting

When you configure a bucket for website hosting, you can access the website using the Amazon S3
assigned bucket website endpoint.

In this step, you configure both buckets for website hosting. First, you configure example.com as a
website and then you configure www.example.com to redirect all requests to the example.com bucket.

To configure your buckets for website hosting

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. In the Bucket name list, choose the name of the bucket that you want to enable static website
hosting for.

3. Choose Properties.

4. Choose Static website hosting.

5. Configure the example.com bucket for website hosting. In the Index Document box, type the name
that you gave your index page.

API Version 2006-03-01
521

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/upload-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-bucket-policy.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
Example: Setting up a Static

Website Using a Custom Domain

6. Choose Save.

Step 2.3: Configure Your Website Redirect

Now that you have configured your bucket for website hosting, configure the www.example.com bucket
to redirect all requests for www.example.com to example.com.

To redirect requests from www.example.com to example.com

1. In the Amazon S3 console, in the Buckets list, choose your bucket (www.example.com, in this
example).

2. Choose Properties.

3. Choose Static website hosting.

4. Choose Redirect requests. In the Target bucket or domain box, type example.com.

5. Choose Save.

API Version 2006-03-01
522

Amazon Simple Storage Service Developer Guide
Example: Setting up a Static

Website Using a Custom Domain

Step 2.4: Configure Logging for Website Traffic

Optionally, you can configure logging to track the number of visitors accessing your website. To do that,
you enable logging for the root domain bucket. For more information, see (Optional) Configuring Web
Traffic Logging (p. 508).

Step 2.5: Test Your Endpoint and Redirect

To test the website, type the URL of the endpoint in your browser. Your request is redirected, and the
browser displays the index document for example.com.

In the next step, you use Amazon Route 53 to enable customers to use all of the URLs to navigate to your
site.

Step 3: Add Alias Records for example.com and
www.example.com
In this step, you create the alias records that you add to the hosted zone for your domain maps
example.com and www.example.com to the corresponding S3 buckets. Instead of using IP addresses,
the alias records use the Amazon S3 website endpoints. Amazon Route 53 maintains a mapping between
the alias records and the IP addresses where the Amazon S3 buckets reside.

To route traffic to your website

1. Open the Route 53 console at https://console.aws.amazon.com/route53/.

Note
If you don't already use Amazon Route 53, you can get started here. After you have
completed your set up, you can resume the instructions below.

2. In the list of hosted zones, choose the name of your domain.
3. Choose Create Record Set.

Note
Each record contains information about how you want to route traffic for one domain
(example.com) or subdomain (www.example.com). Records are stored in the hosted zone for
your domain.

API Version 2006-03-01
523

https://console.aws.amazon.com/route53/
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide//getting-started.html#getting-started-find-domain-name

Amazon Simple Storage Service Developer Guide
Example: Setting up a Static

Website Using a Custom Domain

4. Specify the following values:

Name

For the first record that you'll create, accept the default value, which is the name of your hosted
zone and your domain. This will route internet traffic to the bucket that has the same name as
your domain.

Repeat this step to create a second record for your subdomain. For the second record, type
www. This will route internet traffic to the www.example.com bucket.

Type

Choose A – IPv4 address.

Alias

Choose Yes.

Alias Target

Type the name of your Amazon S3 bucket endpoint, for example example.com (s3-
website-us-west-2).

Note
You specify the same value for Alias Target for both records. Route 53 figures out
which bucket to route traffic to based on the name of the record.

Routing Policy

Accept the default value of Simple.

Evaluate Target Health

Accept the default value of No.

5. Choose Create.

6. For www.example.com, repeat steps 3 through 5 to create a record.

The following screenshot shows the alias record for example.com as an illustration. You also need to
create an alias record for www.example.com.

API Version 2006-03-01
524

Amazon Simple Storage Service Developer Guide
Example: Speed Up Your Website with Amazon CloudFront

Note
Creating, changing, and deleting resource record sets take time to propagate to the Route 53
DNS servers. Changes generally propagate to all Route 53 name servers in a couple of minutes.
In rare circumstances, propagation can take up to 30 minutes.

Step 4: Testing
To verify that the website is working correctly, in your browser, try the following URLs:

• http://example.com – Displays the index document in the example.com bucket.

• http://www.example.com – Redirects your request to http://example.com.

In some cases, you might need to clear the cache of your web browser to see the expected behavior.

Example: Speed Up Your Website with Amazon
CloudFront
You can use Amazon CloudFront to improve the performance of your website. CloudFront makes your
website's files (such as HTML, images, and video) available from data centers around the world (called
edge locations). When a visitor requests a file from your website, CloudFront automatically redirects the
request to a copy of the file at the nearest edge location. This results in faster download times than if the
visitor had requested the content from a data center that is located farther away.

CloudFront caches content at edge locations for a period of time that you specify. If a visitor requests
content that has been cached for longer than the expiration date, CloudFront checks the origin server
to see if a newer version of the content is available. If a newer version is available, CloudFront copies the

API Version 2006-03-01
525

http://aws.amazon.com/cloudfront

Amazon Simple Storage Service Developer Guide
Example: Speed Up Your Website with Amazon CloudFront

new version to the edge location. Changes that you make to the original content are replicated to edge
locations as visitors request the content.

To speed up your website, use CloudFront to complete the following tasks.

Tasks

• Create a CloudFront Distribution (p. 526)

• Update the Record Sets for Your Domain and Subdomain (p. 527)

• (Optional) Check the Log Files (p. 527)

Create a CloudFront Distribution
First, you create a CloudFront distribution. This makes your website available from data centers around
the world.

To create a distribution with an Amazon S3 origin

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/.

2. Choose Create Distribution.

3. On the Select a delivery method for your content page, for Web, choose Get Started.

4. On the Create Distribution page, in the Origin Settings section, for Origin Domain
Name, type the Amazon S3 static website hosting endpoint for your bucket. For example,
example.com.s3.amazonaws.com.

CloudFront fills in the Origin ID for you.

5. For Default Cache Behavior Settings, leave the values set to the defaults. For more information
about these configuration options, see Values that You Specify When You Create or Update a Web
Distribution in the Amazon CloudFront Developer Guide.

6. For Distribution Settings, do the following:

a. Leave Price Class set to Use All Edge Locations (Best Performance).

b. Set Alternate Domain Names (CNAMEs) to the root domain and www subdomain; in this
tutorial, these are example.com and www.example.com. These values must be set before
you create aliases for the A records that connect the specified domain names to the CloudFront
distribution.

Important
Prior to performing this step, note the requirements for using alternate domain names,
in particular the need for a valid SSL/TLS certificate.

c. Set Default Root Object to index.html. This is the default page that the CloudFront
distribution returns if the URL used to access the distribution doesn't contain a file name. This
value should match the index document value that you set in Configuring a Bucket for Website
Hosting (p. 505).

d. Set Logging to On.

e. For Bucket for Logs, choose the logging bucket that you created.

f. To store the logs generated by traffic to the CloudFront distribution in a folder, named cdn, in
the log bucket, type cdn/ for Log Prefix.

g. Leave the other settings at their default values.

7. Choose Create Distribution.

To see the status of the distribution, find the distribution in the console and check the Status column. A
status of InProgress indicates that the distribution is not yet fully deployed.

API Version 2006-03-01
526

https://console.aws.amazon.com/cloudfront/
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/WorkingWithDownloadDistributions.html#DownloadDistValuesYouSpecify
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/WorkingWithDownloadDistributions.html#DownloadDistValuesYouSpecify
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/CNAMEs.html#alternate-domain-names-requirements

Amazon Simple Storage Service Developer Guide
Example: Speed Up Your Website with Amazon CloudFront

After your distribution is deployed, you can reference your content with the new CloudFront domain
name. Record the value of Domain Name shown in the CloudFront console. You'll need it in the next
step. In this example, the value is dj4p1rv6mvubz.cloudfront.net.

To verify that your CloudFront distribution is working, type the domain name of the distribution in a web
browser. If it is working, your website is visible.

Update the Record Sets for Your Domain and Subdomain

Now that you have successfully created a CloudFront distribution, update the A records in Route 53 to
point to the new CloudFront distribution.

To update A records to point to a CloudFront distribution

1. Open the Route 53 console at https://console.aws.amazon.com/route53/.

2. On the Hosted Zones page, choose the hosted zone that you created for your domain.

3. Choose Go to Record Sets.

4. Choose the A record that you created for the www subdomain.

5. For Alias Target, choose the CloudFront distribution.

6. Choose Save Record Set.

7. To redirect the A record for the root domain to the CloudFront distribution, repeat this procedure.

The update to the record sets takes effect within 2 to 48 hours. To see if the new A records have taken
effect, in a web browser, type http://www.example.com. If the browser no longer redirects you to
http://example.com, the new A records are in place.

This change in behavior occurs because traffic routed by the old A record to the www subdomain S3
bucket is redirected by the settings in Amazon S3 to the root domain. When the new A record has taken
effect, traffic routed by the new A record to the CloudFront distribution is not redirected to the root
domain.

Tip
Browsers can cache redirect settings. If you think the new A record settings should have taken
effect, but your browser still redirects http://www.example.com to http://example.com,
try clearing your browser history and cache, closing and reopening your browser application, or
using a different web browser.

When the new A records are in effect, any visitors who reference the site by using http://
example.com or http://www.example.com are redirected to the nearest CloudFront edge location,
where they benefit from faster download times.

If you created your site as a learning exercise only, you can delete the resources that you allocated so
that you no longer accrue charges. To do so, continue on to Clean Up Your Example Resources (p. 528).
After you delete your AWS resources, your website is no longer available.

(Optional) Check the Log Files

The access logs tell you how many people are visiting the website. They also contain valuable business
data that you can analyze with other services, such as Amazon EMR.

In your bucket, older Amazon S3 log files are located in the root folder. All new log files, which should
be CloudFront logs, are located in the cdn folder. Amazon S3 writes website access logs to your log
bucket every two hours. CloudFront writes logs to your log bucket within 24 hours from when the
corresponding requests are made.

API Version 2006-03-01
527

https://console.aws.amazon.com/route53/
https://docs.aws.amazon.com/emr/latest/DeveloperGuide/

Amazon Simple Storage Service Developer Guide
Clean Up Example Resources

To see the log files for your website

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.
2. Choose the logging bucket for your website.
3. To see the log files that are stored in the cdn or root folder, choose cdn or root.
4. Open Amazon S3 log files, which are text files, in a browser. Download the .gzip files written by

CloudFront before opening them.

Clean Up Your Example Resources
If you created your static website as a learning exercise only, be sure to delete the AWS resources that
you allocated so that you no longer accrue charges. After you delete your AWS resources, your website is
no longer available.

Tasks
• Delete the Amazon CloudFront Distribution (p. 528)
• Delete the Route 53 Hosted Zone (p. 528)
• Delete the S3 Bucket (p. 529)

Delete the Amazon CloudFront Distribution
Before you delete an Amazon CloudFront distribution, you must disable it. A disabled distribution is no
longer functional and does not accrue charges. You can enable a disabled distribution at any time. After
you delete a disabled distribution, it is no longer available.

To disable and delete a CloudFront distribution

1. Open the CloudFront console at https://console.aws.amazon.com/cloudfront/.
2. Select the distribution that you want to disable, and then choose Disable.
3. When prompted for confirmation, choose Yes, Disable.
4. Select the disabled distribution, and then choose Delete.
5. When prompted for confirmation, choose Yes, Delete.

Delete the Route 53 Hosted Zone
Before you delete the hosted zone, you must delete the record sets that you created. You don't need to
delete the NS and SOA records; these are automatically deleted when you delete the hosted zone.

To delete the record sets

1. Open the Route 53 console at https://console.aws.amazon.com/route53/.
2. In the list of domain names, select your domain name, and then choose Go to Record Sets.
3. In the list of record sets, select the A records that you created. The type of each record set is listed in

the Type column.
4. Choose Delete Record Set.
5. When prompted for confirmation, choose Confirm.

To delete an Route 53 hosted zone

1. Continuing from the previous procedure, choose Back to Hosted Zones.

API Version 2006-03-01
528

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/cloudfront/
https://console.aws.amazon.com/route53/

Amazon Simple Storage Service Developer Guide
Clean Up Example Resources

2. Select your domain name, and then choose Delete Hosted Zone.
3. When prompted for confirmation, choose Confirm.

Delete the S3 Bucket
Before you delete your S3 bucket, make sure that logging is disabled for the bucket. Otherwise, AWS
continues to write logs to your bucket as you delete it.

To disable logging for a bucket

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.
2. Select your bucket, and then choose Properties.
3. From Properties, choose Logging.
4. Clear the Enabled check box.
5. Choose Save.

Now, you can delete your bucket. For more information, see How Do I Delete an S3 Bucket? in the
Amazon Simple Storage Service Console User Guide.

API Version 2006-03-01
529

https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/delete-bucket.html

Amazon Simple Storage Service Developer Guide
Overview

Configuring Amazon S3 Event
Notifications

The Amazon S3 notification feature enables you to receive notifications when certain events happen
in your bucket. To enable notifications, you must first add a notification configuration identifying
the events you want Amazon S3 to publish, and the destinations where you want Amazon S3 to
send the event notifications. You store this configuration in the notification subresource (see Bucket
Configuration Options (p. 56)) associated with a bucket. Amazon S3 provides an API for you to manage
this subresource.

Important
Amazon S3 event notifications typically deliver events in seconds but can sometimes take a
minute or longer. On very rare occasions, events might be lost.
If your application requires particular semantics (for example, ensuring that no events are
missed, or that operations run only once), we recommend that you account for missed and
duplicate events when designing your application. You can audit for missed events by using the
LIST Objects API or Amazon S3 Inventory (p. 422) reports. The LIST Objects API and Amazon S3
inventory reports are subject to eventual consistency and might not reflect recently added or
deleted objects.

Topics
• Overview (p. 530)
• How to Enable Event Notifications (p. 532)
• Event Notification Types and Destinations (p. 533)
• Configuring Notifications with Object Key Name Filtering (p. 534)
• Granting Permissions to Publish Event Notification Messages to a Destination (p. 539)
• Example Walkthrough 1: Configure a Bucket for Notifications (Message Destination: SNS Topic and

SQS Queue) (p. 541)
• Example Walkthrough 2: Configure a Bucket for Notifications (Message Destination: AWS

Lambda) (p. 546)
• Event Message Structure (p. 546)

Overview
Currently, Amazon S3 can publish notifications for the following events:

• A new object created event—Amazon S3 supports multiple APIs to create objects. You can request
notification when only a specific API is used (e.g., s3:ObjectCreated:Put) or you can use a wildcard
(e.g., s3:ObjectCreated:*) to request notification when an object is created regardless of the API
used.

• An object removal event—Amazon S3 supports deletes of versioned and unversioned objects. For

information about object versioning, see Object Versioning (p. 108) and Using Versioning (p. 432).

You can request notification when an object is deleted or a versioned object is permanently deleted
by using the s3:ObjectRemoved:Delete event type. Or you can request notification when a delete
marker is created for a versioned object by using s3:ObjectRemoved:DeleteMarkerCreated. You

API Version 2006-03-01
530

https://docs.aws.amazon.com/AmazonS3/latest/API/v2-RESTBucketGET.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html#ConsistencyModel

Amazon Simple Storage Service Developer Guide
Overview

can also use a wildcard s3:ObjectRemoved:* to request notification anytime an object is deleted.
For information about deleting versioned objects, see Deleting Object Versions (p. 444).

• Restore object events—Amazon S3 supports the restoration of objects archived to the

GLACIER storage class. You request to be notified of object restoration completion by using
s3:ObjectRestore:Completed. You use s3:ObjectRestore:Post to request notification of the
initiation of a restore.

• A Reduced Redundancy Storage (RRS) object lost event—Amazon S3 sends a notification message

when it detects that an object of the RRS storage class has been lost.

For a list of supported event types, see Supported Event Types (p. 533).

Amazon S3 supports the following destinations where it can publish events:

• Amazon Simple Notification Service (Amazon SNS) topic

Amazon SNS is a flexible, fully managed push messaging service. Using this service, you can push
messages to mobile devices or distributed services. With SNS you can publish a message once, and
deliver it one or more times. An SNS topic is an access point that recipients can dynamically subscribe
to in order to receive event notifications. For more information about SNS, see the Amazon SNS
product detail page.

• Amazon Simple Queue Service (Amazon SQS) queue

Amazon SQS is a scalable and fully managed message queuing service. You can use SQS to transmit
any volume of data without requiring other services to be always available. In your notification
configuration you can request that Amazon S3 publish events to an SQS queue. Currently, Standard
SQS queue is only allowed as an Amazon S3 event notification destination, whereas FIFO SQS queue is
not allowed. For more information about SQS, see Amazon SQS product detail page.

• AWS Lambda

AWS Lambda is a compute service that makes it easy for you to build applications that respond quickly
to new information. AWS Lambda runs your code in response to events such as image uploads, in-app
activity, website clicks, or outputs from connected devices. You can use AWS Lambda to extend other
AWS services with custom logic, or create your own back-end that operates at AWS scale, performance,
and security. With AWS Lambda, you can easily create discrete, event-driven applications that execute
only when needed and scale automatically from a few requests per day to thousands per second.

AWS Lambda can run custom code in response to Amazon S3 bucket events. You upload your custom
code to AWS Lambda and create what is called a Lambda function. When Amazon S3 detects an event
of a specific type (for example, an object created event), it can publish the event to AWS Lambda
and invoke your function in Lambda. In response, AWS Lambda executes your function. For more
information, see AWS Lambda product detail page.

The following sections offer more detail about how to enable event notifications on a bucket. The
subtopics also provide example walkthroughs to help you explore the notification feature.

• Example Walkthrough 1: Configure a Bucket for Notifications (Message Destination: SNS Topic and
SQS Queue) (p. 541)

API Version 2006-03-01
531

https://aws.amazon.com/sns/
https://aws.amazon.com/sqs/
https://aws.amazon.com/lambda/

Amazon Simple Storage Service Developer Guide
How to Enable Event Notifications

• Example Walkthrough 2: Configure a Bucket for Notifications (Message Destination: AWS
Lambda) (p. 546)

How to Enable Event Notifications
Enabling notifications is a bucket-level operation; that is, you store notification configuration
information in the notification subresource associated with a bucket. You can use any of the following
methods to manage notification configuration:

• Using the Amazon S3 console

The console UI enables you to set a notification configuration on a bucket without having to write any
code. For instruction, see How Do I Enable and Configure Event Notifications for an S3 Bucket? in the
Amazon Simple Storage Service Console User Guide.

• Programmatically using the AWS SDKs

Note
If you need to, you can also make the Amazon S3 REST API calls directly from your code.
However, this can be cumbersome because it requires you to write code to authenticate your
requests.

Internally, both the console and the SDKs call the Amazon S3 REST API to manage notification
subresources associated with the bucket. For notification configuration using AWS SDK examples, see
the walkthrough link provided in the preceding section.

Regardless of the method you use, Amazon S3 stores the notification configuration as XML in the
notification subresource associated with a bucket. For information about bucket subresources, see
Bucket Configuration Options (p. 56)). By default, notifications are not enabled for any type of event.
Therefore, initially the notification subresource stores an empty configuration.

<NotificationConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
</NotificationConfiguration>

To enable notifications for events of specific types, you replace the XML with the appropriate
configuration that identifies the event types you want Amazon S3 to publish and the destination
where you want the events published. For each destination, you add a corresponding XML
configuration. For example:
• Publish event messages to an SQS queue—To set an SQS queue as the notification destination for

one or more event types, you add the QueueConfiguration.

<NotificationConfiguration>
 <QueueConfiguration>
 <Id>optional-id-string</Id>
 <Queue>sqs-queue-arn</Queue>
 <Event>event-type</Event>
 <Event>event-type</Event>
 ...
 </QueueConfiguration>
 ...
</NotificationConfiguration>

• Publish event messages to an SNS topic—To set an SNS topic as the notification destination for
specific event types, you add the TopicConfiguration.

<NotificationConfiguration>
 <TopicConfiguration>
 <Id>optional-id-string</Id>

API Version 2006-03-01
532

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-event-notifications.html

Amazon Simple Storage Service Developer Guide
Event Notification Types and Destinations

 <Topic>sns-topic-arn</Topic>
 <Event>event-type</Event>
 <Event>event-type</Event>
 ...
 </TopicConfiguration>
 ...
</NotificationConfiguration>

• Invoke the AWS Lambda function and provide an event message as an argument—To set
a Lambda function as the notification destination for specific event types, you add the
CloudFunctionConfiguration.

<NotificationConfiguration>
 <CloudFunctionConfiguration>
 <Id>optional-id-string</Id>
 <Cloudcode>cloud-function-arn</Cloudcode>
 <Event>event-type</Event>
 <Event>event-type</Event>
 ...
 </CloudFunctionConfiguration>
 ...
</NotificationConfiguration>

To remove all notifications configured on a bucket, you save an empty
<NotificationConfiguration/> element in the notification subresource.

When Amazon S3 detects an event of the specific type, it publishes a message with the event
information. For more information, see Event Message Structure (p. 546).

Event Notification Types and Destinations
This section describes the event notification types that are supported by Amazon S3 and the type of
destinations where the notifications can be published.

Supported Event Types
Amazon S3 can publish events of the following types. You specify these event types in the notification
configuration.

Event types Description

s3:ObjectCreated:*

s3:ObjectCreated:Put

s3:ObjectCreated:Post

s3:ObjectCreated:Copy

s3:ObjectCreated:CompleteMultipartUpload

Amazon S3 APIs such as PUT, POST, and COPY can create an
object. Using these event types, you can enable notification
when an object is created using a specific API, or you can
use the s3:ObjectCreated:* event type to request notification
regardless of the API that was used to create an object.

You will not receive event notifications from failed operations.

s3:ObjectRemoved:*

s3:ObjectRemoved:Delete

s3:ObjectRemoved:DeleteMarkerCreated

By using the ObjectRemoved event types, you can enable
notification when an object or a batch of objects is removed
from a bucket.

You can request notification when an object is deleted or
a versioned object is permanently deleted by using the

API Version 2006-03-01
533

Amazon Simple Storage Service Developer Guide
Supported Destinations

Event types Description

s3:ObjectRemoved:Delete event type. Or you can request
notification when a delete marker is created for a versioned
object by using s3:ObjectRemoved:DeleteMarkerCreated.
For information about deleting versioned objects, see
Deleting Object Versions (p. 444). You can also use a wildcard
s3:ObjectRemoved:* to request notification anytime an
object is deleted.

You will not receive event notifications from automatic deletes
from lifecycle policies or from failed operations.

s3:ObjectRestore:Post

s3:ObjectRestore:Completed

Using restore object event types you can receive notifications
for initiation and completion when restoring objects from the
GLACIER storage class.

You use s3:ObjectRestore:Post to request
notification of object restoration initiation. You use
s3:ObjectRestore:Completed to request notification of
restoration completion.

s3:ReducedRedundancyLostObject You can use this event type to request Amazon S3 to send a
notification message when Amazon S3 detects that an object
of the RRS storage class is lost.

Supported Destinations
Amazon S3 can send event notification messages to the following destinations. You specify the ARN
value of these destinations in the notification configuration.

• Publish event messages to an Amazon Simple Notification Service (Amazon SNS) topic
• Publish event messages to an Amazon Simple Queue Service (Amazon SQS) queue

Note
If the destination queue or topic is SSE enabled, Amazon S3 will need access to the associated
KMS key to enable message encryption.

• Publish event messages to AWS Lambda by invoking a Lambda function and providing the event
message as an argument

You must grant Amazon S3 permissions to post messages to an Amazon SNS topic or an Amazon
SQS queue. You must also grant Amazon S3 permission to invoke an AWS Lambda function on your
behalf. For information about granting these permissions, see Granting Permissions to Publish Event
Notification Messages to a Destination (p. 539).

Configuring Notifications with Object Key Name
Filtering

You can configure notifications to be filtered by the prefix and suffix of the key name of objects. For
example, you can set up a configuration so that you are sent a notification only when image files with
a ".jpg" extension are added to a bucket. Or you can have a configuration that delivers a notification to
an Amazon SNS topic when an object with the prefix "images/" is added to the bucket, while having
notifications for objects with a "logs/" prefix in the same bucket delivered to an AWS Lambda function.

API Version 2006-03-01
534

Amazon Simple Storage Service Developer Guide
Examples of Valid Notification Configurations

with Object Key Name Filtering

You can set up notification configurations that use object key name filtering in the Amazon S3 console
and by using Amazon S3 APIs through the AWS SDKs or the REST APIs directly. For information about
using the console UI to set a notification configuration on a bucket, see How Do I Enable and Configure
Event Notifications for an S3 Bucket? in the Amazon Simple Storage Service Console User Guide.

Amazon S3 stores the notification configuration as XML in the notification subresource associated with a
bucket as described in How to Enable Event Notifications (p. 532). You use the Filter XML structure
to define the rules for notifications to be filtered by the prefix and/or suffix of an object key name. For
information about the details of the Filter XML structure, see PUT Bucket notification in the Amazon
Simple Storage Service API Reference.

Notification configurations that use Filter cannot define filtering rules with overlapping prefixes,
overlapping suffixes, or prefix and suffix overlapping. The following sections have examples of valid
notification configurations with object key name filtering and examples of notification configurations
that are invalid because of prefix/suffix overlapping.

Examples of Valid Notification Configurations with
Object Key Name Filtering
The following notification configuration contains a queue configuration identifying an Amazon SQS
queue for Amazon S3 to publish events to of the s3:ObjectCreated:Put type. The events will be
published whenever an object that has a prefix of images/ and a jpg suffix is PUT to a bucket.

<NotificationConfiguration>
 <QueueConfiguration>
 <Id>1</Id>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>prefix</Name>
 <Value>images/</Value>
 </FilterRule>
 <FilterRule>
 <Name>suffix</Name>
 <Value>jpg</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 <Queue>arn:aws:sqs:us-west-2:444455556666:s3notificationqueue</Queue>
 <Event>s3:ObjectCreated:Put</Event>
 </QueueConfiguration>
</NotificationConfiguration>

The following notification configuration has multiple non-overlapping prefixes. The configuration
defines that notifications for PUT requests in the images/ folder will go to queue-A while notifications
for PUT requests in the logs/ folder will go to queue-B.

<NotificationConfiguration>
 <QueueConfiguration>
 <Id>1</Id>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>prefix</Name>
 <Value>images/</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 <Queue>arn:aws:sqs:us-west-2:444455556666:sqs-queue-A</Queue>
 <Event>s3:ObjectCreated:Put</Event>

API Version 2006-03-01
535

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-event-notifications.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-event-notifications.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTnotification.html

Amazon Simple Storage Service Developer Guide
Examples of Valid Notification Configurations

with Object Key Name Filtering

 </QueueConfiguration>
 <QueueConfiguration>
 <Id>2</Id>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>prefix</Name>
 <Value>logs/</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 <Queue>arn:aws:sqs:us-west-2:444455556666:sqs-queue-B</Queue>
 <Event>s3:ObjectCreated:Put</Event>
 </QueueConfiguration>
</NotificationConfiguration>

The following notification configuration has multiple non-overlapping suffixes. The configuration defines
that all .jpg images newly added to the bucket will be processed by Lambda cloud-function-A and all
newly added .png images will be processed by cloud-function-B. The suffixes .png and .jpg are not
overlapping even though they have the same last letter. Two suffixes are considered overlapping if a
given string can end with both suffixes. A string cannot end with both .png and .jpg so the suffixes in the
example configuration are not overlapping suffixes.

<NotificationConfiguration>
 <CloudFunctionConfiguration>
 <Id>1</Id>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>suffix</Name>
 <Value>.jpg</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 <Cloudcode>arn:aws:lambda:us-west-2:444455556666:cloud-function-A</Cloudcode>
 <Event>s3:ObjectCreated:Put</Event>
 </CloudFunctionConfiguration>
 <CloudFunctionConfiguration>
 <Id>2</Id>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>suffix</Name>
 <Value>.png</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 <Cloudcode>arn:aws:lambda:us-west-2:444455556666:cloud-function-B</Cloudcode>
 <Event>s3:ObjectCreated:Put</Event>
 </CloudFunctionConfiguration>
</NotificationConfiguration>

Your notification configurations that use Filter cannot define filtering rules with overlapping prefixes
for the same event types, unless the overlapping prefixes are used with suffixes that do not overlap. The
following example configuration shows how objects created with a common prefix but non-overlapping
suffixes can be delivered to different destinations.

<NotificationConfiguration>
 <CloudFunctionConfiguration>
 <Id>1</Id>
 <Filter>
 <S3Key>

API Version 2006-03-01
536

Amazon Simple Storage Service Developer Guide
Examples of Notification Configurations
with Invalid Prefix/Suffix Overlapping

 <FilterRule>
 <Name>prefix</Name>
 <Value>images</Value>
 </FilterRule>
 <FilterRule>
 <Name>suffix</Name>
 <Value>.jpg</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 <Cloudcode>arn:aws:lambda:us-west-2:444455556666:cloud-function-A</Cloudcode>
 <Event>s3:ObjectCreated:Put</Event>
 </CloudFunctionConfiguration>
 <CloudFunctionConfiguration>
 <Id>2</Id>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>prefix</Name>
 <Value>images</Value>
 </FilterRule>
 <FilterRule>
 <Name>suffix</Name>
 <Value>.png</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 <Cloudcode>arn:aws:lambda:us-west-2:444455556666:cloud-function-B</Cloudcode>
 <Event>s3:ObjectCreated:Put</Event>
 </CloudFunctionConfiguration>
</NotificationConfiguration>

Examples of Notification Configurations with Invalid
Prefix/Suffix Overlapping
Your notification configurations that use Filter, for the most part, cannot define filtering rules with
overlapping prefixes, overlapping suffixes, or overlapping combinations of prefixes and suffixes for the
same event types. (You can have overlapping prefixes as long as the suffixes do not overlap. For an
example, see Configuring Notifications with Object Key Name Filtering (p. 534).)

You can use overlapping object key name filters with different event types. For example, you could create
a notification configuration that uses the prefix image/ for the ObjectCreated:Put event type and
the prefix image/ for the ObjectDeleted:* event type.

You will get an error if you try to save a notification configuration that has invalid overlapping name
filters for the same event types, when using the AWS Amazon S3 console or when using the Amazon S3
API. This section shows examples of notification configurations that are invalid because of overlapping
name filters.

Any existing notification configuration rule is assumed to have a default prefix and suffix that match
any other prefix and suffix respectively. The following notification configuration is invalid because it has
overlapping prefixes, where the root prefix overlaps with any other prefix. (The same thing would be true
if we were using suffix instead of prefix in this example. The root suffix overlaps with any other suffix.)

<NotificationConfiguration>
 <TopicConfiguration>
 <Topic>arn:aws:sns:us-west-2:444455556666:sns-notification-one</Topic>
 <Event>s3:ObjectCreated:*</Event>
 </TopicConfiguration>
 <TopicConfiguration>
 <Topic>arn:aws:sns:us-west-2:444455556666:sns-notification-two</Topic>

API Version 2006-03-01
537

Amazon Simple Storage Service Developer Guide
Examples of Notification Configurations
with Invalid Prefix/Suffix Overlapping

 <Event>s3:ObjectCreated:*</Event>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>prefix</Name>
 <Value>images</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 </TopicConfiguration>
</NotificationConfiguration>

The following notification configuration is invalid because it has overlapping suffixes. Two suffixes are
considered overlapping if a given string can end with both suffixes. A string can end with jpg and pg so
the suffixes are overlapping. (The same is true for prefixes, two prefixes are considered overlapping if a
given string can begin with both prefixes.)

 <NotificationConfiguration>
 <TopicConfiguration>
 <Topic>arn:aws:sns:us-west-2:444455556666:sns-topic-one</Topic>
 <Event>s3:ObjectCreated:*</Event>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>suffix</Name>
 <Value>jpg</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 </TopicConfiguration>
 <TopicConfiguration>
 <Topic>arn:aws:sns:us-west-2:444455556666:sns-topic-two</Topic>
 <Event>s3:ObjectCreated:Put</Event>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>suffix</Name>
 <Value>pg</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 </TopicConfiguration>
</NotificationConfiguration

The following notification configuration is invalid because it has overlapping prefixes and suffixes.

<NotificationConfiguration>
 <TopicConfiguration>
 <Topic>arn:aws:sns:us-west-2:444455556666:sns-topic-one</Topic>
 <Event>s3:ObjectCreated:*</Event>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>prefix</Name>
 <Value>images</Value>
 </FilterRule>
 <FilterRule>
 <Name>suffix</Name>
 <Value>jpg</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 </TopicConfiguration>

API Version 2006-03-01
538

Amazon Simple Storage Service Developer Guide
Granting Permissions to Publish Event
Notification Messages to a Destination

 <TopicConfiguration>
 <Topic>arn:aws:sns:us-west-2:444455556666:sns-topic-two</Topic>
 <Event>s3:ObjectCreated:Put</Event>
 <Filter>
 <S3Key>
 <FilterRule>
 <Name>suffix</Name>
 <Value>jpg</Value>
 </FilterRule>
 </S3Key>
 </Filter>
 </TopicConfiguration>
</NotificationConfiguration>

Granting Permissions to Publish Event Notification
Messages to a Destination

Before Amazon S3 can publish messages to a destination, you must grant the Amazon S3 principal the
necessary permissions to call the relevant API to publish messages to an SNS topic, an SQS queue, or a
Lambda function.

Granting Permissions to Invoke an AWS Lambda
Function
Amazon S3 publishes event messages to AWS Lambda by invoking a Lambda function and providing the
event message as an argument.

When you use the Amazon S3 console to configure event notifications on an Amazon S3 bucket for a
Lambda function, the Amazon S3 console will set up the necessary permissions on the Lambda function
so that Amazon S3 has permissions to invoke the function from the bucket. For more information, see
How Do I Enable and Configure Event Notifications for an S3 Bucket? in the Amazon Simple Storage
Service Console User Guide.

You can also grant Amazon S3 permissions from AWS Lambda to invoke your Lambda function. For more
information, see Tutorial: Using AWS Lambda with Amazon S3 in the AWS Lambda Developer Guide.

Granting Permissions to Publish Messages to an SNS
Topic or an SQS Queue
You attach an IAM policy to the destination SNS topic or SQS queue to grant Amazon S3 permissions to
publish messages to the SNS topic or SQS queue.

Example of an IAM policy that you attach to the destination SNS topic.

{
 "Version": "2008-10-17",
 "Id": "example-ID",
 "Statement": [
 {
 "Sid": "example-statement-ID",
 "Effect": "Allow",
 "Principal": {
 "Service": "s3.amazonaws.com"
 },

API Version 2006-03-01
539

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-event-notifications.html
https://docs.aws.amazon.com/lambda/latest/dg/with-s3-example.html

Amazon Simple Storage Service Developer Guide
Granting Permissions to Publish Messages

to an SNS Topic or an SQS Queue

 "Action": [
 "SNS:Publish"
],
 "Resource": "arn:aws:sns:REGION:ACCOUNT-ID:TOPICNAME",
 "Condition": {
 "ArnLike": { "aws:SourceArn": "arn:aws:s3:*:*:bucket-name" }
 }
 }
]
}

Example of an IAM policy that you attach to the destination SQS queue.

{
 "Version": "2008-10-17",
 "Id": "example-ID",
 "Statement": [
 {
 "Sid": "example-statement-ID",
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": [
 "SQS:SendMessage"
],
 "Resource": "arn:aws:sqs:REGION:ACCOUNT-ID:QUEUENAMEHERE",
 "Condition": {
 "ArnLike": { "aws:SourceArn": "arn:aws:s3:*:*:bucket-name" }
 }
 }
]
}

Note that for both the Amazon SNS and Amazon SQS IAM policies, you can specify the StringLike
condition in the policy, instead of the ArnLike condition.

"Condition": {
 "StringLike": { "aws:SourceArn": "arn:aws:s3:*:*:bucket-name" }
 }

Example of a key policy that you attach to the associated KMS key if the SQS queue is SSE enabled.

{
 "Version": "2012-10-17",
 "Id": "example-ID",
 "Statement": [
 {
 "Sid": "example-statement-ID",
 "Effect": "Allow",
 "Principal": {
 "Service": "s3.amazonaws.com"
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "*"
 }
]
}

API Version 2006-03-01
540

Amazon Simple Storage Service Developer Guide
Example Walkthrough 1

The policy grants Amazon S3 service principal permission for specific KMS actions that are necessary to
encrypt messages added to the queue.

For an example of how to attach a policy to a SNS topic or an SQS queue, see Example Walkthrough 1:
Configure a Bucket for Notifications (Message Destination: SNS Topic and SQS Queue) (p. 541).

For more information about permissions, see the following topics:

• Example Cases for Amazon SNS Access Control in the Amazon Simple Notification Service Developer
Guide

• Access Control Using AWS Identity and Access Management (IAM) in the Amazon Simple Queue Service
Developer Guide

Example Walkthrough 1: Configure a Bucket for
Notifications (Message Destination: SNS Topic and
SQS Queue)

Topics

• Walkthrough Summary (p. 541)

• Step 1: Create an Amazon SNS Topic (p. 542)

• Step 2: Create an Amazon SQS Queue (p. 542)

• Step 3: Add a Notification Configuration to Your Bucket (p. 544)

• Step 4: Test the Setup (p. 546)

Walkthrough Summary
In this walkthrough you add notification configuration on a bucket requesting Amazon S3 to:

• Publish events of the s3:ObjectCreated:* type to an Amazon SQS queue.

• Publish events of the s3:ReducedRedundancyLostObject type to an Amazon SNS topic.

For information about notification configuration, see Configuring Amazon S3 Event
Notifications (p. 530).

You can do all these steps using the console, without writing any code. In addition, code examples,
using AWS SDKs for Java and .NET are also provided so you can add notification configuration
programmatically.

You will do the following in this walkthrough:

1. Create an Amazon SNS topic.

Using the Amazon SNS console, you create an SNS topic and subscribe to the topic so that any events
posted to it are delivered to you. You will specify email as the communications protocol. After you
create a topic, Amazon SNS will send an email. You must click a link in the email to confirm the topic
subscription.

You will attach an access policy to the topic to grant Amazon S3 permission to post messages.

2. Create an Amazon SQS queue.

API Version 2006-03-01
541

https://docs.aws.amazon.com/sns/latest/dg/AccessPolicyLanguage_UseCases_Sns.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/UsingIAM.html

Amazon Simple Storage Service Developer Guide
Step 1: Create an Amazon SNS Topic

Using the Amazon SQS console, you create an SQS queue. You can access any messages Amazon S3
sends to the queue programmatically. But for this walkthrough, you will verify notification messages
in the console.

You will attach an access policy to the topic to grant Amazon S3 permission to post messages.

3. Add notification configuration to a bucket.

Step 1: Create an Amazon SNS Topic
Follow the steps to create and subscribe to an Amazon Simple Notification Service (Amazon SNS) topic.

1. Using Amazon SNS console create a topic. For instructions, see Create a Topic in the Amazon Simple
Notification Service Developer Guide.

2. Subscribe to the topic. For this exercise, use email as the communications protocol. For instructions,
see Subscribe to a Topic in the Amazon Simple Notification Service Developer Guide.

You will get email requesting you to confirm your subscription to the topic. Confirm the subscription.

3. Replace the access policy attached to the topic with the following policy. You must update the policy
by providing your SNS topic Amazon Resource Name (ARN) and bucket name:

{
 "Version": "2008-10-17",
 "Id": "example-ID",
 "Statement": [
 {
 "Sid": "example-statement-ID",
 "Effect": "Allow",
 "Principal": {
 "AWS":"*"
 },
 "Action": [
 "SNS:Publish"
],
 "Resource": "SNS-topic-ARN",
 "Condition": {
 "ArnLike": { "aws:SourceArn": "arn:aws:s3:*:*:bucket-name" }
 }
 }
]
}

4. Note the topic ARN.

The SNS topic you created is another resource in your AWS account, and it has a unique Amazon
Resource Name (ARN). You will need this ARN in the next step. The ARN will be of the following
format:

arn:aws:sns:aws-region:account-id:topic-name

Step 2: Create an Amazon SQS Queue
Follow the steps to create and subscribe to an Amazon Simple Queue Service (Amazon SQS) queue.

1. Using the Amazon SQS console, create a queue. For instructions, see Getting Started with Amazon
SQS in the Amazon Simple Queue Service Developer Guide.

API Version 2006-03-01
542

https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
https://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-getting-started.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-getting-started.html

Amazon Simple Storage Service Developer Guide
Step 2: Create an Amazon SQS Queue

2. Replace the access policy attached to the queue with the following policy (in the SQS console, you
select the queue, and in the Permissions tab, click Edit Policy Document (Advanced).

{
 "Version": "2012-10-17",
 "Id": "example-ID",
 "Statement": [
 {
 "Sid": "example-statement-ID",
 "Effect": "Allow",
 "Principal": {
 "AWS":"*"
 },
 "Action": [
 "SQS:SendMessage"
],
 "Resource": "SQS-queue-ARN",
 "Condition": {
 "ArnLike": { "aws:SourceArn": "arn:aws:s3:*:*:bucket-name" }
 }
 }
]
}

3. (Optional) If the Amazon SQS queue is server-side encryption (SSE) enabled, add the following
policy to the associated custom AWS Key Management Service (AWS KMS) customer master key
(CMK). You must add the policy to a custom CMK because the default AWS managed CMK for
Amazon SQS cannot be modified. For more information about using SSE for Amazon SQS with AWS
KMS, see Protecting Data Using Server-Side Encryption (SSE) and AWS KMS.

{
 "Version": "2012-10-17",
 "Id": "example-ID",
 "Statement": [
 {
 "Sid": "example-statement-ID",
 "Effect": "Allow",
 "Principal": {
 "Service": "s3.amazonaws.com"
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "*"
 }
]
}

4. Note the queue ARN.

The SQS queue you created is another resource in your AWS account, and it has a unique Amazon
Resource Name (ARN). You will need this ARN in the next step. The ARN will be of the following
format:

arn:aws:sqs:aws-region:account-id:queue-name

API Version 2006-03-01
543

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-server-side-encryption.html

Amazon Simple Storage Service Developer Guide
Step 3: Add a Notification Configuration to Your Bucket

Step 3: Add a Notification Configuration to Your
Bucket
You can enable bucket notifications either by using the Amazon S3 console or programmatically by
using AWS SDKs. Choose any one of the options to configure notifications on your bucket. This section
provides code examples using the AWS SDKs for Java and .NET.

Step 3 (option a): Enable Notifications on a Bucket Using the
Console
Using the Amazon S3 console, add a notification configuration requesting Amazon S3 to:

• Publish events of the s3:ObjectCreated:* type to your Amazon SQS queue.
• Publish events of the s3:ReducedRedundancyLostObject type to your Amazon SNS topic.

After you save the notification configuration, Amazon S3 will post a test message, which you will get via
email.

For instructions, see How Do I Enable and Configure Event Notifications for an S3 Bucket? in the Amazon
Simple Storage Service Console User Guide.

Step 3 (option b): Enable Notifications on a Bucket Using the
AWS SDK for .NET
The following C# code example provides a complete code listing that adds a notification configuration
to a bucket. You will need to update the code and provide your bucket name and SNS topic ARN. For
information about how to create and test a working sample, see Running the Amazon S3 .NET Code
Examples (p. 678).

Example

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class EnableNotificationsTest
 {
 private const string bucketName = "*** bucket name ***";
 private const string snsTopic = "*** SNS topic ARN ***";
 private const string sqsQueue = "*** SQS topic ARN ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 client;

 public static void Main()
 {
 client = new AmazonS3Client(bucketRegion);
 EnableNotificationAsync().Wait();
 }

 static async Task EnableNotificationAsync()
 {

API Version 2006-03-01
544

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-event-notifications.html

Amazon Simple Storage Service Developer Guide
Step 3: Add a Notification Configuration to Your Bucket

 try
 {
 PutBucketNotificationRequest request = new PutBucketNotificationRequest
 {
 BucketName = bucketName
 };

 TopicConfiguration c = new TopicConfiguration
 {
 Events = new List<EventType> { EventType.ObjectCreatedCopy },
 Topic = snsTopic
 };
 request.TopicConfigurations = new List<TopicConfiguration>();
 request.TopicConfigurations.Add(c);
 request.QueueConfigurations = new List<QueueConfiguration>();
 request.QueueConfigurations.Add(new QueueConfiguration()
 {
 Events = new List<EventType> { EventType.ObjectCreatedPut },
 Queue = sqsQueue
 });

 PutBucketNotificationResponse response = await
 client.PutBucketNotificationAsync(request);
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Error encountered on server. Message:'{0}' ",
 e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown error encountered on server. Message:'{0}' ",
 e.Message);
 }
 }
 }
}

Step 3 (option c): Enable Notifications on a Bucket Using the
AWS SDK for Java
The following example shows how to add a notification configuration to a bucket. For instructions on
creating and testing a working sample, see Testing the Amazon S3 Java Code Examples (p. 677).

Example

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3ClientBuilder;
import com.amazonaws.services.s3.model.*;

import java.io.IOException;
import java.util.EnumSet;

public class EnableNotificationOnABucket {

 public static void main(String[] args) throws IOException {
 String bucketName = "*** Bucket name ***";
 Regions clientRegion = Regions.DEFAULT_REGION;

API Version 2006-03-01
545

Amazon Simple Storage Service Developer Guide
Step 4: Test the Setup

 String snsTopicARN = "*** SNS Topic ARN ***";
 String sqsQueueARN = "*** SQS Queue ARN ***";

 try {
 AmazonS3 s3Client = AmazonS3ClientBuilder.standard()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();
 BucketNotificationConfiguration notificationConfiguration = new
 BucketNotificationConfiguration();

 // Add an SNS topic notification.
 notificationConfiguration.addConfiguration("snsTopicConfig",
 new TopicConfiguration(snsTopicARN,
 EnumSet.of(S3Event.ObjectCreated)));

 // Add an SQS queue notification.
 notificationConfiguration.addConfiguration("sqsQueueConfig",
 new QueueConfiguration(sqsQueueARN,
 EnumSet.of(S3Event.ObjectCreated)));

 // Create the notification configuration request and set the bucket
 notification configuration.
 SetBucketNotificationConfigurationRequest request = new
 SetBucketNotificationConfigurationRequest(
 bucketName, notificationConfiguration);
 s3Client.setBucketNotificationConfiguration(request);
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }
}

Step 4: Test the Setup
Now you can test the setup by uploading an object to your bucket and verify the event notification in
the Amazon SQS console. For instructions, see Receiving a Message in the Amazon Simple Queue Service
Developer Guide "Getting Started" section.

Example Walkthrough 2: Configure a Bucket for
Notifications (Message Destination: AWS Lambda)

For an example of using Amazon S3 notifications with AWS Lambda, see Using AWS Lambda with
Amazon S3 in the AWS Lambda Developer Guide.

Event Message Structure
The notification message that Amazon S3 sends to publish an event is in the JSON format. The following
example shows the structure of the JSON message.

API Version 2006-03-01
546

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-getting-started.htmlReceiveMessage.html
https://docs.aws.amazon.com/lambda/latest/dg/with-s3.html
https://docs.aws.amazon.com/lambda/latest/dg/with-s3.html

Amazon Simple Storage Service Developer Guide
Event Message Structure

Note the following about the example:

• The eventVersion key value contains a major and minor version in the form <major>.<minor>.

The major version is incremented if Amazon S3 makes a change to the event structure that is not
backward compatible. This includes removing a JSON field that is already present or changing how the
contents of a field are represented (for example, a date format).

The minor version is incremented if Amazon S3 adds new fields to the event structure. This might
occur if new information is provided for some or all existing events, or if new information is provided
on only newly introduced event types. Applications should ignore new fields to stay forward
compatible with new minor versions of the event structure.

If new event types are introduced but the structure of the event is otherwise unmodified, the event
version does not change.

To ensure that your applications can parse the event structure correctly, we recommend that you
do an equal-to comparison on the major version number. To ensure that the fields expected by your
application are present, we also recommend doing a greater-than-or-equal-to comparison on the
minor version.

• The responseElements key value is useful if you want to trace a request by following up with AWS
Support. Both x-amz-request-id and x-amz-id-2 help Amazon S3 trace an individual request.
These values are the same as those that Amazon S3 returns in the response to the request that
initiates the events, so they can be used to match the event to the request.

• The s3 key provides information about the bucket and object involved in the event. The object key
name value is URL encoded. For example, "red flower.jpg" becomes "red+flower.jpg" (Amazon S3
returns "application/x-www-form-urlencoded" as the content type in the response).

• The sequencer key provides a way to determine the sequence of events. Event notifications are not
guaranteed to arrive in the order that the events occurred. However, notifications from events that
create objects (PUTs) and delete objects contain a sequencer, which can be used to determine the
order of events for a given object key.

If you compare the sequencer strings from two event notifications on the same object key, the event
notification with the greater sequencer hexadecimal value is the event that occurred later. If you are
using event notifications to maintain a separate database or index of your Amazon S3 objects, you will
probably want to compare and store the sequencer values as you process each event notification.

Note the following:

• You cannot use sequencer to determine order for events on different object keys.

• The sequencers can be of different lengths. So to compare these values, you first left pad the shorter
value with zeros, and then do a lexicographical comparison.

• The glacierEventData key is only visible for s3:ObjectRestore:Completed events.

• The restoreEventData key contains attributes related to your restore request.

The following example shows version 2.1 of the event message JSON structure, which is the version
currently being used by Amazon S3.API Version 2006-03-01

547

Amazon Simple Storage Service Developer Guide
Event Message Structure

{
 "Records":[
 {
 "eventVersion":"2.1",
 "eventSource":"aws:s3",
 "awsRegion":"us-west-2",
 "eventTime":The time, in ISO-8601 format, for example, 1970-01-01T00:00:00.000Z,
 when Amazon S3 finished processing the request,
 "eventName":"event-type",
 "userIdentity":{
 "principalId":"Amazon-customer-ID-of-the-user-who-caused-the-event"
 },
 "requestParameters":{
 "sourceIPAddress":"ip-address-where-request-came-from"
 },
 "responseElements":{
 "x-amz-request-id":"Amazon S3 generated request ID",
 "x-amz-id-2":"Amazon S3 host that processed the request"
 },
 "s3":{
 "s3SchemaVersion":"1.0",
 "configurationId":"ID found in the bucket notification configuration",
 "bucket":{
 "name":"bucket-name",
 "ownerIdentity":{
 "principalId":"Amazon-customer-ID-of-the-bucket-owner"
 },
 "arn":"bucket-ARN"
 },
 "object":{
 "key":"object-key",
 "size":object-size,
 "eTag":"object eTag",
 "versionId":"object version if bucket is versioning-enabled, otherwise
 null",
 "sequencer": "a string representation of a hexadecimal value used to
 determine event sequence,
 only used with PUTs and DELETEs"
 }
 },
 "glacierEventData": {
 "restoreEventData": {
 "lifecycleRestorationExpiryTime": "The time, in ISO-8601 format, for
 example, 1970-01-01T00:00:00.000Z, of Restore Expiry",
 "lifecycleRestoreStorageClass": "Source storage class for restore"
 }
 }
 }
]
}

The following example shows version 2.0 of the event message structure, which is no longer used by
Amazon S3.

{
 "Records":[
 {
 "eventVersion":"2.0",
 "eventSource":"aws:s3",
 "awsRegion":"us-west-2",
 "eventTime":The time, in ISO-8601 format, for example, 1970-01-01T00:00:00.000Z,
 when S3 finished processing the request,
 "eventName":"event-type",
 "userIdentity":{

API Version 2006-03-01
548

Amazon Simple Storage Service Developer Guide
Event Message Structure

 "principalId":"Amazon-customer-ID-of-the-user-who-caused-the-event"
 },
 "requestParameters":{
 "sourceIPAddress":"ip-address-where-request-came-from"
 },
 "responseElements":{
 "x-amz-request-id":"Amazon S3 generated request ID",
 "x-amz-id-2":"Amazon S3 host that processed the request"
 },
 "s3":{
 "s3SchemaVersion":"1.0",
 "configurationId":"ID found in the bucket notification configuration",
 "bucket":{
 "name":"bucket-name",
 "ownerIdentity":{
 "principalId":"Amazon-customer-ID-of-the-bucket-owner"
 },
 "arn":"bucket-ARN"
 },
 "object":{
 "key":"object-key",
 "size":object-size,
 "eTag":"object eTag",
 "versionId":"object version if bucket is versioning-enabled, otherwise
 null",
 "sequencer": "a string representation of a hexadecimal value used to
 determine event sequence,
 only used with PUTs and DELETEs"
 }
 }
 }
]
}

The following are example messages:

• Test message—When you configure an event notification on a bucket, Amazon S3 sends the following
test message:

{
 "Service":"Amazon S3",
 "Event":"s3:TestEvent",
 "Time":"2014-10-13T15:57:02.089Z",
 "Bucket":"bucketname",
 "RequestId":"5582815E1AEA5ADF",
 "HostId":"8cLeGAmw098X5cv4Zkwcmo8vvZa3eH3eKxsPzbB9wrR+YstdA6Knx4Ip8EXAMPLE"
}

• Example message when an object is created using the PUT request—The following message is an
example of a message Amazon S3 sends to publish an s3:ObjectCreated:Put event:

{
 "Records":[
 {
 "eventVersion":"2.1",
 "eventSource":"aws:s3",
 "awsRegion":"us-west-2",
 "eventTime":"1970-01-01T00:00:00.000Z",
 "eventName":"ObjectCreated:Put",
 "userIdentity":{
 "principalId":"AIDAJDPLRKLG7UEXAMPLE"
 },
 "requestParameters":{

API Version 2006-03-01
549

Amazon Simple Storage Service Developer Guide
Event Message Structure

 "sourceIPAddress":"127.0.0.1"
 },
 "responseElements":{
 "x-amz-request-id":"C3D13FE58DE4C810",
 "x-amz-id-2":"FMyUVURIY8/IgAtTv8xRjskZQpcIZ9KG4V5Wp6S7S/
JRWeUWerMUE5JgHvANOjpD"
 },
 "s3":{
 "s3SchemaVersion":"1.0",
 "configurationId":"testConfigRule",
 "bucket":{
 "name":"mybucket",
 "ownerIdentity":{
 "principalId":"A3NL1KOZZKExample"
 },
 "arn":"arn:aws:s3:::mybucket"
 },
 "object":{
 "key":"HappyFace.jpg",
 "size":1024,
 "eTag":"d41d8cd98f00b204e9800998ecf8427e",
 "versionId":"096fKKXTRTtl3on89fVO.nfljtsv6qko",
 "sequencer":"0055AED6DCD90281E5"
 }
 }
 }
]
}

API Version 2006-03-01
550

Amazon Simple Storage Service Developer Guide
Types of Object Replication

Replication
Replication enables automatic, asynchronous copying of objects across Amazon S3 buckets. Buckets that
are configured for object replication can be owned by the same AWS account or by different accounts.
You can copy objects between different AWS Regions or within the same Region.

To enable object replication, you use a bucket-level configuration. You add the replication configuration
to your source bucket. The minimum configuration must provide the following:

• The destination bucket where you want Amazon S3 to replicate objects
• An AWS Identity and Access Management (IAM) role that Amazon S3 can assume to replicate objects

on your behalf

Additional configuration options are available. For more information, see Additional Replication
Configurations (p. 567).

Types of Object Replication
You can replicate objects between different AWS Regions or within the same AWS Region.

• Cross-Region replication (CRR) is used to copy objects across Amazon S3 buckets in different AWS
Regions.

• Same-Region replication (SRR) is used to copy objects across Amazon S3 buckets in the same AWS
Region.

When to Use Replication
Replication can help you do the following:

• Replicate objects while retaining metadata—Replicating objects via AWS Lambda functions can
be useful. However, they don't retain object metadata such as the original object creation time and
version IDs. Replication offers a simpler and more automated way to replicate objects that retains this
metadata.

• Replicate objects into different storage classes—You can use replication to directly put objects into

Glacier, DEEP ARCHIVE, or another storage class in the destination bucket. You can also replicate
your data to the same storage class and use lifecycle policies on the destination bucket to move your
objects to a colder storage class as it ages.

• Maintain object copies under different ownership—Regardless of who owns the source object, you

can tell Amazon S3 to change replica ownership to the AWS account that owns the destination bucket.
This is referred to as the owner override option. You can use this option to restrict access to object
replicas.

When to Use CRR
Cross-Region replication can help you do the following:

API Version 2006-03-01
551

Amazon Simple Storage Service Developer Guide
When to Use SRR

• Meet compliance requirements—Although Amazon S3 stores your data across multiple
geographically distant Availability Zones by default, compliance requirements might dictate that you
store data at even greater distances. Cross-Region replication allows you to replicate data between
distant AWS Regions to satisfy these requirements.

• Minimize latency—If your customers are in two geographic locations, you can minimize latency in

accessing objects by maintaining object copies in AWS Regions that are geographically closer to your
users.

• Increase operational efficiency—If you have compute clusters in two different AWS Regions that

analyze the same set of objects, you might choose to maintain object copies in those Regions.

When to Use SRR
Same-Region replication can help you do the following:

• Aggregate logs into a single bucket—If you
store logs in multiple buckets or across multiple accounts, you can easily replicate logs
into a single, in-Region bucket. This allows for simpler processing of logs by a single
account.

• Configure live replication between developer and test

accounts—If you or your customers have developer and test accounts
that use the same data, you can replicate objects between multiple accounts, while maintaining
object metadata, by implementing SRR rules.

• Abide by data sovereignty laws—Often customers are

required to store data in separate AWS accounts while being barred from letting
the data leave a certain Region. Same-Region replication can help you back up
critical data when compliance regulations don't allow the data to leave your
country.

Requirements for Replication
Replication requires the following:

• The source bucket owner must have the source and destination AWS Regions enabled for their
account. The destination bucket owner must have the destination Region enabled for their account.
For more information about enabling or disabling an AWS Region, see AWS Regions and Endpoints in
the AWS General Reference.

• Both source and destination buckets must have versioning enabled.
• Amazon S3 must have permissions to replicate objects from the source bucket to the destination

bucket on your behalf.
• If the owner of the source bucket doesn't own the object in the bucket, the object owner must grant

the bucket owner READ and READ_ACP permissions with the object access control list (ACL). For more
information, see Managing Access with ACLs (p. 403).

• If the source bucket has Amazon S3 object lock enabled, the destination bucket must also have object
lock enabled. For more information, see Locking Objects Using Amazon S3 Object Lock (p. 453).

API Version 2006-03-01
552

https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Simple Storage Service Developer Guide
What Does Amazon S3 Replicate?

To enable replication on a bucket that has object lock enabled, contact AWS Support.

For more information, see Overview of Setting Up Replication (p. 555).

If you are setting the replication configuration in a cross-account scenario, where source and destination
buckets are owned by different AWS accounts, the following additional requirement applies:

• The owner of the destination bucket must grant the owner of the source bucket permissions to
replicate objects with a bucket policy. For more information, see Granting Permissions When Source
and Destination Buckets Are Owned by Different AWS Accounts (p. 566).

What Does Amazon S3 Replicate?
Amazon S3 replicates only specific items in buckets that are configured for replication.

What Is Replicated?
Amazon S3 replicates the following:

• Objects created after you add a replication configuration, with exceptions described in the next
section.

• Both unencrypted objects and objects encrypted using Amazon S3 managed keys (SSE-S3) or AWS
KMS managed keys (SSE-KMS), although you must explicitly enable the option to replicate objects
encrypted using KMS keys. The replicated copy of the object is encrypted using the same type of
server-side encryption that was used for the source object. For more information about server-side
encryption, see Protecting Data Using Server-Side Encryption (p. 265).

• Object metadata.

• Only objects in the source bucket for which the bucket owner has permissions to read objects and
access control lists (ACLs). For more information about resource ownership, see Amazon S3 Bucket and
Object Ownership (p. 302).

• Object ACL updates, unless you direct Amazon S3 to change the replica ownership when source
and destination buckets aren't owned by the same accounts. For more information, see Additional
Replication Configuration: Changing the Replica Owner (p. 568)).

It can take a while until Amazon S3 can bring the two ACLs in sync. This applies only to objects created
after you add a replication configuration to the bucket.

• Object tags, if there are any.

API Version 2006-03-01
553

https://console.aws.amazon.com/support/home

Amazon Simple Storage Service Developer Guide
What Isn't Replicated?

• Amazon S3 object lock retention information, if there is any. When Amazon S3 replicates objects
that have retention information applied, it applies those same retention controls to your replicas,
overriding the default retention period configured on your destination bucket. If you don't have
retention controls applied to the objects in your source bucket, and you replicate into a destination
bucket that has a default retention period set, the destination bucket's default retention period is
applied to your object replicas. For more information, see Locking Objects Using Amazon S3 Object
Lock (p. 453).

How Delete Operations Affect Replication

If you delete an object from the source bucket, the following occurs:

• If you make a DELETE request without specifying an object version ID, Amazon S3 adds a delete
marker. Amazon S3 deals with the delete marker as follows:

• If you are using the latest version of the replication configuration (that is, you specify the Filter
element in a replication configuration rule), Amazon S3 does not replicate the delete marker.

• If you don't specify the Filter element, Amazon S3 assumes that the replication configuration
is an earlier version V1. In the earlier version, Amazon S3 handled replication of delete markers
differently. For more information, see Backward Compatibility (p. 563).

• If you specify an object version ID to delete in a DELETE request, Amazon S3 deletes that object
version in the source bucket. But it doesn't replicate the deletion in the destination bucket. In other
words, it doesn't delete the same object version from the destination bucket. This protects data from
malicious deletions.

What Isn't Replicated?
Amazon S3 doesn't replicate the following:

• Objects that existed before you added the replication configuration to the bucket. In other words,
Amazon S3 doesn't replicate objects retroactively.

• The following encrypted objects:

• Objects created with server-side encryption using customer-provided (SSE-C) encryption keys.

• Objects created with server-side encryption using AWS KMS managed encryption (SSE-KMS) keys. By
default, Amazon S3 does not replicate objects encrypted using KMS keys. However, you can explicitly
enable replication of these objects in the replication configuration, and provide relevant information
so that Amazon S3 can replicate these objects.

For more information about server-side encryption, see Protecting Data Using Server-Side
Encryption (p. 265).

• Objects that are stored in GLACIER or DEEP_ARCHIVE storage class. To learn more about the Amazon
S3 Glacier service, see the Amazon S3 Glacier Developer Guide.

• Objects in the source bucket that the bucket owner doesn't have permissions for (when the bucket
owner is not the owner of the object). For information about how an object owner can grant
permissions to a bucket owner, see Granting Cross-Account Permissions to Upload Objects While
Ensuring the Bucket Owner Has Full Control (p. 377).

API Version 2006-03-01

554

https://docs.aws.amazon.com/amazonglacier/latest/dev/

Amazon Simple Storage Service Developer Guide
Related Topics

• Updates to bucket-level subresources. For example, if you change the lifecycle configuration or add
a notification configuration to your source bucket, these changes are not applied to the destination
bucket. This makes it possible to have different configurations on source and destination buckets.

• Actions performed by lifecycle configuration.

For example, if lifecycle configuration is enabled only on your source bucket, Amazon S3 creates
delete markers for expired objects but doesn't replicate those markers. If you want the same lifecycle
configuration applied to both source and destination buckets, enable the same lifecycle configuration
on both.

For more information about lifecycle configuration, see Object Lifecycle Management (p. 119).

Note
If using the latest version of the replication configuration (the XML specifies Filter as
the child of Rule), delete markers created either by a user action or by Amazon S3 as
part of the lifecycle action are not replicated. However, if you are using an earlier version
of the replication configuration (the XML specifies Prefix as the child of Rule), delete
markers resulting from user actions are replicated. For more information, see Backward
Compatibility (p. 563).

• Objects in the source bucket that are replicas that were created by another replication rule.

You can replicate objects from a source bucket to only one destination bucket. After Amazon S3
replicates an object, the object can't be replicated again. For example, if you change the destination
bucket in an existing replication configuration, Amazon S3 won't replicate the object again.

Another example: Suppose that you configure replication where bucket A is the source and bucket B
is the destination. Now suppose that you add another replication configuration where bucket B is the
source and bucket C is the destination. In this case, objects in bucket B that are replicas of objects in
bucket A are not replicated to bucket C.

Related Topics
Replication (p. 551)

Overview of Setting Up Replication (p. 555)

Replication Status Information (p. 594)

Overview of Setting Up Replication
To enable replication, you simply add a replication configuration to your source bucket. The
configuration tells Amazon S3 to replicate objects as specified. In the replication configuration, you must
provide the following:

• The destination bucket—The bucket where you want Amazon S3 to replicate the objects.

• The objects that you want to replicate—You can replicate all of the objects in the source bucket or

a subset. You identify subset by providing a key name prefix, one or more object tags, or both in the
configuration. For example, if you configure a replication rule to replicate only objects with the key
name prefix Tax/, Amazon S3 replicates objects with keys such as Tax/doc1 or Tax/doc2. But it
doesn't replicate an object with the key Legal/doc3. If you specify both prefix and one or more tags,
Amazon S3 replicates only objects having the specific key prefix and tags.

API Version 2006-03-01
555

Amazon Simple Storage Service Developer Guide
Replication Configuration Overview

A replica has the same key names and metadata (for example, creation time, user-defined metadata, and
version ID) as the original object. Amazon S3 encrypts all data in transit using Secure Sockets Layer (SSL).

In addition to these minimum requirements, you can choose the following options:

• By default, Amazon S3 stores object replicas using the same storage class as the source object. You can
specify a different storage class for the replicas.

• Amazon S3 assumes that an object replica continues to be owned by the owner of the source object.

So when it replicates objects, it also replicates the corresponding object access control list (ACL). If the
source and destination buckets are owned by different AWS accounts, you can configure replication to
change the owner of a replica to the AWS account that owns the destination bucket.

Additional configuration options are available. For more information, see Additional Replication
Configurations (p. 567).

Important
If you have an object expiration lifecycle policy in your non-versioned bucket and you want to
maintain the same permanent delete behavior when you enable versioning, you must add a
noncurrent expiration policy. The noncurrent expiration lifecycle policy will manage the deletes
of the noncurrent object versions in the version-enabled bucket. (A version-enabled bucket
maintains one current and zero or more noncurrent object versions.) For more information,
see How Do I Create a Lifecycle Policy for an S3 Bucket? in the Amazon Simple Storage Service
Console User Guide.

Amazon S3 also provides APIs to support setting up replication rules. For more information, see the
following topics in the Amazon Simple Storage Service API Reference:

• PUT Bucket replication
• GET Bucket replication
• DELETE Bucket replication

Instead of making these API calls directly from your code, you can add a replication configuration to
a bucket with the AWS SDK, AWS CLI, or the Amazon S3 console. It's easiest to use the console. For
examples with step-by-step instructions, see Replication Walkthroughs (p. 575).

If you are new to replication configurations, we recommend that you read the following sections before
exploring the examples and optional configurations. For examples that provide step-by-step instructions
for setting up basic replication configurations, see Replication Configuration Overview (p. 556).

Topics
• Replication Configuration Overview (p. 556)
• Setting Up Permissions for Replication (p. 564)

Replication Configuration Overview
Amazon S3 stores a replication configuration as XML. In the replication configuration XML file, you
specify an AWS Identity and Access Management (IAM) role and one or more rules.

<ReplicationConfiguration>
 <Role>IAM-role-ARN</Role>
 <Rule>
 ...
 </Rule>
 <Rule>

API Version 2006-03-01
556

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-lifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTreplication.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETreplication.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEreplication.html

Amazon Simple Storage Service Developer Guide
Replication Configuration Overview

 ...
 </Rule>
 ...
</ReplicationConfiguration>

Amazon S3 can't replicate objects without your permission. You grant permissions with the IAM role that
you specify in the replication configuration. Amazon S3 assumes the IAM role to replicate objects on
your behalf. You must grant the required permissions to the IAM role first. For more information about
managing permissions, see Setting Up Permissions for Replication (p. 564).

You add one rule in replication configuration in the following scenarios:

• You want to replicate all objects.
• You want to replicate a subset of objects. You identify the object subset by adding a filter in the rule.

In the filter, you specify an object key prefix, tags, or a combination of both, to identify the subset of
objects that the rule applies to.

You add multiple rules in a replication configuration if you want to select a different subset of objects. In
each rule, you specify a filter that selects a different subset of objects. For example, you might choose to
replicate objects that have either tax/ or document/ key prefixes. You would add two rules and specify
the tax/ key prefix filter in one rule and the document/ key prefix in the other.

The following sections provide additional information.

Topics
• Basic Rule Configuration (p. 557)
• Optional: Specifying a Filter (p. 558)
• Additional Destination Configurations (p. 559)
• Example Replication Configurations (p. 560)
• Backward Compatibility (p. 563)

Basic Rule Configuration
Each rule must include the rule's status and priority, and indicate whether to replicate delete makers.

• Status indicates whether the rule is enabled or disabled. If a rule is disabled, Amazon S3 doesn't
perform the actions specified in the rule.

• Priority indicates which rule has priority when multiple rules apply to an object.
• Currently, delete markers aren't replicated, so you must set DeleteMarkerReplication to
Disabled.

In the destination configuration, you must provide the name of the bucket where you want Amazon S3
to replicate objects.

The following code shows the minimum requirements for a rule.

...
 <Rule>
 <ID>Rule-1</ID>
 <Status>rule-Enabled-or-Disabled</Status>
 <Priority>integer</Priority>
 <DeleteMarkerReplication>
 <Status>Disabled</Status>
 </DeleteMarkerReplication>
 <Destination>

API Version 2006-03-01
557

Amazon Simple Storage Service Developer Guide
Replication Configuration Overview

 <Bucket>arn:aws:s3:::bucket-name</Bucket>
 </Destination>
 </Rule>
 <Rule>
 ...
 </Rule>
 ...
...

You can also specify other configuration options. For example, you might choose to use a storage class
for object replicas that differs from the class for the source object.

Optional: Specifying a Filter
To choose a subset of objects that the rule applies to, add an optional filter. You can filter by object key
prefix, object tags, or combination of both. If you filter on both a key prefix and object tags, Amazon S3
combines the filters using a logical AND operator. In other words, the rule applies to a subset of objects
with a specific key prefix and specific tags.

To specify a rule with a filter based on an object key prefix, use the following code. You can specify only
one prefix.

<Rule>
 ...
 <Filter>
 <Prefix>key-prefix</Prefix>
 </Filter>
 ...
</Rule>
...

To specify a rule with a filter based on object tags, use the following code. You can specify one or more
object tags.

<Rule>
 ...
 <Filter>
 <And>
 <Tag>
 <Key>key1</Key>
 <Value>value1</Value>
 </Tag>
 <Tag>
 <Key>key2</Key>
 <Value>value2</Value>
 </Tag>
 ...
 </And>
 </Filter>
 ...
</Rule>
...

To specify a rule filter with a combination of a key prefix and object tags, use this code. You wrap these
filters in an AND parent element. Amazon S3 performs a logical AND operation to combine these filters. In
other words, the rule applies to a subset of objects with a specific key prefix and specific tags.

<Rule>
 ...
 <Filter>
 <And>

API Version 2006-03-01
558

Amazon Simple Storage Service Developer Guide
Replication Configuration Overview

 <Prefix>key-prefix</Prefix>
 <Tag>
 <Key>key1</Key>
 <Value>value1</Value>
 </Tag>
 <Tag>
 <Key>key2</Key>
 <Value>value2</Value>
 </Tag>
 ...
 </Filter>
 ...
</Rule>
...

Additional Destination Configurations
In the destination configuration, you specify the bucket where you want Amazon S3 to replicate objects.
You can set configurations to replicate objects from one source bucket to one destination bucket. If
you add multiple rules in a replication configuration, all of the rules must identify the same destination
bucket.

...
<Destination>
 <Bucket>arn:aws:s3:::destination-bucket</Bucket>
</Destination>
...

You can add the following options in the <Destination> element:

• You can specify the storage class for the object replicas. By default, Amazon S3 uses the storage class
of the source object to create object replicas, as in the following example.

...
<Destination>
 <Bucket>arn:aws:s3:::destinationbucket</Bucket>
 <StorageClass>storage-class</StorageClass>
</Destination>
...

• When source and destination buckets aren't owned by the same accounts, you can change the
ownership of the replica to the AWS account that owns the destination bucket by adding the
AccessControlTranslation element.

...
<Destination>
 <Bucket>arn:aws:s3:::destinationbucket</Bucket>
 <Account>destination-bucket-owner-account-id</Account>
 <AccessControlTranslation>
 <Owner>Destination</Owner>
 </AccessControlTranslation>
</Destination>
...

If you don't add this element to the replication configuration, the replicas are owned by same AWS
account that owns the source object. For more information, see Additional Replication Configuration:
Changing the Replica Owner (p. 568).

• Your source bucket might contain objects that were created with server-side encryption using keys
stored in AWS KMS. By default, Amazon S3 doesn't replicate these objects. You can optionally

API Version 2006-03-01
559

Amazon Simple Storage Service Developer Guide
Replication Configuration Overview

direct Amazon S3 to replicate these objects by first explicitly opting into this feature by adding the
SourceSelectionCriteria element and then providing the AWS KMS key (for the AWS Region of the
destination bucket) to use for encrypting object replicas.

...
<SourceSelectionCriteria>
 <SseKmsEncryptedObjects>
 <Status>Enabled</Status>
 </SseKmsEncryptedObjects>
</SourceSelectionCriteria>
<Destination>
 <Bucket>arn:aws:s3:::dest-bucket-name</Bucket>
 <EncryptionConfiguration>
 <ReplicaKmsKeyID>AWS KMS key IDs to use for encrypting object replicas</
ReplicaKmsKeyID>
 </EncryptionConfiguration>
</Destination>
...

For more information, see Additional Replication Configuration: Replicating Objects Created with
Server-Side Encryption (SSE) Using Encryption Keys stored in AWS KMS (p. 570).

Example Replication Configurations
To get started, you can add the following example replication configurations to your bucket, as
appropriate.

Important
To add a replication configuration to a bucket, you must have the iam:PassRole permission.
This permission allows you to pass the IAM role that grants Amazon S3 replication permissions.
You specify the IAM role by providing the Amazon Resource Name (ARN) that is used in the
Role element in the replication configuration XML. For more information, see Granting a User
Permissions to Pass a Role to an AWS Service in the IAM User Guide.

Example 1: Replication Configuration with One Rule

The following basic replication configuration specifies one rule. The rule specifies an IAM role that
Amazon S3 can assume and a destination bucket for object replicas. The rule Status indicates that the
rule is in effect.

<?xml version="1.0" encoding="UTF-8"?>
<ReplicationConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Role>arn:aws:iam::AcctID:role/role-name</Role>
 <Rule>
 <Status>Enabled</Status>

 <Destination><Bucket>arn:aws:s3:::destinationbucket</Bucket></Destination>

 </Rule>
</ReplicationConfiguration>

To choose a subset of objects to replicate, you can add a filter. In the following configuration, the filter
specifies an object key prefix. This rule applies to objects that have the prefix Tax/ in their key names.

<?xml version="1.0" encoding="UTF-8"?>
<ReplicationConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Role>arn:aws:iam::AcctID:role/role-name</Role>
 <Rule>
 <Status>Enabled</Status>

API Version 2006-03-01
560

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html

Amazon Simple Storage Service Developer Guide
Replication Configuration Overview

 <Priority>1</Priority>
 <DeleteMarkerReplication>
 <Status>string</Status>
 </DeleteMarkerReplication>

 <Filter>
 <Prefix>Tax/</Prefix>
 </Filter>

 <Destination><Bucket>arn:aws:s3:::destinationbucket</Bucket></Destination>

 </Rule>
</ReplicationConfiguration>

If you specify the Filter element, you must also include the Priority and
DeleteMarkerReplication elements. In this example, priority is irrelevant because there is only one
rule.

In the following configuration, the filter specifies one prefix and two tags. The rule applies to the subset
of objects that have the specified key prefix and tags. Specifically, it applies to object that have the Tax/
prefix in their key names and the two specified object tags. Priority doesn't apply because there is only
one rule.

<?xml version="1.0" encoding="UTF-8"?>
<ReplicationConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Role>arn:aws:iam::AcctID:role/role-name</Role>
 <Rule>
 <Status>Enabled</Status>
 <Priority>1</Priority>
 <DeleteMarkerReplication>
 <Status>string</Status>
 </DeleteMarkerReplication>

 <Filter>
 <And>
 <Prefix>Tax/</Prefix>
 <Tag>
 <Tag>
 <Key>tagA</Key>
 <Value>valueA</Value>
 </Tag>
 </Tag>
 <Tag>
 <Tag>
 <Key>tagB</Key>
 <Value>valueB</Value>
 </Tag>
 </Tag>
 </And>

 </Filter>

 <Destination><Bucket>arn:aws:s3:::destinationbucket</Bucket></Destination>

 </Rule>
</ReplicationConfiguration>

You can specify a storage class for the object replicas as follows.

<?xml version="1.0" encoding="UTF-8"?>

<ReplicationConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Role>arn:aws:iam::account-id:role/role-name</Role>

API Version 2006-03-01
561

Amazon Simple Storage Service Developer Guide
Replication Configuration Overview

 <Rule>
 <Status>Enabled</Status>
 <Destination>
 <Bucket>arn:aws:s3:::destinationbucket</Bucket>
 <StorageClass>storage-class</StorageClass>
 </Destination>
 </Rule>
</ReplicationConfiguration>

You can specify any storage class that Amazon S3 supports.

Example 2: Replication Configuration with Two Rules

Example

In the following replication configuration:

• Each rule filters on a different key prefix so that each rule applies to a distinct subset of objects.
Amazon S3 replicates objects with key names Tax/doc1.pdf and Project/project1.txt, but it
doesn't replicate objects with the key name PersonalDoc/documentA.

• Rule priority is irrelevant because the rules apply to two distinct sets of objects. The next example
shows what happens when rule priority is applied.

• The second rule specifies a storage class for object replicas. Amazon S3 uses the specified storage class
for those object replicas.

• Both rules specify the same destination bucket. You can specify only one destination bucket,
regardless of how many rules you specify.

<?xml version="1.0" encoding="UTF-8"?>

<ReplicationConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Role>arn:aws:iam::account-id:role/role-name</Role>
 <Rule>
 <Status>Enabled</Status>
 <Priority>1</Priority>
 <DeleteMarkerReplication>
 <Status>string</Status>
 </DeleteMarkerReplication>
 <Filter>
 <Prefix>Tax</Prefix>
 </Filter>
 <Status>Enabled</Status>
 <Destination>
 <Bucket>arn:aws:s3:::destinationbucket</Bucket>
 </Destination>
 ...
 </Rule>
 <Rule>
 <Status>Enabled</Status>
 <Priority>2</Priority>
 <DeleteMarkerReplication>
 <Status>string</Status>
 </DeleteMarkerReplication>
 <Filter>
 <Prefix>Project</Prefix>
 </Filter>
 <Status>Enabled</Status>
 <Destination>
 <Bucket>arn:aws:s3:::destinationbucket</Bucket>
 <StorageClass>STANDARD_IA</StorageClass>
 </Destination>
 ...

API Version 2006-03-01
562

Amazon Simple Storage Service Developer Guide
Replication Configuration Overview

 </Rule>

</ReplicationConfiguration>

Example 3: Replication Configuration with Two Rules with Overlapping Prefixes

In this configuration, the two rules specify filters with overlapping key prefixes, star/ and starship.
Both rules apply to objects with the key name starship-x. In this case, Amazon S3 uses the rule
priority to determine which rule to apply.

<ReplicationConfiguration>

 <Role>arn:aws:iam::AcctID:role/role-name</Role>

 <Rule>
 <Status>Enabled</Status>
 <Priority>1</Priority>
 <DeleteMarkerReplication>
 <Status>string</Status>
 </DeleteMarkerReplication>
 <Filter>
 <Prefix>star</Prefix>
 </Filter>
 <Destination>
 <Bucket>arn:aws:s3:::destinationbucket</Bucket>
 </Destination>
 </Rule>
 <Rule>
 <Status>Enabled</Status>
 <Priority>1</Priority>
 <DeleteMarkerReplication>
 <Status>string</Status>
 </DeleteMarkerReplication>
 <Filter>
 <Prefix>starship</Prefix>
 </Filter>
 <Destination>
 <Bucket>arn:aws:s3:::destinationbucket</Bucket>
 </Destination>
 </Rule>
</ReplicationConfiguration>

Example 4: Example Walkthroughs

For example walkthroughs, see Replication Walkthroughs (p. 575).

For more information about the XML structure of replication configuration, see PutBucketReplication in
the Amazon Simple Storage Service API Reference.

Backward Compatibility
The latest version of the replication configuration XML is V2. For backward compatibility, Amazon S3
continues to support the V1 configuration. If you have used replication configuration XML V1, consider
the following issues that affect backward compatibility:

• Replication configuration XML V2 includes the Filter element for rules. With the Filter element,
you can specify object filters based on the object key prefix, tags, or both to scope the objects that
the rule applies to. Replication configuration XML V1 supported filtering based only on the key prefix.
In that case, you add the Prefix directly as a child element of the Rule element, as in the following
example.

API Version 2006-03-01
563

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTreplication.html

Amazon Simple Storage Service Developer Guide
Setting Up Permissions for Replication

<?xml version="1.0" encoding="UTF-8"?>
<ReplicationConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Role>arn:aws:iam::AcctID:role/role-name</Role>
 <Rule>
 <Status>Enabled</Status>
 <Prefix>key-prefix</Prefix>
 <Destination><Bucket>arn:aws:s3:::destinationbucket</Bucket></Destination>

 </Rule>
</ReplicationConfiguration>

For backward compatibility, Amazon S3 continues to support the V1 configuration.

• When you delete an object from your source bucket without specifying an object version ID, Amazon
S3 adds a delete marker. If you use V1 of the replication configuration XML, Amazon S3 replicates
delete markers that resulted from user actions. In other words, if the user deleted the object, and
not if Amazon S3 deleted it because the object expired as part of lifecycle action. In V2, Amazon S3
doesn't replicate delete markers. Therefore, you must set the DeleteMarkerReplication element
to Disabled.

...
 <Rule>
 <ID>Rule-1</ID>
 <Status>rule-Enabled-or-Disabled</Priority>
 <Priority>integer</Status>
 <DeleteMarkerReplication>
 <Status>Disabled</Status>
 </DeleteMarkerReplication>
 <Destination>
 <Bucket>arn:aws:s3:::bucket-name</Bucket>
 </Destination>
 </Rule>
...

Setting Up Permissions for Replication
When setting up replication, you must acquire necessary permissions as follows:

• Create an IAM role—Amazon S3 needs permissions to replicate objects on your behalf. You grant these
permissions by creating an IAM role and specify the role in your replication configuration.

• When source and destination buckets aren't owned by the same accounts, the owner of the destination
bucket must grant the source bucket owner permissions to store the replicas.

Topics

• Creating an IAM Role (p. 564)

• Granting Permissions When Source and Destination Buckets Are Owned by Different AWS
Accounts (p. 566)

Creating an IAM Role
By default, all Amazon S3 resources—buckets, objects, and related subresources—are private: Only the
resource owner can access the resource. To read objects from the source bucket and replicate them to the
destination bucket, Amazon S3 needs permissions to perform these tasks. You grant these permissions
by creating an IAM role and specifying the role in your replication configuration.

API Version 2006-03-01
564

Amazon Simple Storage Service Developer Guide
Setting Up Permissions for Replication

This section explains the trust policy and minimum required permissions policy. The example
walkthroughs provide step-by-step instructions to create an IAM role. For more information, see
Replication Walkthroughs (p. 575).

• The following shows a trust policy, where you identify Amazon S3 as the service principal who can
assume the role.

{

 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":"s3.amazonaws.com"
 },
 "Action":"sts:AssumeRole"
 }
]
}

For more information about IAM roles, see IAM Roles in the IAM User Guide.

• The following shows an access policy, where you grant the role permissions to perform replication
tasks on your behalf. When Amazon S3 assumes the role, it has the permissions that you specify in this
policy.

{

 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:GetReplicationConfiguration",
 "s3:ListBucket"
],
 "Resource":[
 "arn:aws:s3:::source-bucket"
]
 },
 {
 "Effect":"Allow",
 "Action":[

 "s3:GetObjectVersion",
 "s3:GetObjectVersionAcl",
 "s3:GetObjectVersionTagging"

],
 "Resource":[
 "arn:aws:s3:::source-bucket/*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:ReplicateObject",
 "s3:ReplicateDelete",
 "s3:ReplicateTags"
],
 "Resource":"arn:aws:s3:::destination-bucket/*"

API Version 2006-03-01
565

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon Simple Storage Service Developer Guide
Setting Up Permissions for Replication

 }
]
}

The access policy grants permissions for the following actions:
• s3:GetReplicationConfiguration and s3:ListBucket—Permissions for these actions on the

source bucket allow Amazon S3 to retrieve the replication configuration and list bucket content (the
current permissions model requires the s3:ListBucket permission for accessing delete markers).

• s3:GetObjectVersion and s3:GetObjectVersionAcl— Permissions for these actions
granted on all objects allow Amazon S3 to get a specific object version and access control list (ACL)
associated with objects.

• s3:ReplicateObject and s3:ReplicateDelete—Permissions for these actions on
objects in the destination bucket allow Amazon S3 to replicate objects or delete markers to the
destination bucket. For information about delete markers, see How Delete Operations Affect
Replication (p. 554).

Note
Permissions for the s3:ReplicateObject action on the destination bucket also
allow replication of object tags, so you don't need to explicitly grant permission for the
s3:ReplicateTags action.

• s3:GetObjectVersionTagging—Permissions for this action on objects in the source bucket allow
Amazon S3 to read object tags for replication (see Object Tagging (p. 110)). If Amazon S3 doesn't
have these permissions, it replicates the objects, but not the object tags.

For a list of Amazon S3 actions, see Specifying Permissions in a Policy (p. 345).

Important
The AWS account that owns the IAM role must have permissions for the actions that it grants
to the IAM role.
For example, suppose that the source bucket contains objects owned by another AWS account.
The owner of the objects must explicitly grant the AWS account that owns the IAM role the
required permissions through the object ACL. Otherwise, Amazon S3 can't access the objects,
and replication of the objects fails. For information about ACL permissions, see Access Control
List (ACL) Overview (p. 403).
The permissions described here are related to minimum replication configuration. If you
choose to add optional replication configurations, you must grant additional permissions to
Amazon S3. For more information, see Additional Replication Configurations (p. 567).

Granting Permissions When Source and Destination Buckets Are
Owned by Different AWS Accounts
When source and destination buckets aren't owned by the same accounts, the owner of the destination
bucket must also add a bucket policy to grant the owner of the source bucket permissions to perform
replication actions, as follows.

{
 "Version":"2008-10-17",
 "Id":"PolicyForDestinationBucket",
 "Statement":[
 {
 "Sid":"1",
 "Effect":"Allow",
 "Principal":{
 "AWS":"SourceBucket-AcctID"
 },
 "Action":[
 "s3:ReplicateDelete",

API Version 2006-03-01
566

Amazon Simple Storage Service Developer Guide
Additional Replication Configurations

 "s3:ReplicateObject"
],
 "Resource":"arn:aws:s3:::destinationbucket/*"
 },
 {
 "Sid":"2",
 "Effect":"Allow",
 "Principal":{
 "AWS":"SourceBucket-AcctID"
 },
 "Action":"s3:List*",
 "Resource":"arn:aws:s3:::destinationbucket"
 }
]
}

For an example, see Example 2: Configuring Replication When the Source and Destination Buckets Are
Owned by Different Accounts (p. 584).

If objects in the source bucket are tagged, note the following:

• If the source bucket owner grants Amazon S3 permission for the s3:GetObjectVersionTagging
and s3:ReplicateTags actions to replicate object tags (through the IAM role), Amazon S3
replicates the tags along with the objects. For information about the IAM role, see Creating an IAM
Role (p. 564).

• If the owner of the destination bucket doesn't want to replicate the tags, they can add the following
statement to the destination bucket policy to explicitly deny permission for the s3:ReplicateTags
action.

...
 "Statement":[
 {
 "Effect":"Deny",
 "Principal":{
 "AWS":"arn:aws:iam::SourceBucket-AcctID:root"
 },
 "Action":["s3:ReplicateTags"],
 "Resource":"arn:aws:s3:::destinationbucket/*"
 }
]
...

Changing Replica Ownership

When different AWS accounts own the source and destination buckets, you can tell Amazon S3 to change
the ownership of the replica to the AWS account that owns the destination bucket. This is called the
owner override option. For more information, see Additional Replication Configuration: Changing the
Replica Owner (p. 568).

Additional Replication Configurations
This section describes additional replication configuration options that are available in Amazon S3. For
information about core replication configuration, see Overview of Setting Up Replication (p. 555).

Topics

• Additional Replication Configuration: Changing the Replica Owner (p. 568)

API Version 2006-03-01
567

Amazon Simple Storage Service Developer Guide
Changing the Replica Owner

• Additional Replication Configuration: Replicating Objects Created with Server-Side Encryption (SSE)
Using Encryption Keys stored in AWS KMS (p. 570)

Additional Replication Configuration: Changing the
Replica Owner
In replication, the owner of the source object also owns the replica by default. When source and
destination buckets are owned by different AWS accounts, you can add optional configuration settings
to change replica ownership to the AWS account that owns the destination bucket. You might do this,
for example, to restrict access to object replicas. This is referred to as the owner override option of the
replication configuration. This section explains only the relevant additional configuration settings. For
information about setting the replication configuration, see Replication (p. 551).

To configure the owner override, you do the following:

• Add the owner override option to the replication configuration to tell Amazon S3 to change replica
ownership.

• Grant Amazon S3 permissions to change replica ownership.
• Add permission in the destination bucket policy to allow changing replica ownership. This allows the

owner of the destination bucket to accept the ownership of object replicas.

The following sections describe how to perform these tasks. For a working example with step-by-step
instructions, see Example 3: Changing the Replica Owner When the Source and Destination Buckets Are
Owned by Different Accounts (p. 585).

Adding the Owner Override Option to the Replication
Configuration

Warning
Add the owner override option only when the source and destination buckets are owned by
different AWS accounts. Amazon S3 doesn't check if the buckets are owned by same or different
accounts. If you add the owner override when both buckets are owned by same AWS account,
Amazon S3 applies the owner override. It grants full permissions to the owner of the destination
bucket and doesn't replicate subsequent updates to the source object access control list (ACL).
The replica owner can directly change the ACL associated with a replica with a PUT ACL request,
but not through replication.

To specify the owner override option, add the following to the Destination element:

• The AccessControlTranslation element, which tells Amazon S3 to change replica ownership
• The Account element, which specifies the AWS account of the destination bucket owner

<ReplicationConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 ...
 <Destination>
 ...
 <AccessControlTranslation>
 <Owner>Destination</Owner>
 </AccessControlTranslation>
 <Account>destination-bucket-owner-account-id</Account>
 </Destination>
 </Rule>
</ReplicationConfiguration>

API Version 2006-03-01
568

Amazon Simple Storage Service Developer Guide
Changing the Replica Owner

The following example replication configuration tells Amazon S3 to replicate objects that have the Tax
key prefix to the destination bucket and change ownership of the replicas.

<?xml version="1.0" encoding="UTF-8"?>
<ReplicationConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Role>arn:aws:iam::account-id:role/role-name</Role>
 <Rule>
 <ID>Rule-1</ID>
 <Priority>1</Priority>
 <Status>Enabled</Status>
 <Status>Enabled</Status>
 <DeleteMarkerReplication>
 <Status>Disabled</Status>
 </DeleteMarkerReplication>
 <Filter>
 <Prefix>Tax</Prefix>
 </Filter>
 <Destination>
 <Bucket>arn:aws:s3:::destination-bucket</Bucket>
 <Account>destination-bucket-owner-account-id</Account>
 <AccessControlTranslation>
 <Owner>Destination</Owner>
 </AccessControlTranslation>
 </Destination>
 </Rule>
</ReplicationConfiguration>

Granting Amazon S3 Permission to Change Replica Ownership
Grant Amazon S3 permissions to change replica ownership by adding permission for the
s3:ObjectOwnerOverrideToBucketOwner action in the permissions policy associated with the IAM
role. This is the IAM role that you specified in the replication configuration that allows Amazon S3 to
assume and replicate objects on your behalf.

...
{
 "Effect":"Allow",
 "Action":[
 "s3:ObjectOwnerOverrideToBucketOwner"
],
 "Resource":"arn:aws:s3:::destination-bucket/*"
}
...

Adding Permission in the Destination Bucket Policy to Allow
Changing Replica Ownership
The owner of the destination bucket must grant the owner of the source bucket permission to change
replica ownership. The owner of the destination bucket grants the owner of the source bucket permission
for the s3:ObjectOwnerOverrideToBucketOwner action. This allows the destination bucket owner
to accept ownership of the object replicas. The following example bucket policy statement shows how to
do this.

...
{
 "Sid":"1",
 "Effect":"Allow",
 "Principal":{"AWS":"source-bucket-account-id"},
 "Action":["s3:ObjectOwnerOverrideToBucketOwner"],
 "Resource":"arn:aws:s3:::destination-bucket/*"

API Version 2006-03-01
569

Amazon Simple Storage Service Developer Guide
Replicating Encrypted Objects

}
...

Additional Considerations
When you configure the ownership override option, the following considerations apply:

• By default, the owner of the source object also owns the replica. Amazon S3 replicates the object
version and the ACL associated with it.

If you add the owner override, Amazon S3 replicates only the object version, not the ACL. In addition,
Amazon S3 doesn't replicate subsequent changes to the source object ACL. Amazon S3 sets the ACL on
the replica that grants full control to the destination bucket owner.

• When you update a replication configuration to enable, or disable, the owner override, the following

occurs.

• If you add the owner override option to the replication configuration:

When Amazon S3 replicates an object version, it discards the ACL that is associated with the source
object. Instead, it sets the ACL on the replica, giving full control to the owner of the destination
bucket. It doesn't replicate subsequent changes to the source object ACL. However, this ACL change
doesn't apply to object versions that were replicated before you set the owner override option. ACL
updates on source objects that were replicated before the owner override was set continue to be
replicated (because the object and its replicas continue to have the same owner).

• If you remove the owner override option from the replication configuration:

Amazon S3 replicates new objects that appear in the source bucket and the associated ACLs to
the destination bucket. For objects that were replicated before you removed the owner override,
Amazon S3 doesn't replicate the ACLs because the object ownership change that Amazon S3 made
remains in effect. That is, ACLs put on the object version that were replicated when the owner
override was set continue to be not replicated.

Additional Replication Configuration: Replicating
Objects Created with Server-Side Encryption (SSE)
Using Encryption Keys stored in AWS KMS
By default, Amazon S3 doesn't replicate objects that are stored at rest using server-side encryption with
keys stored in AWS KMS. This section explains additional configuration you add that you add to direct
Amazon S3 to replicate these objects.

For an example with step-by-step instructions, see Example 4: Replicating Encrypted Objects (p. 589).
For information about creating a replication configuration, see Replication (p. 551).

Topics

API Version 2006-03-01
570

Amazon Simple Storage Service Developer Guide
Replicating Encrypted Objects

• Specifying Additional Information in the Replication Configuration (p. 571)
• Granting Additional Permissions for the IAM Role (p. 572)
• Granting Additional Permissions for Cross-Account Scenarios (p. 574)
• AWS KMS Transaction Limit Considerations (p. 575)

Specifying Additional Information in the Replication
Configuration
In the replication configuration, you do the following:

• In the Destination configuration, add the AWS KMS key that you want Amazon S3 to use to encrypt
object replicas.

• Explicitly opt in by enabling replication of objects encrypted using the AWS KMS keys by adding the
SourceSelectionCriteria element.

<ReplicationConfiguration>
 <Rule>
 ...
 <SourceSelectionCriteria>
 <SseKmsEncryptedObjects>
 <Status>Enabled</Status>
 </SseKmsEncryptedObjects>
 </SourceSelectionCriteria>

 <Destination>
 ...
 <EncryptionConfiguration>
 <ReplicaKmsKeyID>AWS KMS key ID for the AWS region of the destination
 bucket.</ReplicaKmsKeyID>
 </EncryptionConfiguration>
 </Destination>
 ...
 </Rule>
</ReplicationConfiguration>

Important
The AWS KMS key must have been created in the same AWS Region as the destination bucket.
The AWS KMS key must be valid. The PUT Bucket replication API doesn't check the validity of
AWS KMS keys. If you use an invalid key, you receive the 200 OK status code in response, but
replication fails.

The following example shows a replication configuration, which includes optional configuration
elements.

<?xml version="1.0" encoding="UTF-8"?>
<ReplicationConfiguration>
 <Role>arn:aws:iam::account-id:role/role-name</Role>
 <Rule>
 <ID>Rule-1</ID>
 <Priority>1</Priority>
 <Status>Enabled</Status>
 <DeleteMarkerReplication>
 <Status>Disabled</Status>
 </DeleteMarkerReplication>
 <Filter>
 <Prefix>Tax</Prefix>
 </Filter>

API Version 2006-03-01
571

Amazon Simple Storage Service Developer Guide
Replicating Encrypted Objects

 <Destination>
 <Bucket>arn:aws:s3:::destination-bucket</Bucket>
 <EncryptionConfiguration>
 <ReplicaKmsKeyID>The AWS KMS key ID for the AWS region of the destination
 bucket (S3 uses it to encrypt object replicas).</ReplicaKmsKeyID>
 </EncryptionConfiguration>
 </Destination>
 <SourceSelectionCriteria>
 <SseKmsEncryptedObjects>
 <Status>Enabled</Status>
 </SseKmsEncryptedObjects>
 </SourceSelectionCriteria>
 </Rule>
</ReplicationConfiguration>

This replication configuration has one rule. The rule applies to objects with the Tax key prefix. Amazon
S3 uses the AWS KMS key ID to encrypt these object replicas.

Granting Additional Permissions for the IAM Role
To replicate objects created using server-side encryption with keys stored in AWS KMS, grant the
following additional permissions to the IAM role you specify in the replication configuration. You grant
these permissions by updating the permission policy associated with the IAM role:

• Permission for the s3:GetObjectVersionForReplication action for source objects. Permission
for this action allows Amazon S3 to replicate both unencrypted objects and objects created with
server-side encryption using Amazon S3 managed encryption (SSE-S3) keys or AWS KMS managed
encryption (SSE-KMS) keys.

Note
We recommend that you use the s3:GetObjectVersionForReplication action instead
of the s3:GetObjectVersion action because it provides Amazon S3 with only the minimum
permissions necessary for replication. In addition, permission for the s3:GetObjectVersion
action allows replication of unencrypted and SSE-S3-encrypted objects, but not of objects
created using an AWS KMS managed encryption key.

• Permissions for the following AWS KMS actions:
• kms:Decrypt permissions for the AWS KMS key that was used to encrypt the source object
• kms:Encrypt permissions for the AWS KMS key used to encrypt the object replica

We recommend that you restrict these permissions to specific buckets and objects using AWS KMS
condition keys, as shown in the following example policy statements.

{
 "Action": ["kms:Decrypt"],
 "Effect": "Allow",
 "Condition": {
 "StringLike": {
 "kms:ViaService": "s3.source-bucket-region.amazonaws.com",
 "kms:EncryptionContext:aws:s3:arn": [
 "arn:aws:s3:::source-bucket-name/key-prefix1*",
]
 }
 },
 "Resource": [
 "List of AWS KMS key IDs used to encrypt source objects.",
]
},
{
 "Action": ["kms:Encrypt"],
 "Effect": "Allow",
 "Condition": {

API Version 2006-03-01
572

Amazon Simple Storage Service Developer Guide
Replicating Encrypted Objects

 "StringLike": {
 "kms:ViaService": "s3.destination-bucket-region.amazonaws.com",
 "kms:EncryptionContext:aws:s3:arn": [
 "arn:aws:s3:::destination-bucket-name/key-prefix1*",
]
 }
 },
 "Resource": [
 "AWS KMS key IDs (for the AWS region of the destination bucket). S3 uses it to
 encrypt object replicas",
]
}

The AWS account that owns the IAM role must have permissions for these AWS KMS actions
(kms:Encrypt and kms:Decrypt) for AWS KMS keys listed in the policy. If the AWS KMS keys are
owned by another AWS account, the key owner must grant these permissions to the AWS account that
owns the IAM role. For more information about managing access to these keys, see Using IAM Policies
with AWS KMS in the AWS Key Management Service Developer Guide.

The following is a complete IAM policy that grants the necessary permissions to replicate unencrypted
objects, objects created with server-side encryption using Amazon S3 managed encryption keys, and
AWS KMS managed encryption keys.

Note
Objects created with server-side encryption using customer-provided (SSE-C) encryption keys
are not replicated.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:GetReplicationConfiguration",
 "s3:ListBucket"
],
 "Resource":[
 "arn:aws:s3:::source-bucket"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:GetObjectVersionForReplication",
 "s3:GetObjectVersionAcl"
],
 "Resource":[
 "arn:aws:s3:::source-bucket/key-prefix1*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:ReplicateObject",
 "s3:ReplicateDelete"
],
 "Resource":"arn:aws:s3:::destination-bucket/key-prefix1*"
 },
 {
 "Action":[
 "kms:Decrypt"
],

API Version 2006-03-01
573

https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html

Amazon Simple Storage Service Developer Guide
Replicating Encrypted Objects

 "Effect":"Allow",
 "Condition":{
 "StringLike":{
 "kms:ViaService":"s3.source-bucket-region.amazonaws.com",
 "kms:EncryptionContext:aws:s3:arn":[
 "arn:aws:s3:::source-bucket-name/key-prefix1*"
]
 }
 },
 "Resource":[
 "List of AWS KMS key IDs used to encrypt source objects."
]
 },
 {
 "Action":[
 "kms:Encrypt"
],
 "Effect":"Allow",
 "Condition":{
 "StringLike":{
 "kms:ViaService":"s3.destination-bucket-region.amazonaws.com",
 "kms:EncryptionContext:aws:s3:arn":[
 "arn:aws:s3:::destination-bucket-name/prefix1*"
]
 }
 },
 "Resource":[
 "AWS KMS key IDs (for the AWS region of the destination bucket) to use for
 encrypting object replicas"
]
 }
]
}

Granting Additional Permissions for Cross-Account Scenarios

In a cross-account scenario, where source and destination buckets are owned by different AWS
accounts, the AWS KMS key to encrypt object replicas must be a customer master key (CMK). The key
owner must grant the source bucket owner permission to use the key.

To grant the source bucket owner permission to use the key (IAM console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Encryption keys.

3. Choose the AWS KMS key.

4. In Key Policy, Key Users, External Accounts, choose Add External Account.

5. For the arn:aws:iam::, enter the source bucket account ID.

6. Choose Save Changes.

To grant the source bucket owner permission to use the key (AWS CLI)

• For information, see put-key-policy in the AWS CLI Command Reference. For information about the
underlying API, see PutKeyPolicy in the AWS Key Management Service API Reference.

API Version 2006-03-01
574

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/cli/latest/reference/kms/put-key-policy.html
http://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.aws.amazon.com/kms/latest/APIReference/

Amazon Simple Storage Service Developer Guide
Replication Walkthroughs

AWS KMS Transaction Limit Considerations
When you add many new objects with AWS KMS encryption after enabling replication, you might
experience throttling (HTTP 503 Slow Down errors). Throttling occurs when the number of AWS KMS
transactions per second exceeds the current limit. For more information, see Limits in the AWS Key
Management Service Developer Guide.

To request an increase in your AWS KMS API rate limit, contact AWS Support.

Replication Walkthroughs
The following examples show how to configure replication for common use cases. The examples
demonstrate replication configuration using the Amazon S3 console, AWS Command Line Interface
(AWS CLI), and AWS SDKs (Java and .NET SDK examples are shown). For information about installing and
configuring the AWS CLI, see the following topics in the AWS Command Line Interface User Guide.

• Installing the AWS Command Line Interface

• Configuring the AWS CLI - You must set up at least one profile. If you are exploring cross-account
scenarios, set up two profiles.

For information about AWS SDKs, see AWS SDK for Java and AWS SDK for .NET.

Topics

• Example 1: Configuring Replication When the Source and Destination Buckets Are Owned by the
Same Account (p. 575)

• Example 2: Configuring Replication When the Source and Destination Buckets Are Owned by
Different Accounts (p. 584)

• Example 3: Changing the Replica Owner When the Source and Destination Buckets Are Owned by
Different Accounts (p. 585)

• Example 4: Replicating Encrypted Objects (p. 589)

Example 1: Configuring Replication When the Source
and Destination Buckets Are Owned by the Same
Account
In this example, you set up replication for source and destination buckets that are owned by the same
AWS account. Examples are provided for using the Amazon S3 console, the AWS Command Line Interface
(AWS CLI), and the AWS SDK for Java and AWS SDK for .NET.

Configure Replication When Buckets Are Owned by the Same Account (Console)

For step-by-step instructions, see How Do I Add a Replication Rule to an S3 Bucket? in the Amazon
Simple Storage Service Console User Guide. This topic provides instructions for setting replication
configuration when buckets are owned by same and different AWS accounts.

Configure Replication When Buckets Are Owned by the Same Account (AWS CLI)

To use the AWS CLI to set up replication when the source and destination buckets are owned by the same
AWS account, you create source and destination buckets, enable versioning on the buckets, create an IAM

API Version 2006-03-01
575

http://docs.aws.amazon.com/kms/latest/developerguide/limits.html
https://console.aws.amazon.com/support/home#/
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-net/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-replication.html

Amazon Simple Storage Service Developer Guide
Example 1: Configuring for Buckets in the Same Account

role that gives Amazon S3 permission to replicate objects, and add the replication configuration to the
source bucket. To verify your setup, you test it.

To set up replication when source and destination buckets are owned by the same AWS
account

1. Set a credentials profile for the AWS CLI. In this example, we use the profile name acctA. For
information about setting credential profiles, see Named Profiles in the AWS Command Line
Interface User Guide.

Important
The profile you use for this exercise must have the necessary permissions. For example, in
the replication configuration, you specify the IAM role that Amazon S3 can assume. You can
do this only if the profile you use has the iam:PassRole permission. For more information,
see Granting a User Permissions to Pass a Role to an AWS Service in the IAM User Guide. If
you use administrator user credentials to create a named profile, you can perform all the
tasks.

2. Create a source bucket and enable versioning on it. The following code creates a source bucket in
the US East (N. Virginia) (us-east-1) Region.

aws s3api create-bucket \
--bucket source \
--region us-east-1 \
--profile acctA

aws s3api put-bucket-versioning \
--bucket source \
--versioning-configuration Status=Enabled \
--profile acctA

3. Create a destination bucket and enable versioning on it. The following code creates a
destination bucket in the US West (Oregon) (us-west-2) Region.

Note
To set up replication configuration when both source and destination buckets are in the
same AWS account, you use the same profile. This example uses acctA. To test replication
configuration when the buckets are owned by different AWS accounts, you specify different
profiles for each. This example uses the acctB profile for the destination bucket.

aws s3api create-bucket \
--bucket destination \
--region us-west-2 \
--create-bucket-configuration LocationConstraint=us-west-2 \
--profile acctA

aws s3api put-bucket-versioning \
--bucket destination \
--versioning-configuration Status=Enabled \
--profile acctA

4. Create an IAM role. You specify this role in the replication configuration that you add to the source
bucket later. Amazon S3 assumes this role to replicate objects on your behalf. You create an IAM role
in two steps:

• Create a role.

• Attach a permissions policy to the role.

API Version 2006-03-01
576

https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html

Amazon Simple Storage Service Developer Guide
Example 1: Configuring for Buckets in the Same Account

a. Create the IAM role.

i. Copy the following trust policy and save it to a file named S3-role-trust-policy.json
in the current directory on your local computer. This policy grants Amazon S3 service
principal permissions to assume the role.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":"s3.amazonaws.com"
 },
 "Action":"sts:AssumeRole"
 }
]
}

ii. Run the following command to create a role.

$ aws iam create-role \
--role-name replicationRole \
--assume-role-policy-document file://s3-role-trust-policy.json \
--profile acctA

b. Attach a permissions policy to the role.

i. Copy the following permissions policy and save it to a file named S3-role-permissions-
policy.json in the current directory on your local computer. This policy grants
permissions for various Amazon S3 bucket and object actions.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:GetObjectVersionForReplication",
 "s3:GetObjectVersionAcl"
],
 "Resource":[
 "arn:aws:s3:::source-bucket/*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:ListBucket",
 "s3:GetReplicationConfiguration"
],
 "Resource":[
 "arn:aws:s3:::source-bucket"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:ReplicateObject",
 "s3:ReplicateDelete",
 "s3:ReplicateTags",

API Version 2006-03-01
577

Amazon Simple Storage Service Developer Guide
Example 1: Configuring for Buckets in the Same Account

 "s3:GetObjectVersionTagging"

],
 "Resource":"arn:aws:s3:::destination-bucket/*"
 }
]
}

ii. Run the following command to create a policy and attach it to the role.

$ aws iam put-role-policy \
--role-name replicationRole \
--policy-document file://s3-role-permissions-policy.json \
--policy-name replicationRolePolicy \
--profile acctA

5. Add replication configuration to the source bucket.

a. Although the Amazon S3 API requires replication configuration as XML, the AWS CLI requires
that you specify the replication configuration as JSON. Save the following JSON in a file called
replication.json to the local directory on your computer.

{
 "Role": "IAM-role-ARN",
 "Rules": [
 {
 "Status": "Enabled",
 "Priority": 1,
 "DeleteMarkerReplication": { "Status": "Disabled" },
 "Filter" : { "Prefix": "Tax"},
 "Destination": {
 "Bucket": "arn:aws:s3:::destination-bucket"
 }
 }
]
}

b. Update the JSON by providing values for the destination-bucket and IAM-role-ARN. Save
the changes.

c. Run the following command to add the replication configuration to your source bucket. Be sure
to provide the source bucket name.

$ aws s3api put-bucket-replication \
--replication-configuration file://replication.json \
--bucket source \
--profile acctA

To retrieve the replication configuration, use the get-bucket-replication command.

$ aws s3api get-bucket-replication \
--bucket source \
--profile acctA

6. Test the setup in the Amazon S3 console:

a. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

b. In the source bucket, create a folder named Tax.

c. Add sample objects to the Tax folder in the source bucket.
API Version 2006-03-01

578

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
Example 1: Configuring for Buckets in the Same Account

Note
The amount of time it takes for Amazon S3 to replicate an object depends on the
size of the object. For information about how to see the status of replication, see
Replication Status Information (p. 594).

In the destination bucket, verify the following:

• That Amazon S3 replicated the objects.
• In object properties, that the Replication Status is set to Replica (identifying this as a

replica object).
• In object properties, that the permission section shows no permissions. This means that the

replica is still owned by the source bucket owner, and the destination bucket owner has
no permission on the object replica. You can add optional configuration to tell Amazon S3 to
change the replica ownership. For an example, see Example 3: Changing the Replica Owner
When the Source and Destination Buckets Are Owned by Different Accounts (p. 585).

d. Update an object's ACL in the source bucket and verify that changes appear in the
destination bucket.

For instructions, see How Do I Set Permissions on an Object? in the Amazon Simple Storage
Service Console User Guide.

Configure Replication When Buckets Are Owned by the Same Account (AWS
SDK)

Use the following code examples to add a replication configuration to a bucket with the AWS SDK for
Java and AWS SDK for .NET, respectively.

Java

The following example adds a replication configuration to a bucket and then retrieves and verifies
the configuration. For instructions on creating and testing a working sample, see Testing the
Amazon S3 Java Code Examples (p. 677).

import com.amazonaws.AmazonServiceException;
import com.amazonaws.SdkClientException;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.regions.Regions;

API Version 2006-03-01
579

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/set-object-permissions.html

Amazon Simple Storage Service Developer Guide
Example 1: Configuring for Buckets in the Same Account

import com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import com.amazonaws.services.identitymanagement.AmazonIdentityManagementClientBuilder;
import com.amazonaws.services.identitymanagement.model.CreateRoleRequest;
import com.amazonaws.services.identitymanagement.model.PutRolePolicyRequest;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.BucketReplicationConfiguration;
import com.amazonaws.services.s3.model.BucketVersioningConfiguration;
import com.amazonaws.services.s3.model.CreateBucketRequest;
import com.amazonaws.services.s3.model.DeleteMarkerReplication;
import com.amazonaws.services.s3.model.DeleteMarkerReplicationStatus;
import com.amazonaws.services.s3.model.ReplicationDestinationConfig;
import com.amazonaws.services.s3.model.ReplicationRule;
import com.amazonaws.services.s3.model.ReplicationRuleStatus;
import com.amazonaws.services.s3.model.SetBucketVersioningConfigurationRequest;
import com.amazonaws.services.s3.model.StorageClass;
import com.amazonaws.services.s3.model.replication.ReplicationFilter;
import com.amazonaws.services.s3.model.replication.ReplicationFilterPredicate;
import com.amazonaws.services.s3.model.replication.ReplicationPrefixPredicate;

import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class CrossRegionReplication {

 public static void main(String[] args) throws IOException {
 Regions clientRegion = Regions.DEFAULT_REGION;
 String accountId = "*** Account ID ***";
 String roleName = "*** Role name ***";
 String sourceBucketName = "*** Source bucket name ***";
 String destBucketName = "*** Destination bucket name ***";
 String prefix = "Tax/";

 String roleARN = String.format("arn:aws:iam::%s:role/%s", accountId, roleName);
 String destinationBucketARN = "arn:aws:s3:::" + destBucketName;

 AmazonS3 s3Client = AmazonS3Client.builder()
 .withCredentials(new ProfileCredentialsProvider())
 .withRegion(clientRegion)
 .build();

 createBucket(s3Client, clientRegion, sourceBucketName);
 createBucket(s3Client, clientRegion, destBucketName);
 assignRole(roleName, clientRegion, sourceBucketName, destBucketName);

 try {

 // Create the replication rule.
 List<ReplicationFilterPredicate> andOperands = new
 ArrayList<ReplicationFilterPredicate>();
 andOperands.add(new ReplicationPrefixPredicate(prefix));

 Map<String, ReplicationRule> replicationRules = new HashMap<String,
 ReplicationRule>();
 replicationRules.put("ReplicationRule1",
 new ReplicationRule()
 .withPriority(0)
 .withStatus(ReplicationRuleStatus.Enabled)
 .withDeleteMarkerReplication(new
 DeleteMarkerReplication().withStatus(DeleteMarkerReplicationStatus.DISABLED))

API Version 2006-03-01
580

Amazon Simple Storage Service Developer Guide
Example 1: Configuring for Buckets in the Same Account

 .withFilter(new ReplicationFilter().withPredicate(new
 ReplicationPrefixPredicate(prefix)))
 .withDestinationConfig(new ReplicationDestinationConfig()
 .withBucketARN(destinationBucketARN)
 .withStorageClass(StorageClass.Standard)));

 // Save the replication rule to the source bucket.
 s3Client.setBucketReplicationConfiguration(sourceBucketName,
 new BucketReplicationConfiguration()
 .withRoleARN(roleARN)
 .withRules(replicationRules));

 // Retrieve the replication configuration and verify that the configuration
 // matches the rule we just set.
 BucketReplicationConfiguration replicationConfig =
 s3Client.getBucketReplicationConfiguration(sourceBucketName);
 ReplicationRule rule = replicationConfig.getRule("ReplicationRule1");
 System.out.println("Retrieved destination bucket ARN: " +
 rule.getDestinationConfig().getBucketARN());
 System.out.println("Retrieved priority: " + rule.getPriority());
 System.out.println("Retrieved source-bucket replication rule status: " +
 rule.getStatus());
 } catch (AmazonServiceException e) {
 // The call was transmitted successfully, but Amazon S3 couldn't process
 // it, so it returned an error response.
 e.printStackTrace();
 } catch (SdkClientException e) {
 // Amazon S3 couldn't be contacted for a response, or the client
 // couldn't parse the response from Amazon S3.
 e.printStackTrace();
 }
 }

 private static void createBucket(AmazonS3 s3Client, Regions region, String
 bucketName) {
 CreateBucketRequest request = new CreateBucketRequest(bucketName,
 region.getName());
 s3Client.createBucket(request);
 BucketVersioningConfiguration configuration = new
 BucketVersioningConfiguration().withStatus(BucketVersioningConfiguration.ENABLED);

 SetBucketVersioningConfigurationRequest enableVersioningRequest = new
 SetBucketVersioningConfigurationRequest(bucketName, configuration);
 s3Client.setBucketVersioningConfiguration(enableVersioningRequest);

 }

 private static void assignRole(String roleName, Regions region, String
 sourceBucket, String destinationBucket) {
 AmazonIdentityManagement iamClient =
 AmazonIdentityManagementClientBuilder.standard()
 .withRegion(region)
 .withCredentials(new ProfileCredentialsProvider())
 .build();
 StringBuilder trustPolicy = new StringBuilder();
 trustPolicy.append("{\\r\\n ");
 trustPolicy.append("\\\"Version\\\":\\\"2012-10-17\\\",\\r\\n ");
 trustPolicy.append("\\\"Statement\\\":[\\r\\n {\\r\\n ");
 trustPolicy.append("\\\"Effect\\\":\\\"Allow\\\",\\r\\n \\\"Principal\\
\":{\\r\\n ");
 trustPolicy.append("\\\"Service\\\":\\\"s3.amazonaws.com\\\"\\r\\n },\
\r\\n ");
 trustPolicy.append("\\\"Action\\\":\\\"sts:AssumeRole\\\"\\r\\n }\\r\\n
]\\r\\n}");

API Version 2006-03-01
581

Amazon Simple Storage Service Developer Guide
Example 1: Configuring for Buckets in the Same Account

 CreateRoleRequest createRoleRequest = new CreateRoleRequest()
 .withRoleName(roleName)
 .withAssumeRolePolicyDocument(trustPolicy.toString());

 iamClient.createRole(createRoleRequest);

 StringBuilder permissionPolicy = new StringBuilder();
 permissionPolicy.append("{\\r\\n \\\"Version\\\":\\\"2012-10-17\\\",\\r\\n
 \\\"Statement\\\":[\\r\\n {\\r\\n ");
 permissionPolicy.append("\\\"Effect\\\":\\\"Allow\\\",\\r\\n \\\"Action
\\\":[\\r\\n ");
 permissionPolicy.append("\\\"s3:GetObjectVersionForReplication\\\",\\r\\n
 ");
 permissionPolicy.append("\\\"s3:GetObjectVersionAcl\\\"\\r\\n],\\r\\n
 \\\"Resource\\\":[\\r\\n ");
 permissionPolicy.append("\\\"arn:aws:s3:::");
 permissionPolicy.append(sourceBucket);
 permissionPolicy.append("/*\\\"\\r\\n]\\r\\n },\\r\\n {\\r\
\n ");
 permissionPolicy.append("\\\"Effect\\\":\\\"Allow\\\",\\r\\n \\\"Action
\\\":[\\r\\n ");
 permissionPolicy.append("\\\"s3:ListBucket\\\",\\r\\n \\
\"s3:GetReplicationConfiguration\\\"\\r\\n ");
 permissionPolicy.append("],\\r\\n \\\"Resource\\\":[\\r\\n \
\\"arn:aws:s3:::");
 permissionPolicy.append(sourceBucket);
 permissionPolicy.append("\\r\\n ");
 permissionPolicy.append("]\\r\\n },\\r\\n {\\r\\n \\\"Effect\
\\":\\\"Allow\\\",\\r\\n ");
 permissionPolicy.append("\\\"Action\\\":[\\r\\n \\
\"s3:ReplicateObject\\\",\\r\\n ");
 permissionPolicy.append("\\\"s3:ReplicateDelete\\\",\\r\\n \\
\"s3:ReplicateTags\\\",\\r\\n ");
 permissionPolicy.append("\\\"s3:GetObjectVersionTagging\\\"\\r\\n\\r\\n
],\\r\\n ");
 permissionPolicy.append("\\\"Resource\\\":\\\"arn:aws:s3:::");
 permissionPolicy.append(destinationBucket);
 permissionPolicy.append("/*\\\"\\r\\n }\\r\\n]\\r\\n}");

 PutRolePolicyRequest putRolePolicyRequest = new PutRolePolicyRequest()
 .withRoleName(roleName)
 .withPolicyDocument(permissionPolicy.toString())
 .withPolicyName("crrRolePolicy");

 iamClient.putRolePolicy(putRolePolicyRequest);

 }
}

C#

The following AWS SDK for .NET code example adds a replication configuration to a bucket and then
retrieves it. To use this code, provide the names for your buckets and the Amazon Resource Name
(ARN) for your IAM role. For instructions on how to create and test a working sample, see Running
the Amazon S3 .NET Code Examples (p. 678).

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Threading.Tasks;

API Version 2006-03-01
582

Amazon Simple Storage Service Developer Guide
Example 1: Configuring for Buckets in the Same Account

namespace Amazon.DocSamples.S3
{
 class CrossRegionReplicationTest
 {
 private const string sourceBucket = "*** source bucket ***";
 // Bucket ARN example - arn:aws:s3:::destinationbucket
 private const string destinationBucketArn = "*** destination bucket ARN ***";
 private const string roleArn = "*** IAM Role ARN ***";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint sourceBucketRegion =
 RegionEndpoint.USWest2;
 private static IAmazonS3 s3Client;
 public static void Main()
 {
 s3Client = new AmazonS3Client(sourceBucketRegion);
 EnableReplicationAsync().Wait();
 }
 static async Task EnableReplicationAsync()
 {
 try
 {
 ReplicationConfiguration replConfig = new ReplicationConfiguration
 {
 Role = roleArn,
 Rules =
 {
 new ReplicationRule
 {
 Prefix = "Tax",
 Status = ReplicationRuleStatus.Enabled,
 Destination = new ReplicationDestination
 {
 BucketArn = destinationBucketArn
 }
 }
 }
 };

 PutBucketReplicationRequest putRequest = new
 PutBucketReplicationRequest
 {
 BucketName = sourceBucket,
 Configuration = replConfig
 };

 PutBucketReplicationResponse putResponse = await
 s3Client.PutBucketReplicationAsync(putRequest);

 // Verify configuration by retrieving it.
 await RetrieveReplicationConfigurationAsync(s3Client);
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Error encountered on server. Message:'{0}' when
 writing an object", e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown encountered on server. Message:'{0}' when
 writing an object", e.Message);
 }
 }
 private static async Task RetrieveReplicationConfigurationAsync(IAmazonS3
 client)
 {
 // Retrieve the configuration.

API Version 2006-03-01
583

Amazon Simple Storage Service Developer Guide
Example 2: Configuring for Buckets in Different Accounts

 GetBucketReplicationRequest getRequest = new GetBucketReplicationRequest
 {
 BucketName = sourceBucket
 };
 GetBucketReplicationResponse getResponse = await
 client.GetBucketReplicationAsync(getRequest);
 // Print.
 Console.WriteLine("Printing replication configuration information...");
 Console.WriteLine("Role ARN: {0}", getResponse.Configuration.Role);
 foreach (var rule in getResponse.Configuration.Rules)
 {
 Console.WriteLine("ID: {0}", rule.Id);
 Console.WriteLine("Prefix: {0}", rule.Prefix);
 Console.WriteLine("Status: {0}", rule.Status);
 }
 }
 }
}

Example 2: Configuring Replication When the Source
and Destination Buckets Are Owned by Different
Accounts
Setting up replication when source and destination buckets are owned by different AWS accounts
is similar to setting replication when both buckets are owned by the same account. The only difference
is that the destination bucket owner must grant the source bucket owner permission to replicate
objects by adding a bucket policy.

To configure replication when the source and destination buckets are owned by different
AWS accounts

1. In this example, you create source and destination buckets in two different AWS accounts. You
need to have two credential profiles set for the AWS CLI (in this example, we use acctA and acctB
for profile names). For more information about setting credential profiles, see Named Profiles in the
AWS Command Line Interface User Guide.

2. Follow the step-by-step instructions in Example 1: Configuring for Buckets in the Same
Account (p. 575) with the following changes:

• For all AWS CLI commands related to source bucket activities (for creating the source bucket,
enabling versioning, and creating the IAM role), use the acctA profile. Use the acctB profile to
create the destination bucket.

• Make sure that the permissions policy specifies the source and destination buckets that you
created for this example.

3. In the console, add the following bucket policy on the destination bucket to allow the owner of
the source bucket to replicate objects. Be sure to edit the policy by providing the AWS account ID
of the source bucket owner and the destination bucket name.

{
 "Version":"2008-10-17",
 "Id":"",
 "Statement":[
 {
 "Sid":"Stmt123",
 "Effect":"Allow",
 "Principal":{
 "AWS":"arn:aws:iam::source-bucket-owner-AWS-acct-ID:root"

API Version 2006-03-01
584

https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

Amazon Simple Storage Service Developer Guide
Example 3: Changing Replica Owner

 },
 "Action":["s3:ReplicateObject", "s3:ReplicateDelete"],
 "Resource":"arn:aws:s3:::destination/*"
 }
]
}

Choose the bucket and add the bucket policy. For instructions, see How Do I Add an S3 Bucket Policy? in
the Amazon Simple Storage Service Console User Guide.

Example 3: Changing the Replica Owner When
the Source and Destination Buckets Are Owned by
Different Accounts
When the source and destination buckets in a replication configuration are owned by different
AWS accounts, you can tell Amazon S3 to change replica ownership to the AWS account that owns the
destination bucket. This example explains how to use the Amazon S3 console and the AWS CLI to
change replica ownership. For more information, see Additional Replication Configuration: Changing the
Replica Owner (p. 568).

Change the Replica Owner When Buckets Are Owned by Different Accounts
(Console)

For step-by-step instructions, see Configuring a Replication Rule When the Destination Bucket is in a
Different AWS Account in the Amazon Simple Storage Service Console User Guide.

Change the Replica Owner When Buckets Are Owned by Different Accounts
(AWS CLI)

To change replica ownership using the AWS CLI, you create buckets, enable versioning on the buckets,
create an IAM role that gives Amazon S3 permission to replicate objects, and add the replication
configuration to the source bucket. In the replication configuration you direct Amazon S3 to change
replica owner. You also test the setup.

To change replica ownership when source and destination buckets are owned by different
AWS accounts (AWS CLI)

1. In this example, you create the source and destination buckets in two different AWS accounts.
Configure the AWS CLI with two named profiles. This example uses profiles named acctA and
acctB, respectively. For more information about setting credential profiles, see Named Profiles in
the AWS Command Line Interface User Guide.

Important
The profiles you use for this exercise must have the necessary permissions. For example,
in the replication configuration, you specify the IAM role that Amazon S3 can assume.
You can do this only if the profile you use has the iam:PassRole permission. If you use
administrator user credentials to create a named profile then you can perform all the tasks.
For more information, see Granting a User Permissions to Pass a Role to an AWS Service in
the IAM User Guide.

You will need to make sure these profiles have necessary permissions. For example, the replication
configuration includes an IAM role that Amazon S3 can assume. The named profile you use to attach
such configuration to a bucket can do so only if it has the iam:PassRole permission. If you specify
administrator user credentials when creating these named profiles, they have all the permissions.

API Version 2006-03-01
585

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/add-bucket-policy.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-replication.html#enable-replication-cross-account-destination
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-replication.html#enable-replication-cross-account-destination
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html

Amazon Simple Storage Service Developer Guide
Example 3: Changing Replica Owner

For more information, see Granting a User Permissions to Pass a Role to an AWS Service in the IAM
User Guide.

2. Create the source bucket and enable versioning. This example creates the source bucket in the US
East (N. Virginia) (us-east-1) Region.

aws s3api create-bucket \
--bucket source \
--region us-east-1 \
--profile acctA

aws s3api put-bucket-versioning \
--bucket source \
--versioning-configuration Status=Enabled \
--profile acctA

3. Create a destination bucket and enable versioning. This example creates the destination
bucket in the US West (Oregon) (us-west-2) Region. Use an AWS account profile different from the
one you used for the source bucket.

aws s3api create-bucket \
--bucket destination \
--region us-west-2 \
--create-bucket-configuration LocationConstraint=us-west-2 \
--profile acctB

aws s3api put-bucket-versioning \
--bucket destination \
--versioning-configuration Status=Enabled \
--profile acctB

4. You must add permissions to your destination bucket policy to allow changing the replica
ownership.

a. Save the following policy to destination-bucket-policy.json

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "<destination_bucket_policy_sid>",
 "Principal": {
 "AWS": "<src_account>"
 },
 "Action": [
 "s3:ReplicateObject",
 "s3:ReplicateDelete"
],
 "Effect": "Allow",
 "Resource": [
 "arn:<partition>:s3:::<destination_bucket_name>/*"
]
 }
]
}

b. Put the above policy to destination bucket:

API Version 2006-03-01
586

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html

Amazon Simple Storage Service Developer Guide
Example 3: Changing Replica Owner

aws s3api put-bucket-policy --region ${destination_region} --bucket
 ${destination_bucket_name} --policy file://destination_bucket_policy.json

5. Create an IAM role. You specify this role in the replication configuration that you add to the source
bucket later. Amazon S3 assumes this role to replicate objects on your behalf. You create an IAM role
in two steps:

• Create a role.

• Attach a permissions policy to the role.

a. Create an IAM role.

i. Copy the following trust policy and save it to a file named S3-role-trust-policy.json
in the current directory on your local computer. This policy grants Amazon S3 permissions
to assume the role.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":"s3.amazonaws.com"
 },
 "Action":"sts:AssumeRole"
 }
]
}

ii. Run the following AWS CLI command to create a role.

$ aws iam create-role \
--role-name replicationRole \
--assume-role-policy-document file://s3-role-trust-policy.json \
--profile acctA

b. Attach a permissions policy to the role.

i. Copy the following permissions policy and save it to a file named s3-role-perm-pol-
changeowner.json in the current directory on your local computer. This policy grants
permissions for various Amazon S3 bucket and object actions. In the following steps, you
create an IAM role and attach this policy to the role.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:GetObjectVersionForReplication",
 "s3:GetObjectVersionAcl"
],
 "Resource":[
 "arn:aws:s3:::source/*"
]
 },
 {
 "Effect":"Allow",
 "Action":[

API Version 2006-03-01
587

Amazon Simple Storage Service Developer Guide
Example 3: Changing Replica Owner

 "s3:ListBucket",
 "s3:GetReplicationConfiguration"
],
 "Resource":[
 "arn:aws:s3:::source"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:ReplicateObject",
 "s3:ReplicateDelete",
 "s3:ObjectOwnerOverrideToBucketOwner",
 "s3:ReplicateTags",
 "s3:GetObjectVersionTagging"
],
 "Resource":"arn:aws:s3:::destination/*"
 }
]
}

ii. To create a policy and attach it to the role, run the following command.

$ aws iam put-role-policy \
--role-name replicationRole \
--policy-document file://s3-role-perm-pol-changeowner.json \
--policy-name replicationRolechangeownerPolicy \
--profile acctA

6. Add a replication configuration to your source bucket.

a. The AWS CLI requires specifying the replication configuration as JSON. Save the following JSON
in a file named replication.json in the current directory on your local computer. In the
configuration, the addition of AccessControlTranslation to indicate change in replica
ownership.

{
 "Role":"IAM-role-ARN",
 "Rules":[
 {
 "Status":"Enabled",
 "Priority":"1",
 "DeleteMarkerReplication":{
 "Status":"Disabled"
 },
 "Filter":{
 "Prefix":"Tax"
 },
 "Status":"Enabled",
 "Destination":{
 "Bucket":"arn:aws:s3:::destination",
 "Account":"destination-bucket-owner-account-id",
 "AccessControlTranslation":{
 "Owner":"Destination"
 }
 }
 }
]
}

b. Edit the JSON by providing values for the destination bucket owner account ID and IAM-
role-ARN. Save the changes.

API Version 2006-03-01
588

Amazon Simple Storage Service Developer Guide
Example 4: Replicating Encrypted Objects

c. To add the replication configuration to the source bucket, run the following command. Provide
the source bucket name.

$ aws s3api put-bucket-replication \
--replication-configuration file://replication-changeowner.json \
--bucket source \
--profile acctA

7. Check replica ownership in the Amazon S3 console.

a. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

b. In the source bucket, create a folder named Tax.

c. Add objects to the folder in the source bucket. Verify that the destination bucket contains
the object replicas and that the ownership of the replicas has changed to the AWS account that
owns the destination bucket.

Change the Replica Owner When Buckets Are Owned by Different Accounts
(AWS SDK)

For a code example to add replication configuration, see Configure Replication When Buckets Are
Owned by the Same Account (AWS SDK) (p. 579). You need to modify the replication configuration
appropriately. For conceptual information, see Additional Replication Configuration: Changing the
Replica Owner (p. 568).

Example 4: Replicating Encrypted Objects
By default, Amazon S3 doesn't replicate objects that are stored at rest using server-side encryption with
AWS KMS-managed keys. To replicate encrypted objects, you modify the bucket replication configuration
to tell Amazon S3 to replicate these objects. This example explains how to use the Amazon S3 console
and the AWS Command Line Interface (AWS CLI) to change the bucket replication configuration to
enable replicating encrypted objects. For more information, see Additional Replication Configuration:
Replicating Objects Created with Server-Side Encryption (SSE) Using Encryption Keys stored in AWS
KMS (p. 570).

Replicate Encrypted Objects (Console)

For step-by-step instructions, see How Do I Add a Replication Rule to an S3 Bucket? in the Amazon
Simple Storage Service Console User Guide. This topic provides instructions for setting replication
configuration when buckets are owned by same and different AWS accounts.

Replicate Encrypted Objects (AWS CLI)

To replicate encrypted objects with the AWS CLI, you create buckets, enable versioning on the buckets,
create an IAM role that gives Amazon S3 permission to replicate objects, and add the replication
configuration to the source bucket. The replication configuration provides information related to
replicating objects encrypted using KMS keys. The IAM role permissions include necessary permissions to
replicate the encrypted objects. You also test the setup.

To replicate encrypted objects (AWS CLI)

1. In this example, we create both the source and destination buckets in the same AWS account.
Set a credentials profile for the AWS CLI. In this example, we use the profile name acctA. For
more information about setting credential profiles, see Named Profiles in the AWS Command Line
Interface User Guide.

API Version 2006-03-01
589

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-replication.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

Amazon Simple Storage Service Developer Guide
Example 4: Replicating Encrypted Objects

2. Create the source bucket and enable versioning on it. In this example, we create the source bucket
in the US East (N. Virginia) (us-east-1) Region.

aws s3api create-bucket \
--bucket source \
--region us-east-1 \
--profile acctA

aws s3api put-bucket-versioning \
--bucket source \
--versioning-configuration Status=Enabled \
--profile acctA

3. Create the destination bucket and enable versioning on it. In this example, we create the
destination bucket in the US West (Oregon) (us-west-2) Region.

Note
To set up replication configuration when both source and destination buckets are in
the same AWS account, you use the same profile. In this example, we use acctA. To test
replication configuration when the buckets are owned by different AWS accounts, you
specify different profiles for each.

aws s3api create-bucket \
--bucket destination \
--region us-west-2 \
--create-bucket-configuration LocationConstraint=us-west-2 \
--profile acctA

aws s3api put-bucket-versioning \
--bucket destination \
--versioning-configuration Status=Enabled \
--profile acctA

4. Create an IAM role. You specify this role in the replication configuration that you add to the source
bucket later. Amazon S3 assumes this role to replicate objects on your behalf. You create an IAM role
in two steps:

• Create a role

• Attach a permissions policy to the role

a. Create an IAM role.

i. Copy the following trust policy and save it to a file called s3-role-trust-policy-
kmsobj.json in the current directory on your local computer. This policy grants Amazon
S3 service principal permissions to assume the role so Amazon S3 can perform tasks on
your behalf.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":"s3.amazonaws.com"
 },
 "Action":"sts:AssumeRole"
 }
]

API Version 2006-03-01
590

Amazon Simple Storage Service Developer Guide
Example 4: Replicating Encrypted Objects

}

ii. Create a role:

$ aws iam create-role \
--role-name replicationRolekmsobj \
--assume-role-policy-document file://s3-role-trust-policy-kmsobj.json \
--profile acctA

b. Attach a permissions policy to the role. This policy grants permissions for various Amazon S3
bucket and object actions.

i. Copy the following permissions policy and save it to a file named s3-role-permissions-
policykmsobj.json in the current directory on your local computer. You create an IAM
role and attach the policy to it later.

Important
In the permissions policy, you specify the AWS KMS key IDs that will be used for
encryption of source and destination buckets. You must create two separate
KMS keys for the source and destination buckets. KMS keys are never shared
outside the AWS Region in which they were created.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Action":[
 "s3:ListBucket",
 "s3:GetReplicationConfiguration",
 "s3:GetObjectVersionForReplication",
 "s3:GetObjectVersionAcl"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws:s3:::source",
 "arn:aws:s3:::source/*"
]
 },
 {
 "Action":[
 "s3:ReplicateObject",
 "s3:ReplicateDelete",
 "s3:ReplicateTags",
 "s3:GetObjectVersionTagging"
],
 "Effect":"Allow",
 "Condition":{
 "StringLikeIfExists":{
 "s3:x-amz-server-side-encryption":[
 "aws:kms",
 "AES256"
],
 "s3:x-amz-server-side-encryption-aws-kms-key-id":[
 "AWS KMS key IDs(in ARN format) to use for encrypting object
 replicas"
]
 }
 },
 "Resource":"arn:aws:s3:::destination/*"
 },
 {
 "Action":[
 "kms:Decrypt"

API Version 2006-03-01
591

Amazon Simple Storage Service Developer Guide
Example 4: Replicating Encrypted Objects

],
 "Effect":"Allow",
 "Condition":{
 "StringLike":{
 "kms:ViaService":"s3.us-east-1.amazonaws.com",
 "kms:EncryptionContext:aws:s3:arn":[
 "arn:aws:s3:::source/*"
]
 }
 },
 "Resource":[
 "AWS KMS key IDs(in ARN format) used to encrypt source objects."
]
 },
 {
 "Action":[
 "kms:Encrypt"
],
 "Effect":"Allow",
 "Condition":{
 "StringLike":{
 "kms:ViaService":"s3.us-west-2.amazonaws.com",
 "kms:EncryptionContext:aws:s3:arn":[
 "arn:aws:s3:::destination/*"
]
 }
 },
 "Resource":[
 "AWS KMS key IDs(in ARN format) to use for encrypting object
 replicas"
]
 }
]
}

ii. Create a policy and attach it to the role:

$ aws iam put-role-policy \
--role-name replicationRolekmsobj \
--policy-document file://s3-role-permissions-policykmsobj.json \
--policy-name replicationRolechangeownerPolicy \
--profile acctA

5. Add the following replication configuration to the source bucket. It tells Amazon S3 to replicate
objects with the Tax/ prefix to the destination bucket.

Important
In the replication configuration you specify the IAM role that Amazon S3 can assume. You
can do this only if you have the iam:PassRole permission. The profile you specify in
the CLI command must have the permission. For more information, see Granting a User
Permissions to Pass a Role to an AWS Service in the IAM User Guide.

 <ReplicationConfiguration>
 <Role>IAM-Role-ARN</Role>
 <Rule>
 <Status>Enabled</Status>
 <Priority>1</Priority>
 <DeleteMarkerReplication>
 <Status>Disabled</Status>
 </DeleteMarkerReplication>
 <Filter>
 <Prefix>Tax</Prefix>
 </Filter>
 <Status>Enabled</Status>

API Version 2006-03-01
592

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html

Amazon Simple Storage Service Developer Guide
Example 4: Replicating Encrypted Objects

 <SourceSelectionCriteria>
 <SseKmsEncryptedObjects>
 <Status>Enabled</Status>
 </SseKmsEncryptedObjects>
 </SourceSelectionCriteria>
 <Destination>
 <Bucket>arn:aws:s3:::dest-bucket-name</Bucket>
 <EncryptionConfiguration>
 <ReplicaKmsKeyID>AWS KMS key IDs to use for encrypting object replicas</
ReplicaKmsKeyID>
 </EncryptionConfiguration>
 </Destination>
 </Rule>
</ReplicationConfiguration>

To add replication configuration to the source bucket, do the following:

a. The AWS CLI requires you to specify the replication configuration as JSON. Save the following
JSON in a file (replication.json) in the current directory on your local computer.

{
 "Role":"IAM-Role-ARN",
 "Rules":[
 {
 "Status":"Enabled",
 "Priority":1,
 "DeleteMarkerReplication":{
 "Status":"Disabled"
 },
 "Filter":{
 "Prefix":"Tax"
 },
 "Destination":{
 "Bucket":"arn:aws:s3:::destination",
 "EncryptionConfiguration":{
 "ReplicaKmsKeyID":"AWS KMS key IDs(in ARN format) to use for
 encrypting object replicas"
 }
 },
 "SourceSelectionCriteria":{
 "SseKmsEncryptedObjects":{
 "Status":"Enabled"
 }
 }
 }
]
}

b. Edit the JSON to provide values for the destination bucket, KMS ID ARN and IAM-role-
ARN. Save the changes.

c. Add the replication configuration to your source bucket. Be sure to provide the source bucket
name.

$ aws s3api put-bucket-replication \
--replication-configuration file://replication.json \
--bucket source \
--profile acctA

6. Test the setup to verify that encrypted objects are replicated. In the Amazon S3 console:

a. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

API Version 2006-03-01
593

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon Simple Storage Service Developer Guide
Replication Status Information

b. In the source bucket, create a folder named Tax.
c. Add sample objects to the folder. Be sure to choose the encryption option and specify your KMS

key to encrypt the objects.
d. Verify that the destination bucket contains the object replicas and that they are encrypted

using the KMS encryption key that you specified in the configuration.

Replicate Encrypted Objects (AWS SDK)

For a code example to add replication configuration, see Configure Replication When Buckets Are
Owned by the Same Account (AWS SDK) (p. 579). You need to modify the replication configuration
appropriately.

For conceptual information, see Additional Replication Configuration: Replicating Objects Created with
Server-Side Encryption (SSE) Using Encryption Keys stored in AWS KMS (p. 570).

Replication Status Information
To get the replication status of the objects in a bucket, use the Amazon S3 inventory tool. Amazon S3
sends a CSV file to the destination bucket that you specify in the inventory configuration. You can also
use Amazon Athena to query the replication status in the inventory report. For more information about
Amazon S3 inventory, see Amazon S3 Inventory (p. 422).

In replication, you have a source bucket on which you configure replication and a destination bucket
where Amazon S3 replicates objects. When you request an object (using GET object) or object metadata
(using HEAD object) from these buckets, Amazon S3 returns the x-amz-replication-status header
in the response:

• When you request an object from the source bucket, Amazon S3 returns the x-amz-replication-
status header if the object in your request is eligible for replication.

For example, suppose that you specify the object prefix TaxDocs in your replication configuration
to tell Amazon S3 to replicate only objects with the key name prefix TaxDocs. Any objects that you
upload that have this key name prefix—for example, TaxDocs/document1.pdf—will be replicated.
For object requests with this key name prefix, Amazon S3 returns the x-amz-replication-status
header with one of the following values for the object's replication status: PENDING, COMPLETED, or
FAILED.

Note
If object replication fails after you upload an object, you can't retry replication. You must
upload the object again.

• When you request an object from the destination bucket, if the object in your request is a replica that
Amazon S3 created, Amazon S3 returns the x-amz-replication-status header with the value
REPLICA.

You can find the object replication status using the console, the AWS Command Line Interface (AWS CLI),
or the AWS SDK.

• Console: Choose the object, and then choose Properties to view object properties, including
replication status.

• AWS CLI: Use the head-object AWS CLI command to retrieve object metadata.

aws s3api head-object --bucket source-bucket --key object-key --version-id object-
version-id

API Version 2006-03-01
594

Amazon Simple Storage Service Developer Guide
Related Topics

The command returns object metadata, including the ReplicationStatus as shown in the following
example response.

{
 "AcceptRanges":"bytes",
 "ContentType":"image/jpeg",
 "LastModified":"Mon, 23 Mar 2015 21:02:29 GMT",
 "ContentLength":3191,
 "ReplicationStatus":"COMPLETED",
 "VersionId":"jfnW.HIMOfYiD_9rGbSkmroXsFj3fqZ.",
 "ETag":"\"6805f2cfc46c0f04559748bb039d69ae\"",
 "Metadata":{

 }
}

• AWS SDKs: The following code fragments get replication status with the AWS SDK for Java and AWS
SDK for .NET, respectively.

• AWS SDK for Java

GetObjectMetadataRequest metadataRequest = new GetObjectMetadataRequest(bucketName,
 key);
ObjectMetadata metadata = s3Client.getObjectMetadata(metadataRequest);

System.out.println("Replication Status : " +
 metadata.getRawMetadataValue(Headers.OBJECT_REPLICATION_STATUS));

• AWS SDK for .NET

GetObjectMetadataRequest getmetadataRequest = new GetObjectMetadataRequest
 {
 BucketName = sourceBucket,
 Key = objectKey
 };

GetObjectMetadataResponse getmetadataResponse =
 client.GetObjectMetadata(getmetadataRequest);
Console.WriteLine("Object replication status: {0}",
 getmetadataResponse.ReplicationStatus);

Note
Before deleting an object from a source bucket that has replication enabled, check the object's
replication status to ensure that the object has been replicated.
If lifecycle configuration is enabled on the source bucket, Amazon S3 puts suspends lifecycle
actions until it marks the objects status as either COMPLETED or FAILED.

Related Topics
Replication (p. 551)

Troubleshooting Replication
If object replicas don't appear in the destination bucket after you configure replication, use these
troubleshooting tips to identify and fix issues.

API Version 2006-03-01
595

Amazon Simple Storage Service Developer Guide
Related Topics

• The time that it takes Amazon S3 to replicate an object depends on the size of the object. For large
objects, replication can take up to several hours. If the object that is being replicated is large, check
later to see if it appears in the destination bucket. You can also check the source object replication
status. If object replication status is pending, then you know that Amazon S3 has not completed the
replication. If object replication status is failed, check the replication configuration set on the source
bucket.

• In the replication configuration on the source bucket, verify the following:

• The Amazon Resource Name (ARN) of the destination bucket is correct.

• The key name prefix is correct. For example, if you set the configuration to replicate objects with
the prefix Tax, then only objects with key names such as Tax/document1 or Tax/document2 are
replicated. An object with the key name document3 is not replicated.

• The status is enabled.

• If the destination bucket is owned by another AWS account, verify that the bucket owner has a bucket
policy on the destination bucket that allows the source bucket owner to replicate objects. For an
example, see Example 2: Configuring Replication When the Source and Destination Buckets Are Owned
by Different Accounts (p. 584)

• If an object replica doesn't appear in the destination bucket, the following might have prevented
replication:

• Amazon S3 doesn't replicate an object in a source bucket that is a replica created by another
replication configuration. For example, if you set replication configuration from bucket A to bucket B
to bucket C, Amazon S3 doesn't replicate object replicas in bucket B to bucket C.

• A source bucket owner can grant other AWS accounts permission to upload objects. By default,
the source bucket owner doesn't have permissions for the objects created by other accounts. The
replication configuration replicates only the objects for which the source bucket owner has access
permissions. The source bucket owner can grant other AWS accounts permissions to create objects
conditionally, requiring explicit access permissions on those objects. For an example policy, see
Granting Cross-Account Permissions to Upload Objects While Ensuring the Bucket Owner Has Full
Control (p. 377).

• Suppose that in the replication configuration, you add a rule to replicate a subset of objects having
a specific tag. In this case, you must assign the specific tag key and value at the time of creating the
object for Amazon S3 to replicate the object. If you first create an object and then add the tag to the
existing object, Amazon S3 does not replicate the object.

Related Topics
Replication (p. 551)

Replication Additional Considerations
Amazon S3 also supports bucket configurations for the following:

• Versioning — For more information, see Using Versioning (p. 432).

• Website hosting — For more information, see Hosting a Static Website on Amazon S3 (p. 503).

• Bucket access through a bucket policy or access control list (ACL) — For more information, see Using
Bucket Policies and User Policies (p. 341) and see Managing Access with ACLs (p. 403).

• Log storage — For more information, Amazon S3 Server Access Logging (p. 647).

• Lifecycle management for objects in a bucket — For more information, see Object Lifecycle
Management (p. 119).

API Version 2006-03-01
596

Amazon Simple Storage Service Developer Guide
Lifecycle Configuration and Object Replicas

This topic explains how bucket replication configuration affects the behavior of these bucket
configurations.

Topics
• Lifecycle Configuration and Object Replicas (p. 597)
• Versioning Configuration and Replication Configuration (p. 597)
• Logging Configuration and Replication Configuration (p. 597)
• CRR and the Destination Region (p. 598)
• Pausing Replication (p. 598)
• Related Topics (p. 598)

Lifecycle Configuration and Object Replicas
The time it takes for Amazon S3 to replicate an object depends on the size of the object. For large
objects, it can take several hours. Although it might take a while before a replica is available in the
destination bucket, it takes the same amount of time to create the replica as it took to create the
corresponding object in the source bucket. If a lifecycle policy is enabled on the destination bucket, the
lifecycle rules honor the original creation time of the object, not when the replica became available in
the destination bucket.

If you have an object Expiration lifecycle policy in a non-versioned bucket, and you want to maintain the
same permanent delete behavior when you enable versioning, you must add a noncurrent expiration
policy to manage the deletions of the noncurrent object versions in the version-enabled bucket.

Replication configuration requires the bucket to be versioning-enabled. When you enable versioning on a
bucket, keep the following in mind:

• If you have an object Expiration lifecycle policy, after you enable versioning, add a
NonCurrentVersionExpiration policy to maintain the same permanent delete behavior as before
you enabled versioning.

• If you have a Transition lifecycle policy, after you enable versioning, consider adding a
NonCurrentVersionTransition policy.

Versioning Configuration and Replication
Configuration
Both the source and destination buckets must be versioning-enabled when you configure replication on a
bucket. After you enable versioning on both the source and destination buckets and configure replication
on the source bucket, you will encounter the following issues:

• If you attempt to disable versioning on the source bucket, Amazon S3 returns an error. You must
remove the replication configuration before you can disable versioning on the source bucket.

• If you disable versioning on the destination bucket, replication fails. The source object has the
replication status Failed.

Logging Configuration and Replication Configuration
If Amazon S3 delivers logs to a bucket that has replication enabled, it replicates the log objects.

If server access logs (Amazon S3 Server Access Logging (p. 647)) or AWS CloudTrail Logs (Logging
Amazon S3 API Calls by Using AWS CloudTrail (p. 621)) are enabled on your source or destination

API Version 2006-03-01
597

Amazon Simple Storage Service Developer Guide
CRR and the Destination Region

bucket, Amazon S3 includes replication-related requests in the logs. For example, Amazon S3 logs each
object that it replicates.

CRR and the Destination Region
In a cross-Region replication (CRR) configuration, the source and destination buckets must be in different
AWS Regions. You might choose the Region for your destination bucket based on either your business
needs or cost considerations. For example, interregion data transfer charges vary depending on the
Regions that you choose. Suppose that you chose US East (N. Virginia) (us-east-1) as the Region for your
source bucket. If you choose US West (Oregon) (us-west-2) as the Region for your destination bucket, you
pay more than if you choose the US East (Ohio) (us-east-2) Region. For pricing information, see "Data
Transfer Pricing" in Amazon S3 Pricing. There are no data transfer charges associated with same-Region
Replication (SRR)

Pausing Replication
To temporarily pause replication, disable the relevant rule in the replication configuration.

If replication is enabled and you remove the IAM role that grants Amazon S3 the required permissions,
replication fails. Amazon S3 reports the replication status for affected objects as Failed.

Related Topics
Replication (p. 551)

API Version 2006-03-01
598

https://aws.amazon.com/s3/pricing/

Amazon Simple Storage Service Developer Guide
Request Redirection and the REST API

Request Routing

Topics

• Request Redirection and the REST API (p. 599)

• DNS Considerations (p. 602)

Programs that make requests against buckets created using the <CreateBucketConfiguration> API must
support redirects. Additionally, some clients that do not respect DNS TTLs might encounter issues.

This section describes routing and DNS issues to consider when designing your service or application for
use with Amazon S3.

Request Redirection and the REST API
Amazon S3 uses the Domain Name System (DNS) to route requests to facilities that can process them.
This system works effectively, but temporary routing errors can occur. If a request arrives at the wrong
Amazon S3 location, Amazon S3 responds with a temporary redirect that tells the requester to resend
the request to a new endpoint. If a request is incorrectly formed, Amazon S3 uses permanent redirects to
provide direction on how to perform the request correctly.

Important
To use this feature, you must have an application that can handle Amazon S3 redirect responses.
The only exception is for applications that work exclusively with buckets that were created
without <CreateBucketConfiguration>. For more information about location constraints,
see Accessing a Bucket (p. 55).
For all Regions that launched after March 20, 2019, if a request arrives at the wrong Amazon S3
location, Amazon S3 returns an HTTP 400 Bad Request error.
For more information about enabling or disabling an AWS Region, see AWS Regions and
Endpoints in the AWS General Reference.

Topics

• DNS Routing (p. 599)

• Temporary Request Redirection (p. 600)

• Permanent Request Redirection (p. 602)

• Request Redirection Examples (p. 602)

DNS Routing
DNS routing routes requests to appropriate Amazon S3 facilities. The following figure and procedure
show an example of DNS routing.

API Version 2006-03-01
599

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Simple Storage Service Developer Guide
Temporary Request Redirection

DNS routing request steps

1. The client makes a DNS request to get an object stored on Amazon S3.
2. The client receives one or more IP addresses for facilities that can process the request. In this

example, the IP address is for Facility B.
3. The client makes a request to Amazon S3 Facility B.
4. Facility B returns a copy of the object to the client.

Temporary Request Redirection
A temporary redirect is a type of error response that signals to the requester that they should resend the
request to a different endpoint. Due to the distributed nature of Amazon S3, requests can be temporarily
routed to the wrong facility. This is most likely to occur immediately after buckets are created or deleted.

For example, if you create a new bucket and immediately make a request to the bucket, you might
receive a temporary redirect, depending on the location constraint of the bucket. If you created the
bucket in the US East (N. Virginia) AWS Region, you will not see the redirect because this is also the
default Amazon S3 endpoint.

However, if the bucket is created in any other Region, any requests for the bucket go to the default
endpoint while the bucket's DNS entry is propagated. The default endpoint redirects the request to the

API Version 2006-03-01
600

Amazon Simple Storage Service Developer Guide
Temporary Request Redirection

correct endpoint with an HTTP 302 response. Temporary redirects contain a URI to the correct facility,
which you can use to immediately resend the request.

Important
Don't reuse an endpoint provided by a previous redirect response. It might appear to work (even
for long periods of time), but it might provide unpredictable results and will eventually fail
without notice.

The following figure and procedure shows an example of a temporary redirect.

Temporary request redirection steps

1. The client makes a DNS request to get an object stored on Amazon S3.

2. The client receives one or more IP addresses for facilities that can process the request.

3. The client makes a request to Amazon S3 Facility B.

4. Facility B returns a redirect indicating the object is available from Location C.

5. The client resends the request to Facility C.

6. Facility C returns a copy of the object.

API Version 2006-03-01
601

Amazon Simple Storage Service Developer Guide
Permanent Request Redirection

Permanent Request Redirection
A permanent redirect indicates that your request addressed a resource inappropriately. For example,
permanent redirects occur if you use a path-style request to access a bucket that was created using
<CreateBucketConfiguration>. For more information, see Accessing a Bucket (p. 55).

To help you find these errors during development, this type of redirect does not contain a Location HTTP
header that allows you to automatically follow the request to the correct location. Consult the resulting
XML error document for help using the correct Amazon S3 endpoint.

Request Redirection Examples
The following are examples of temporary request redirection responses.

REST API Temporary Redirect Response

HTTP/1.1 307 Temporary Redirect
Location: http://johnsmith.s3-gztb4pa9sq.amazonaws.com/photos/puppy.jpg?rk=e2c69a31
Content-Type: application/xml
Transfer-Encoding: chunked
Date: Fri, 12 Oct 2007 01:12:56 GMT
Server: AmazonS3

<?xml version="1.0" encoding="UTF-8"?>
<Error>
 <Code>TemporaryRedirect</Code>
 <Message>Please re-send this request to the specified temporary endpoint.
 Continue to use the original request endpoint for future requests.</Message>
 <Endpoint>johnsmith.s3-gztb4pa9sq.amazonaws.com</Endpoint>
</Error>

SOAP API Temporary Redirect Response
Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or the
AWS SDKs.

<soapenv:Body>
 <soapenv:Fault>
 <Faultcode>soapenv:Client.TemporaryRedirect</Faultcode>
 <Faultstring>Please re-send this request to the specified temporary endpoint.
 Continue to use the original request endpoint for future requests.</Faultstring>
 <Detail>
 <Bucket>images</Bucket>
 <Endpoint>s3-gztb4pa9sq.amazonaws.com</Endpoint>
 </Detail>
 </soapenv:Fault>
</soapenv:Body>

DNS Considerations
One of the design requirements of Amazon S3 is extremely high availability. One of the ways we meet
this requirement is by updating the IP addresses associated with the Amazon S3 endpoint in DNS

API Version 2006-03-01
602

Amazon Simple Storage Service Developer Guide
DNS Considerations

as needed. These changes are automatically reflected in short-lived clients, but not in some long-
lived clients. Long-lived clients will need to take special action to re-resolve the Amazon S3 endpoint
periodically to benefit from these changes. For more information about virtual machines (VMs), refer to
the following:

• For Java, Sun's JVM caches DNS lookups forever by default; go to the "InetAddress Caching" section of
the InetAddress documentation for information on how to change this behavior.

• For PHP, the persistent PHP VM that runs in the most popular deployment configurations caches DNS
lookups until the VM is restarted. Go to the getHostByName PHP docs.

API Version 2006-03-01
603

https://docs.oracle.com/javase/9/docs/api/java/net/InetAddress.html
http://us2.php.net/manual/en/function.gethostbyname.php

Amazon Simple Storage Service Developer Guide
Performance Guidelines

Best Practices Design Patterns:
Optimizing Amazon S3 Performance

Your applications can easily achieve thousands of transactions per second in request performance when
uploading and retrieving storage from Amazon S3. Amazon S3 automatically scales to high request rates.
For example, your application can achieve at least 3,500 PUT/COPY/POST/DELETE and 5,500 GET/HEAD
requests per second per prefix in a bucket. There are no limits to the number of prefixes in a bucket.
You can increase your read or write performance by parallelizing reads. For example, if you create 10
prefixes in an Amazon S3 bucket to parallelize reads, you could scale your read performance to 55,000
read requests per second.

Some data lake applications on Amazon S3 scan millions or billions of objects for queries that run over
petabytes of data. These data lake applications achieve single-instance transfer rates that maximize the
network interface use for their Amazon EC2 instance, which can be up to 100 Gb/s on a single instance.
These applications then aggregate throughput across multiple instances to get multiple terabits per
second.

Other applications are sensitive to latency, such as social media messaging applications. These
applications can achieve consistent small object latencies (and first-byte-out latencies for larger objects)
of roughly 100–200 milliseconds.

Other AWS services can also help accelerate performance for different application architectures. For
example, if you want higher transfer rates over a single HTTP connection or single-digit millisecond
latencies, use Amazon CloudFront or Amazon ElastiCache for caching with Amazon S3.

Additionally, if you want fast data transport over long distances between a client and an S3 bucket,
use Amazon S3 Transfer Acceleration (p. 73). Transfer Acceleration uses the globally distributed edge
locations in CloudFront to accelerate data transport over geographical distances. If your Amazon S3
workload uses server-side encryption with AWS Key Management Service (SSE-KMS), see AWS KMS
Limits in the AWS Key Management Service Developer Guide for information about the request rates
supported for your use case.

The following topics describe best practice guidelines and design patterns for optimizing performance
for applications that use Amazon S3. This guidance supersedes any previous guidance on optimizing
performance for Amazon S3. For example, previously Amazon S3 performance guidelines recommended
randomizing prefix naming with hashed characters to optimize performance for frequent data
retrievals. You no longer have to randomize prefix naming for performance, and can use sequential
date-based naming for your prefixes. Refer to the Performance Guidelines for Amazon S3 (p. 604)
and Performance Design Patterns for Amazon S3 (p. 606) for the most current information about
performance optimization for Amazon S3.

Topics
• Performance Guidelines for Amazon S3 (p. 604)
• Performance Design Patterns for Amazon S3 (p. 606)

Performance Guidelines for Amazon S3
When building applications that upload and retrieve storage from Amazon S3, follow our best practices
guidelines to optimize performance. We also offer more detailed Performance Design Patterns (p. 606).

API Version 2006-03-01
604

https://docs.aws.amazon.com/ec2/index.html
https://docs.aws.amazon.com/cloudfront/index.html
https://docs.aws.amazon.com/elasticache/index.html
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html

Amazon Simple Storage Service Developer Guide
Measure Performance

To obtain the best performance for your application on Amazon S3, we recommend the following
guidelines.

Topics

• Measure Performance (p. 605)

• Scale Storage Connections Horizontally (p. 605)

• Use Byte-Range Fetches (p. 605)

• Retry Requests for Latency-Sensitive Applications (p. 605)

• Combine Amazon S3 (Storage) and Amazon EC2 (Compute) in the Same AWS Region (p. 606)

• Use Amazon S3 Transfer Acceleration to Minimize Latency Caused by Distance (p. 606)

• Use the Latest Version of the AWS SDKs (p. 606)

Measure Performance
When optimizing performance, look at network throughput, CPU, and DRAM requirements. Depending
on the mix of demands for these different resources, it might be worth evaluating different Amazon EC2
instance types. For more information about instance types, see Instance Types in the Amazon EC2 User
Guide for Linux Instances.

It’s also helpful to look at DNS lookup time, latency, and data transfer speed using HTTP analysis tools
when measuring performance.

Scale Storage Connections Horizontally
Spreading requests across many connections is a common design pattern to horizontally scale
performance. When you build high performance applications, think of Amazon S3 as a very large
distributed system, not as a single network endpoint like a traditional storage server. You can achieve
the best performance by issuing multiple concurrent requests to Amazon S3. Spread these requests over
separate connections to maximize the accessible bandwidth from Amazon S3. Amazon S3 doesn't have
any limits for the number of connections made to your bucket.

Use Byte-Range Fetches
Using the Range HTTP header in a GET Object request, you can fetch a byte-range from an object,
transferring only the specified portion. You can use concurrent connections to Amazon S3 to fetch
different byte ranges from within the same object. This helps you achieve higher aggregate throughput
versus a single whole-object request. Fetching smaller ranges of a large object also allows your
application to improve retry times when requests are interrupted. For more information, see Getting
Objects (p. 161).

Typical sizes for byte-range requests are 8 MB or 16 MB. If objects are PUT using a multipart upload,
it’s a good practice to GET them in the same part sizes (or at least aligned to part boundaries) for best
performance. GET requests can directly address individual parts; for example, GET ?partNumber=N.

Retry Requests for Latency-Sensitive Applications
Aggressive timeouts and retries help drive consistent latency. Given the large scale of Amazon S3, if
the first request is slow, a retried request is likely to take a different path and quickly succeed. The AWS
SDKs have configurable timeout and retry values that you can tune to the tolerances of your specific
application.

API Version 2006-03-01
605

https://docs.aws.amazon.com/ec2/index.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html

Amazon Simple Storage Service Developer Guide
Combine Amazon S3 and Amazon EC2 the Same Region

Combine Amazon S3 (Storage) and Amazon EC2
(Compute) in the Same AWS Region
Although S3 bucket names are globally unique, each bucket is stored in a Region that you select when
you create the bucket. To optimize performance, we recommend that you access the bucket from
Amazon EC2 instances in the same AWS Region when possible. This helps reduce network latency and
data transfer costs.

For more information about data transfer costs, see Amazon S3 Pricing.

Use Amazon S3 Transfer Acceleration to Minimize
Latency Caused by Distance
Amazon S3 Transfer Acceleration (p. 73) manages fast, easy, and secure transfers of files over long
geographic distances between the client and an S3 bucket. Transfer Acceleration takes advantage of
the globally distributed edge locations in Amazon CloudFront. As the data arrives at an edge location, it
is routed to Amazon S3 over an optimized network path. Transfer Acceleration is ideal for transferring
gigabytes to terabytes of data regularly across continents. It's also useful for clients that upload to a
centralized bucket from all over the world.

You can use the Amazon S3 Transfer Acceleration Speed Comparison tool to compare accelerated and
non-accelerated upload speeds across Amazon S3 Regions. The Speed Comparison tool uses multipart
uploads to transfer a file from your browser to various Amazon S3 Regions with and without using
Amazon S3 Transfer Acceleration.

Use the Latest Version of the AWS SDKs
The AWS SDKs provide built-in support for many of the recommended guidelines for optimizing Amazon
S3 performance. The SDKs provide a simpler API for taking advantage of Amazon S3 from within an
application and are regularly updated to follow the latest best practices. For example, the SDKs include
logic to automatically retry requests on HTTP 503 errors and are investing in code to respond and adapt
to slow connections.

The SDKs also provide the Transfer Manager, which automates horizontally scaling connections to
achieve thousands of requests per second, using byte-range requests where appropriate. It’s important
to use the latest version of the AWS SDKs to obtain the latest performance optimization features.

You can also optimize performance when you are using HTTP REST API requests. When using the REST
API, you should follow the same best practices that are part of the SDKs. Allow for timeouts and retries
on slow requests, and multiple connections to allow fetching of object data in parallel. For information
about using the REST API, see the Amazon Simple Storage Service API Reference.

Performance Design Patterns for Amazon S3
When designing applications to upload and retrieve storage from Amazon S3, use our best practices
design patterns for achieving the best performance for your application. We also offer Performance
Guidelines (p. 604) for you to consider when planning your application architecture.

To optimize performance, you can use the following design patterns.

Topics
• Using Caching for Frequently Accessed Content (p. 607)

API Version 2006-03-01
606

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://aws.amazon.com/s3/pricing/
https://docs.aws.amazon.com/cloudfront/index.html
http://s3-accelerate-speedtest.s3-accelerate.amazonaws.com/en/accelerate-speed-comparsion.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-s3-transfermanager.html
https://docs.aws.amazon.com/AmazonS3/latest/API/

Amazon Simple Storage Service Developer Guide
Caching Frequently Accessed Content

• Timeouts and Retries for Latency-Sensitive Applications (p. 607)
• Horizontal Scaling and Request Parallelization for High Throughput (p. 608)
• Using Amazon S3 Transfer Acceleration to Accelerate Geographically Disparate Data

Transfers (p. 609)

Using Caching for Frequently Accessed Content
Many applications that store data in Amazon S3 serve a “working set” of data that is repeatedly
requested by users. If a workload is sending repeated GET requests for a common set of objects, you
can use a cache such as Amazon CloudFront, Amazon ElastiCache, or AWS Elemental MediaStore to
optimize performance. Successful cache adoption can result in low latency and high data transfer rates.
Applications that use caching also send fewer direct requests to Amazon S3, which can help reduce
request costs.

Amazon CloudFront is a fast content delivery network (CDN) that transparently caches data from
Amazon S3 in a large set of geographically distributed points of presence (PoPs). When objects might be
accessed from multiple Regions, or over the internet, CloudFront allows data to be cached close to the
users that are accessing the objects. This can result in high performance delivery of popular Amazon S3
content. For information about CloudFront, see the Amazon CloudFront Developer Guide.

Amazon ElastiCache is a managed, in-memory cache. With ElastiCache, you can provision Amazon EC2
instances that cache objects in memory. This caching results in orders of magnitude reduction in GET
latency and substantial increases in download throughput. To use ElastiCache, you modify application
logic to both populate the cache with hot objects and check the cache for hot objects before requesting
them from Amazon S3. For examples of using ElastiCache to improve Amazon S3 GET performance, see
the blog post Turbocharge Amazon S3 with Amazon ElastiCache for Redis.

AWS Elemental MediaStore is a caching and content distribution system specifically built for video
workflows and media delivery from Amazon S3. MediaStore provides end-to-end storage APIs
specifically for video, and is recommended for performance-sensitive video workloads. For information
about MediaStore, see the AWS Elemental MediaStore User Guide.

Timeouts and Retries for Latency-Sensitive
Applications
There are certain situations where an application receives a response from Amazon S3 indicating that a
retry is necessary. Amazon S3 maps bucket and object names to the object data associated with them. If
an application generates high request rates (typically sustained rates of over 5,000 requests per second
to a small number of objects), it might receive HTTP 503 slowdown responses. If these errors occur,
each AWS SDK implements automatic retry logic using exponential backoff. If you are not using an AWS
SDK, you should implement retry logic when receiving the HTTP 503 error. For information about back-
off techniques, see Error Retries and Exponential Backoff in AWS in the Amazon Web Services General
Reference.

Amazon S3 automatically scales in response to sustained new request rates, dynamically optimizing
performance. While Amazon S3 is internally optimizing for a new request rate, you will receive HTTP 503
request responses temporarily until the optimization completes. After Amazon S3 internally optimizes
performance for the new request rate, all requests are generally served without retries.

For latency-sensitive applications, Amazon S3 advises tracking and aggressively retrying slower
operations. When you retry a request, we recommend using a new connection to Amazon S3 and
performing a fresh DNS lookup.

When you make large variably sized requests (for example, more than 128 MB), we advise tracking the
throughput being achieved and retrying the slowest 5 percent of the requests. When you make smaller

API Version 2006-03-01
607

https://docs.aws.amazon.com/cloudfront/index.html
https://docs.aws.amazon.com/elasticache/index.html
https://docs.aws.amazon.com/mediastore/index.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
https://aws.amazon.com/blogs/storage/turbocharge-amazon-s3-with-amazon-elasticache-for-redis/
https://docs.aws.amazon.com/mediastore/latest/ug/
https://docs.aws.amazon.com/general/latest/gr/api-retries.html

Amazon Simple Storage Service Developer Guide
Horizontal Scaling and Request Parallelization

requests (for example, less than 512 KB), where median latencies are often in the tens of milliseconds
range, a good guideline is to retry a GET or PUT operation after 2 seconds. If additional retries are
needed, the best practice is to back off. For example, we recommend issuing one retry after 2 seconds
and a second retry after an additional 4 seconds.

If your application makes fixed-size requests to Amazon S3, you should expect more consistent response
times for each of these requests. In this case, a simple strategy is to identify the slowest 1 percent of
requests and to retry them. Even a single retry is frequently effective at reducing latency.

If you are using AWS Key Management Service (AWS KMS) for server-side encryption, see Limits in the
AWS Key Management Service Developer Guide for information about the request rates that are supported
for your use case.

Horizontal Scaling and Request Parallelization for
High Throughput
Amazon S3 is a very large distributed system. To help you take advantage of its scale, we encourage you
to horizontally scale parallel requests to the Amazon S3 service endpoints. In addition to distributing the
requests within Amazon S3, this type of scaling approach helps distribute the load over multiple paths
through the network.

For high-throughput transfers, Amazon S3 advises using applications that use multiple connections to
GET or PUT data in parallel. For example, this is supported by Amazon S3 Transfer Manager in the AWS
Java SDK, and most of the other AWS SDKs provide similar constructs. For some applications, you can
achieve parallel connections by launching multiple requests concurrently in different application threads,
or in different application instances. The best approach to take depends on your application and the
structure of the objects that you are accessing.

You can use the AWS SDKs to issue GET and PUT requests directly rather than employing the
management of transfers in the AWS SDK. This approach lets you tune your workload more directly,
while still benefiting from the SDK’s support for retries and its handling of any HTTP 503 responses that
might occur. As a general rule, when you download large objects within a Region from Amazon S3 to
Amazon EC2, we suggest making concurrent requests for byte ranges of an object at the granularity of
8–16 MB. Make one concurrent request for each 85–90 MB/s of desired network throughput. To saturate
a 10 Gb/s network interface card (NIC), you might use about 15 concurrent requests over separate
connections. You can scale up the concurrent requests over more connections to saturate faster NICs,
such as 25 Gb/s or 100 Gb/s NICs.

Measuring performance is important when you tune the number of requests to issue concurrently. We
recommend starting with a single request at a time. Measure the network bandwidth being achieved
and the use of other resources that your application uses in processing the data. You can then identify
the bottleneck resource (that is, the resource with the highest usage), and hence the number of requests
that are likely to be useful. For example, if processing one request at a time leads to a CPU usage of 25
percent, it suggests that up to four concurrent requests can be accommodated. Measurement is essential,
and it is worth confirming resource use as the request rate is increased.

If your application issues requests directly to Amazon S3 using the REST API, we recommend using
a pool of HTTP connections and re-using each connection for a series of requests. Avoiding per-
request connection setup removes the need to perform TCP slow-start and Secure Sockets Layer (SSL)
handshakes on each request. For information about using the REST API, see the Amazon Simple Storage
Service API Reference.

Finally, it’s worth paying attention to DNS and double-checking that requests are being spread over
a wide pool of Amazon S3 IP addresses. DNS queries for Amazon S3 cycle through a large list of IP
endpoints. But caching resolvers or application code that reuses a single IP address do not benefit from
address diversity and the load balancing that follows from it. Network utility tools such as the netstat
command line tool can show the IP addresses being used for communication with Amazon S3, and we

API Version 2006-03-01
608

https://docs.aws.amazon.com/kms/latest/developerguide/limits.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-s3-transfermanager.html
https://docs.aws.amazon.com/ec2/index.html
https://docs.aws.amazon.com/AmazonS3/latest/API/
https://docs.aws.amazon.com/AmazonS3/latest/API/

Amazon Simple Storage Service Developer Guide
Accelerating Geographically Disparate Data Transfers

provide guidelines for DNS configurations to use. For more information about these guidelines, see DNS
Considerations (p. 602).

Using Amazon S3 Transfer Acceleration to Accelerate
Geographically Disparate Data Transfers
Amazon S3 Transfer Acceleration (p. 73) is effective at minimizing or eliminating the latency caused
by geographic distance between globally dispersed clients and a regional application using Amazon
S3. Transfer Acceleration uses the globally distributed edge locations in CloudFront for data transport.
The AWS edge network has points of presence in more than 50 locations. Today, it is used to distribute
content through CloudFront and to provide rapid responses to DNS queries made to Amazon Route 53.

The edge network also helps to accelerate data transfers into and out of Amazon S3. It is ideal for
applications that transfer data across or between continents, have a fast internet connection, use large
objects, or have a lot of content to upload. As the data arrives at an edge location, data is routed to
Amazon S3 over an optimized network path. In general, the farther away you are from an Amazon S3
Region, the higher the speed improvement you can expect from using Transfer Acceleration.

You can set up Transfer Acceleration on new or existing buckets. You can use a separate Amazon S3
Transfer Acceleration endpoint to use the AWS edge locations. The best way to test whether Transfer
Acceleration helps client request performance is to use the Amazon S3 Transfer Acceleration Speed
Comparison tool. Network configurations and conditions vary from time to time and from location to
location. So you are charged only for transfers where Amazon S3 Transfer Acceleration can potentially
improve your upload performance. For information about using Transfer Acceleration with different AWS
SDKs, see Amazon S3 Transfer Acceleration Examples (p. 76).

API Version 2006-03-01
609

https://docs.aws.amazon.com/route53/index.html
http://s3-accelerate-speedtest.s3-accelerate.amazonaws.com/en/accelerate-speed-comparsion.html
http://s3-accelerate-speedtest.s3-accelerate.amazonaws.com/en/accelerate-speed-comparsion.html

Amazon Simple Storage Service Developer Guide
Monitoring Tools

Monitoring Amazon S3
Monitoring is an important part of maintaining the reliability, availability, and performance of Amazon
S3 and your AWS solutions. You should collect monitoring data from all of the parts of your AWS
solution so that you can more easily debug a multipoint failure if one occurs. But before you start
monitoring Amazon S3, you should create a monitoring plan that includes answers to the following
questions:

• What are your monitoring goals?

• What resources will you monitor?

• How often will you monitor these resources?

• What monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

Topics

• Monitoring Tools (p. 610)

• Monitoring Metrics with Amazon CloudWatch (p. 611)

• Metrics Configurations for Buckets (p. 617)

• Logging with Amazon S3 (p. 619)

• Logging Amazon S3 API Calls by Using AWS CloudTrail (p. 621)

• Using AWS CloudTrail to Identify Amazon S3 Requests (p. 628)

Monitoring Tools
AWS provides various tools that you can use to monitor Amazon S3. You can configure some of these
tools to do the monitoring for you, while some of the tools require manual intervention. We recommend
that you automate monitoring tasks as much as possible.

Automated Monitoring Tools
You can use the following automated monitoring tools to watch Amazon S3 and report when something
is wrong:

• Amazon CloudWatch Alarms – Watch a single metric over a time period that you specify, and perform
one or more actions based on the value of the metric relative to a given threshold over a number of
time periods. The action is a notification sent to an Amazon Simple Notification Service (Amazon SNS)
topic or Amazon EC2 Auto Scaling policy. CloudWatch alarms do not invoke actions simply because
they are in a particular state. The state must have changed and been maintained for a specified
number of periods. For more information, see Monitoring Metrics with Amazon CloudWatch (p. 611).

• AWS CloudTrail Log Monitoring – Share log files between accounts, monitor CloudTrail log files in
real time by sending them to CloudWatch Logs, write log processing applications in Java, and validate
that your log files have not changed after delivery by CloudTrail. For more information, see Logging
Amazon S3 API Calls by Using AWS CloudTrail (p. 621).

API Version 2006-03-01
610

Amazon Simple Storage Service Developer Guide
Manual Tools

Manual Monitoring Tools
Another important part of monitoring Amazon S3 involves manually monitoring those items that
the CloudWatch alarms don't cover. The Amazon S3, CloudWatch, Trusted Advisor, and other AWS
Management Console dashboards provide an at-a-glance view of the state of your AWS environment.
You might want to enable server access logging, which tracks requests for access to your bucket. Each
access log record provides details about a single access request, such as the requester, bucket name,
request time, request action, response status, and error code, if any. For more information, see Amazon
S3 Server Access Logging (p. 647) in the Amazon Simple Storage Service Developer Guide.

• Amazon S3 dashboard shows:

• Your buckets and the objects and properties they contain.

• CloudWatch home page shows:

• Current alarms and status.

• Graphs of alarms and resources.

• Service health status.

In addition, you can use CloudWatch to do the following:

• Create customized dashboards to monitor the services you care about.

• Graph metric data to troubleshoot issues and discover trends.

• Search and browse all your AWS resource metrics.

• Create and edit alarms to be notified of problems.

• AWS Trusted Advisor can help you monitor your AWS resources to improve performance, reliability,
security, and cost effectiveness. Four Trusted Advisor checks are available to all users; more than 50
checks are available to users with a Business or Enterprise support plan. For more information, see
AWS Trusted Advisor.

Trusted Advisor has these checks that relate to Amazon S3:

• Checks of the logging configuration of Amazon S3 buckets.

• Security checks for Amazon S3 buckets that have open access permissions.

• Fault tolerance checks for Amazon S3 buckets that do not have versioning enabled, or have
versioning suspended.

Monitoring Metrics with Amazon CloudWatch
Amazon CloudWatch metrics for Amazon S3 can help you understand and improve the performance of
applications that use Amazon S3. There are two ways that you can use CloudWatch with Amazon S3.

• Daily Storage Metrics for Buckets ‐ You can monitor bucket storage using CloudWatch, which collects
and processes storage data from Amazon S3 into readable, daily metrics. These storage metrics for
Amazon S3 are reported once per day and are provided to all customers at no additional cost.

• Request metrics ‐ You can choose to monitor Amazon S3 requests to quickly identify and act on
operational issues. The metrics are available at 1-minute intervals after some latency to process.
These CloudWatch metrics are billed at the same rate as the Amazon CloudWatch custom metrics. For
information about CloudWatch pricing, see Amazon CloudWatch Pricing. To learn how to opt in to
getting these metrics, see Metrics Configurations for Buckets (p. 617).

When enabled, request metrics are reported for all object operations. By default, these 1-minute
metrics are available at the Amazon S3 bucket level. You can also define a filter for the metrics
collected using a shared prefix or object tag. This allows you to align metrics filters to specific business
applications, workflows, or internal organizations.

API Version 2006-03-01
611

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html
https://aws.amazon.com/premiumsupport/trustedadvisor/
https://aws.amazon.com/cloudwatch/pricing/

Amazon Simple Storage Service Developer Guide
Metrics and Dimensions

All CloudWatch statistics are retained for a period of 15 months so that you can access historical
information and gain a better perspective on how your web application or service is performing. For
more information, see What Is Amazon CloudWatch? in the Amazon CloudWatch User Guide.

Metrics and Dimensions
The storage metrics and dimensions that Amazon S3 sends to CloudWatch are listed below.

Amazon S3 CloudWatch Daily Storage Metrics for
Buckets
The AWS/S3 namespace includes the following daily storage metrics for buckets.

Metric Description

BucketSizeBytes The amount of data in bytes stored in a bucket in the STANDARD
storage class, INTELLIGENT_TIERING storage class, Standard - Infrequent
Access (STANDARD_IA) storage class, OneZone - Infrequent Access
(ONEZONE_IA), Reduced Redundancy Storage (RRS) class, Deep Archive
Storage (DEEP_ARCHIVE) class or, Glacier (GLACIER) storage class. This value
is calculated by summing the size of all objects in the bucket (both current
and noncurrent objects), including the size of all parts for all incomplete
multipart uploads to the bucket.

Valid storage type filters: StandardStorage,
IntelligentTieringStorage, StandardIAStorage,
StandardIASizeOverhead, StandardIAObjectOverhead,
OneZoneIAStorage, OneZoneIASizeOverhead,
ReducedRedundancyStorage, GlacierStorage,
GlacierStagingStorage, GlacierObjectOverhead,
GlacierS3ObjectOverhead, DeepArchiveStorage,
DeepArchiveObjectOverhead, DeepArchiveS3ObjectOverhead and,
DeepArchiveStagingStorage (see the StorageType dimension)

Units: Bytes

Valid statistics: Average

NumberOfObjects The total number of objects stored in a bucket for all storage classes except
for the GLACIER storage class. This value is calculated by counting all objects
in the bucket (both current and noncurrent objects) and the total number of
parts for all incomplete multipart uploads to the bucket.

Valid storage type filters: AllStorageTypes (see the StorageType
dimension)

Units: Count

Valid statistics: Average

Amazon S3 CloudWatch Request Metrics
The AWS/S3 namespace includes the following request metrics.

API Version 2006-03-01
612

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html

Amazon Simple Storage Service Developer Guide
Amazon S3 CloudWatch Request Metrics

Metric Description

AllRequests The total number of HTTP requests made to an Amazon S3 bucket,
regardless of type. If you're using a metrics configuration with a filter, then
this metric only returns the HTTP requests made to the objects in the bucket
that meet the filter's requirements.

Units: Count

Valid statistics: Sum

GetRequests The number of HTTP GET requests made for objects in an Amazon S3
bucket. This doesn't include list operations.

Units: Count

Valid statistics: Sum

Note
Paginated list-oriented requests, like List Multipart Uploads, List
Parts, Get Bucket Object versions, and others, are not included in
this metric.

PutRequests The number of HTTP PUT requests made for objects in an Amazon S3
bucket.

Units: Count

Valid statistics: Sum

DeleteRequests The number of HTTP DELETE requests made for objects in an Amazon S3
bucket. This also includes Delete Multiple Objects requests. This metric
shows the number of requests, not the number of objects deleted.

Units: Count

Valid statistics: Sum

HeadRequests The number of HTTP HEAD requests made to an Amazon S3 bucket.

Units: Count

Valid statistics: Sum

PostRequests The number of HTTP POST requests made to an Amazon S3 bucket.

Units: Count

Valid statistics: Sum

Note
Delete Multiple Objects and SELECT Object Content requests are
not included in this metric.

SelectRequests The number of Amazon S3 SELECT Object Content requests made for
objects in an Amazon S3 bucket.

Units: Count

Valid statistics: Sum

API Version 2006-03-01
613

https://docs.aws.amazon.com/AmazonS3/latest/API//mpUploadListMPUpload.html
https://docs.aws.amazon.com/AmazonS3/latest/API//mpUploadListParts.html
https://docs.aws.amazon.com/AmazonS3/latest/API//mpUploadListParts.html
https://docs.aws.amazon.com/AmazonS3/latest/API//RESTBucketGETVersion.html
https://docs.aws.amazon.com/AmazonS3/latest/API/multiobjectdeleteapi.html
https://docs.aws.amazon.com/AmazonS3/latest/API/multiobjectdeleteapi.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectSELECTContent.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectSELECTContent.html

Amazon Simple Storage Service Developer Guide
Amazon S3 CloudWatch Request Metrics

Metric Description

SelectScannedBytes The number of bytes of data scanned with Amazon S3 SELECT Object
Content requests in an Amazon S3 bucket.

Units: Bytes

Valid statistics: Average (bytes per request), Sum (bytes per period), Sample
Count, Min, Max (same as p100), any percentile between p0.0 and p99.9

SelectReturnedBytes The number of bytes of data returned with Amazon S3 SELECT Object
Content requests in an Amazon S3 bucket.

Units: Bytes

Valid statistics: Average (bytes per request), Sum (bytes per period), Sample
Count, Min, Max (same as p100), any percentile between p0.0 and p99.9

ListRequests The number of HTTP requests that list the contents of a bucket.

Units: Count

Valid statistics: Sum

BytesDownloaded The number of bytes downloaded for requests made to an Amazon S3
bucket, where the response includes a body.

Units: Bytes

Valid statistics: Average (bytes per request), Sum (bytes per period), Sample
Count, Min, Max (same as p100), any percentile between p0.0 and p99.9

BytesUploaded The number of bytes uploaded that contain a request body, made to an
Amazon S3 bucket.

Units: Bytes

Valid statistics: Average (bytes per request), Sum (bytes per period), Sample
Count, Min, Max (same as p100), any percentile between p0.0 and p99.9

4xxErrors The number of HTTP 4xx client error status code requests made to an
Amazon S3 bucket with a value of either 0 or 1. The average statistic shows
the error rate, and the sum statistic shows the count of that type of error,
during each period.

Units: Count

Valid statistics: Average (reports per request), Sum (reports per period), Min,
Max, Sample Count

5xxErrors The number of HTTP 5xx server error status code requests made to an
Amazon S3 bucket with a value of either 0 or 1. The average statistic shows
the error rate, and the sum statistic shows the count of that type of error,
during each period.

Units: Counts

Valid statistics: Average (reports per request), Sum (reports per period), Min,
Max, Sample Count

API Version 2006-03-01
614

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectSELECTContent.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectSELECTContent.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectSELECTContent.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectSELECTContent.html

Amazon Simple Storage Service Developer Guide
Amazon S3 CloudWatch Dimensions

Metric Description

FirstByteLatency The per-request time from the complete request being received by an
Amazon S3 bucket to when the response starts to be returned.

Units: Milliseconds

Valid statistics: Average, Sum, Min, Max(same as p100), Sample Count, any
percentile between p0.0 and p100

TotalRequestLatency The elapsed per-request time from the first byte received to the last byte
sent to an Amazon S3 bucket. This includes the time taken to receive
the request body and send the response body, which is not included in
FirstByteLatency.

Units: Milliseconds

Valid statistics: Average, Sum, Min, Max(same as p100), Sample Count, any
percentile between p0.0 and p100

Amazon S3 CloudWatch Dimensions
The following dimensions are used to filter Amazon S3 metrics.

Dimension Description

BucketName This dimension filters the data you request for the identified bucket
only.

StorageType This dimension filters the data that you have stored in a bucket by
the following types of storage:

• StandardStorage - The number of bytes used for objects in the
STANDARD storage class.

• IntelligentTieringFAStorage - The number of bytes used
for objects in the Frequent Access tier of INTELLIGENT_TIERING
storage class.

• IntelligentTieringIAStorage - The number of bytes used
for objects in the Infrequent Access tier of INTELLIGENT_TIERING
storage class.

• StandardIAStorage - The number of bytes used for objects in
the Standard - Infrequent Access (STANDARD_IA) storage class.

• StandardIASizeOverhead - The number of bytes used for
objects smaller than 128 KB in size in the STANDARD_IA storage
class.

• OneZoneIAStorage - The number of bytes used for objects in
the OneZone - Infrequent Access (ONEZONE_IA) storage class.

• OneZoneIASizeOverhead - The number of bytes used for
objects smaller than 128 KB in size in the ONEZONE_IA storage
class.

• ReducedRedundancyStorage - The number of bytes used for
objects in the Reduced Redundancy Storage (RRS) class.

• GlacierStorage - The number of bytes used for objects in the
GLACIER storage class.

API Version 2006-03-01
615

Amazon Simple Storage Service Developer Guide
Accessing CloudWatch Metrics

Dimension Description

• GlacierStagingStorage - The number of bytes used for parts
of Multipart objects before the CompleteMultipartUpload request
is completed on objects in the GLACIER storage class.

• GlacierObjectOverhead - For each archived object, GLACIER
adds 32 KB of storage for index and related metadata. This extra
data is necessary to identify and restore your object. You are
charged GLACIER rates for this additional storage.

• GlacierS3ObjectOverhead - For each object archived to
GLACIER , Amazon S3 uses 8 KB of storage for the name of the
object and other metadata. You are charged STANDARD rates for
this additional storage.

• DeepArchiveStorage - The number of bytes used for objects in
the DEEP_ARCHIVE storage class.

• DeepArchiveObjectOverhead - For each archived object,
DEEP_ARCHIVE adds 32 KB of storage for index and related
metadata. This extra data is necessary to identify and restore
your object. You are charged DEEP_ARCHIVE rates for this
additional storage.

• DeepArchiveS3ObjectOverhead - For each object archived to
DEEP_ARCHIVE, Amazon S3 uses 8 KB of storage for the name of
the object and other metadata. You are charged STANDARD rates
for this additional storage.

• DeepArchiveStagingStorage – The number of bytes used for
parts of Multipart objects before the CompleteMultipartUpload
request is completed on objects in the DEEP_ARCHIVE storage
class.

FilterId This dimension filters metrics configurations that you specify for
request metrics on a bucket, for example, a prefix or a tag. You
specify a filter id when you create a metrics configuration. For more
information, see Metrics Configurations for Buckets.

Accessing CloudWatch Metrics
You can use the following procedures to view the storage metrics for Amazon S3. To get the Amazon
S3 metrics involved, you must set a start and end timestamp. For metrics for any given 24-hour period,
set the time period to 86400 seconds, the number of seconds in a day. Also, remember to set the
BucketName and StorageType dimensions.

For example, if you use the AWS CLI to get the average of a specific bucket's size, in bytes, you could use
the following command.

aws cloudwatch get-metric-statistics --metric-name BucketSizeBytes --namespace AWS/S3
 --start-time 2016-10-19T00:00:00Z --end-time 2016-10-20T00:00:00Z --statistics Average
 --unit Bytes --region us-west-2 --dimensions Name=BucketName,Value=ExampleBucket
 Name=StorageType,Value=StandardStorage --period 86400 --output json

This example produces the following output.

{
 "Datapoints": [
 {
 "Timestamp": "2016-10-19T00:00:00Z",

API Version 2006-03-01
616

https://docs.aws.amazon.com/AmazonS3/latest/dev/metrics-configurations.html

Amazon Simple Storage Service Developer Guide
Related Resources

 "Average": 1025328.0,
 "Unit": "Bytes"
 }
],
 "Label": "BucketSizeBytes"
}

To view metrics using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.
2. In the navigation pane, choose Metrics.
3. Choose the S3 namespace.
4. (Optional) To view a metric, enter the metric name in the search field.
5. (Optional) To filter by the StorageType dimension, enter the name of the storage class in the search

field.

To view a list of valid metrics stored for your AWS account using the AWS CLI

• At a command prompt, use the following command.

aws cloudwatch list-metrics --namespace "AWS/S3"

Related Resources
• Amazon CloudWatch Logs API Reference
• Amazon CloudWatch User Guide
• list-metrics action in the AWS CLI Command Reference.
• get-metric-statistics action in the AWS CLI Command Reference.
• Metrics Configurations for Buckets (p. 617).

Metrics Configurations for Buckets
With CloudWatch request metrics for Amazon S3, you can receive 1-minute CloudWatch metrics,
set CloudWatch alarms, and access CloudWatch dashboards to view near-real-time operations and
performance of your Amazon S3 storage. For applications that depend on cloud storage, these metrics
let you quickly identify and act on operational issues. When enabled, these 1-minute metrics are
available at the Amazon S3 bucket-level, by default.

If you want to get the CloudWatch request metrics for the objects in a bucket, you must create a metrics
configuration for the bucket. You can also define a filter for the metrics collected using a shared prefix
or object tags. This allows you to align metrics filters to specific business applications, workflows, or
internal organizations.

For more information about the CloudWatch metrics that are available and the differences between
storage and request metrics, see Monitoring Metrics with Amazon CloudWatch (p. 611).

Keep the following in mind when using metrics configurations:

• You can have a maximum of 1,000 metrics configurations per bucket.
• You can choose which objects in a bucket to include in metrics configurations by using filters. Filtering

on a shared prefix or object tag allows you to align metrics filters to specific business applications,

API Version 2006-03-01
617

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/list-metrics.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/get-metric-statistics.html

Amazon Simple Storage Service Developer Guide
Best-Effort CloudWatch Metrics Delivery

workflows, or internal organizations. To request metrics for the entire bucket, create a metrics
configuration without a filter.

• Metrics configurations are necessary only to enable request metrics. Bucket-level daily storage metrics
are always turned on, and are provided at no additional cost. Currently, it's not possible to get daily
storage metrics for a filtered subset of objects.

• Each metrics configuration enables the full set of available request metrics (p. 612). Operation-
specific metrics (such as PostRequests) are reported only if there are requests of that type for your
bucket or your filter.

• Request metrics are reported for object-level operations. They are also reported for operations that
list bucket contents, like GET Bucket (List Objects), GET Bucket Object Versions, and List Multipart
Uploads, but they are not reported for other operations on buckets.

• Request metrics support filtering by prefixes but storage metrics do not.

Best-Effort CloudWatch Metrics Delivery
CloudWatch metrics are delivered on a best-effort basis. Most requests for an Amazon S3 object that
have request metrics result in a data point being sent to CloudWatch.

The completeness and timeliness of metrics is not guaranteed. The data point for a particular request
might be returned with a timestamp that is later than when the request was actually processed. Or the
data point for a minute might be delayed before being available through CloudWatch, or it might not be
delivered at all. CloudWatch request metrics give you an idea of the nature of traffic against your bucket
in near-real time. It is not meant to be a complete accounting of all requests.

It follows from the best-effort nature of this feature that the reports available at the Billing & Cost
Management Dashboard might include one or more access requests that do not appear in the bucket
metrics.

Filtering Metrics Configurations
When working with CloudWatch metric configurations, you have the option of filtering the configuration
into groups of related objects within a single bucket. You can filter objects in a bucket for inclusion in a
metrics configuration based on one or more of the following elements:

• Object key name prefix – Although the Amazon S3 data model is a flat structure, you can infer
hierarchy by using a prefix. The Amazon S3 console supports these prefixes with the concept
of folders. If you filter by prefix, objects that have the same prefix are included in the metrics
configuration.

• Tag – You can add tags, which are key-value name pairs, to objects. Tags help you find and organize
objects easily. You can also use tags as a filter for metrics configurations.

If you specify a filter, only requests that operate on single objects can match the filter and be included in
the reported metrics. Requests like Delete Multiple Objects and List requests don't return any metrics for
configurations with filters.

To request more complex filtering, choose two or more elements. Only objects that have all of those
elements are included in the metrics configuration. If you don't set filters, all of the objects in the bucket
are included in the metrics configuration.

How to Add Metrics Configurations
You can add metrics configurations to a bucket through the Amazon S3 console, with the AWS CLI, or
with the Amazon S3 REST API. For information about how to do this in the AWS Management Console,

API Version 2006-03-01
618

https://docs.aws.amazon.com/AmazonS3/latest/API/v2-RESTBucketGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETVersion.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListMPUpload.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListMPUpload.html
https://console.aws.amazon.com/billing/home?#/
https://console.aws.amazon.com/billing/home?#/
https://docs.aws.amazon.com/AmazonS3/latest/API/multiobjectdeleteapi.html

Amazon Simple Storage Service Developer Guide
Logging with Amazon S3

see the How Do I Configure Request Metrics for an S3 Bucket? in the Amazon Simple Storage Service
Console User Guide.

To add metrics configurations using the AWS CLI

1. Install and set up the AWS CLI. For instructions, see Getting Set Up with the AWS Command Line
Interface in the AWS Command Line Interface User Guide.

2. Open a terminal.

3. Run the following command to add a metrics configuration.

aws s3api put-bucket-metrics-configuration --endpoint http://s3-us-west-2.amazonaws.com
 --bucket bucket-name --id metrics-config-id --metrics-configuration '{"Id":"metrics-
config-id","Filter":{"Prefix":"prefix1"}}'

4. To verify that the configuration was added, execute the following command.

aws s3api get-bucket-metrics-configuration --endpoint http://s3-us-west-2.amazonaws.com
 --bucket bucket-name --id metrics-config-id

This returns the following response.

{
 "MetricsConfiguration": {
 "Filter": {
 "Prefix": "prefix1"
 },
 "Id": "metrics-config-id"
 }
}

You can also add metrics configurations programmatically with the Amazon S3 REST API. For more
information, see the following topics in the Amazon Simple Storage Service API Reference:

• PUT Bucket Metric Configuration

• GET Bucket Metric Configuration

• List Bucket Metric Configuration

• DELETE Bucket Metric Configuration

Logging with Amazon S3
You can record the actions that are taken by users, roles, or AWS services on Amazon S3 resources
and maintain log records for auditing and compliance purposes. To do this, you can use Server Access
Logging (p. 647), AWS CloudTrail logs, or a combination of both. We recommend that you use AWS
CloudTrail for logging bucket and object-level actions for your Amazon S3 resources.

The following table lists the key properties of AWS CloudTrail logs and Amazon S3 server access logs.

Log Properties AWS CloudTrail Amazon S3
Server Logs

Can be forwarded to other systems (CloudWatch Logs,
CloudWatch Events)

Yes

API Version 2006-03-01
619

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/configure-metrics.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTMetricConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETMetricConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTListBucketMetricsConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTDeleteBucketMetricsConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/cloudtrail-logging.html

Amazon Simple Storage Service Developer Guide
Logging with Amazon S3

Log Properties AWS CloudTrail Amazon S3
Server Logs

Deliver logs to more than one destination (for example, send
the same logs to two different buckets)

Yes

Turn on logs for a subset of objects (prefix) Yes

Cross-account log delivery (target and source bucket owned
by different accounts)

Yes

Integrity validation of log file using digital signature/hashing Yes

Default/choice of encryption for log files Yes

Object operations (using Amazon S3 APIs) Yes Yes

Bucket operations (using Amazon S3 APIs) Yes Yes

Searchable UI for logs Yes

Fields for object lock parameters, Amazon S3 select
properties for log records

Yes

Fields for Object Size, Total Time, Turn-Around
Time, and HTTP Referrer for log records

 Yes

Lifecycle transitions, expirations, restores Yes

Logging of keys in a batch delete operation Yes

Authentication failures1 Yes

Accounts where logs get delivered Bucket owner2,
and requester

Bucket owner only

Performance and Cost AWS CloudTrail Amazon S3
Server Logs

Price Management
events (first

delivery) are free;
data events incur
a fee, in addition
to storage of logs

No additional
cost in addition

to storage of logs

Speed of log delivery Data events
every 5 mins;
management
events every

15 mins

Within a few hours

Log format JSON Log file with
space-separated,

newline-
delimited records

API Version 2006-03-01
620

Amazon Simple Storage Service Developer Guide
Logging API Calls with AWS CloudTrail

Notes:

1. CloudTrail does not deliver logs for requests that fail authentication (in which the provided credentials
are not valid). However, it does include logs for requests in which authorization fails (AccessDenied)
and requests that are made by anonymous users.

2. The S3 bucket owner receives CloudTrail logs only if the account also owns or has full access
to the object in the request. For more information, see Object-Level Actions in Cross-Account
Scenarios (p. 624).

Logging Amazon S3 API Calls by Using AWS
CloudTrail

Amazon S3 is integrated with AWS CloudTrail, a service that provides a record of actions taken by a user,
role, or an AWS service in Amazon S3. CloudTrail captures a subset of API calls for Amazon S3 as events,
including calls from the Amazon S3 console and from code calls to the Amazon S3 APIs. If you create a
trail, you can enable continuous delivery of CloudTrail events to an Amazon S3 bucket, including events
for Amazon S3. If you don't configure a trail, you can still view the most recent events in the CloudTrail
console in Event history. Using the information collected by CloudTrail, you can determine the request
that was made to Amazon S3, the IP address from which the request was made, who made the request,
when it was made, and additional details.

To learn more about CloudTrail, including how to configure and enable it, see the AWS CloudTrail User
Guide.

Amazon S3 Information in CloudTrail
CloudTrail is enabled on your AWS account when you create the account. When supported event activity
occurs in Amazon S3, that activity is recorded in a CloudTrail event along with other AWS service events
in Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Amazon S3, create a trail. A
trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create a trail
in the console, the trail applies to all Regions. The trail logs events from all Regions in the AWS partition
and delivers the log files to the Amazon S3 bucket that you specify. Additionally, you can configure
other AWS services to further analyze and act upon the event data collected in CloudTrail logs. For more
information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from Multiple
Accounts

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

API Version 2006-03-01
621

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

Amazon Simple Storage Service Developer Guide
Amazon S3 Information in CloudTrail

For more information, see the CloudTrail userIdentity Element.

You can store your log files in your bucket for as long as you want, but you can also define Amazon S3
lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted by using
Amazon S3 server-side encryption (SSE).

Amazon S3 Bucket-Level Actions Tracked by CloudTrail Logging
By default, CloudTrail logs bucket-level actions. Amazon S3 records are written together with other AWS
service records in a log file. CloudTrail determines when to create and write to a new file based on a time
period and file size.

The tables in this section list the Amazon S3 bucket-level actions that are supported for logging by
CloudTrail.

Amazon S3 Bucket-Level Actions Tracked by CloudTrail Logging

REST API Name API Event Name Used in CloudTrail Log

DELETE Bucket DeleteBucket

DELETE Bucket cors DeleteBucketCors

DELETE Bucket encryption DeleteBucketEncryption

DELETE Bucket lifecycle DeleteBucketLifecycle

DELETE Bucket policy DeleteBucketPolicy

DELETE Bucket replication DeleteBucketReplication

DELETE Bucket tagging DeleteBucketTagging

DELETE Bucket website DeleteBucketWebsite

GET Bucket acl GetBucketAcl

GET Bucket cors GetBucketCors

GET Bucket encryption GetBucketEncryption

GET Bucket lifecycle GetBucketLifecycle

GET Bucket location GetBucketLocation

GET Bucket logging GetBucketLogging

GET Bucket notification GetBucketNotification

GET Bucket policy GetBucketPolicy

GET Bucket replication GetBucketReplication

GET Bucket requestPayment GetBucketRequestPay

GET Bucket tagging GetBucketTagging

GET Bucket versioning GetBucketVersioning

GET Bucket website GetBucketWebsite

GET Service (List all buckets) ListBuckets

API Version 2006-03-01
622

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETE.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEcors.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEencryption.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETElifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEpolicy.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEreplication.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketDELETEwebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETcors.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETencryption.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlocation.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlogging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETnotification.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETpolicy.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETreplication.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTrequestPaymentGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETversioningStatus.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETwebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html

Amazon Simple Storage Service Developer Guide
Amazon S3 Information in CloudTrail

REST API Name API Event Name Used in CloudTrail Log

PUT Bucket CreateBucket

PUT Bucket acl PutBucketAcl

PUT Bucket cors PutBucketCors

PUT Bucket encryption PutBucketEncryption

PUT Bucket lifecycle PutBucketLifecycle

PUT Bucket logging PutBucketLogging

PUT Bucket notification PutBucketNotification

PUT Bucket policy PutBucketPolicy

PUT Bucket replication PutBucketReplication

PUT Bucket requestPayment PutBucketRequestPay

PUT Bucket tagging PutBucketTagging

PUT Bucket versioning PutBucketVersioning

PUT Bucket website PutBucketWebsite

In addition to these API operations, you can also use the OPTIONS object object-level action. This
action is treated like a bucket-level action in CloudTrail logging because the action checks the cors
configuration of a bucket.

Amazon S3 Object-Level Actions Tracked by CloudTrail Logging
You can also get CloudTrail logs for object-level Amazon S3 actions. To do this, specify the Amazon
S3 object for your trail. When an object-level action occurs in your account, CloudTrail evaluates your
trail settings. If the event matches the object that you specified in a trail, the event is logged. For more
information, see How Do I Enable Object-Level Logging for an S3 Bucket with AWS CloudTrail Data
Events? in the Amazon Simple Storage Service Console User Guide and Data Events in the AWS CloudTrail
User Guide. The following table lists the object-level actions that CloudTrail can log:

REST API Name API Event Name Used in CloudTrail Log

Abort Multipart Upload AbortMultipartUpload

Complete Multipart Upload CompleteMultipartUpload

Delete Multiple Objects DeleteObjects

DELETE Object DeleteObject

GET Object GetObject

GET Object ACL GetObjectAcl

GET Object tagging GetObjectTagging

GET Object torrent GetObjectTorrent

HEAD Object HeadObject

API Version 2006-03-01
623

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTcors.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTencryption.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlogging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTnotification.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTpolicy.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTreplication.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTrequestPaymentPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTVersioningStatus.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTwebsite.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTOPTIONSobject.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-cloudtrail-events.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-and-data-events-with-cloudtrail.html#logging-data-events
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadAbort.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadComplete.html
https://docs.aws.amazon.com/AmazonS3/latest/API/multiobjectdeleteapi.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETtorrent.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectHEAD.html

Amazon Simple Storage Service Developer Guide
Amazon S3 Information in CloudTrail

REST API Name API Event Name Used in CloudTrail Log

Initiate Multipart Upload CreateMultipartUpload

List Parts ListParts

POST Object PostObject

POST Object restore RestoreObject

PUT Object PutObject

PUT Object acl PutObjectAcl

PUT Object tagging PutObjectTagging

PUT Object - Copy CopyObject

SELECT Object Content SelectObjectContent

Upload Part UploadPart

Upload Part - Copy UploadPartCopy

In addition to these operations, you can use the following bucket-level operations to get CloudTrail logs
as object-level Amazon S3 actions under certain conditions:

• GET Bucket (List Objects) Version 2 – Select a prefix specified in the trail.

• GET Bucket Object versions – Select a prefix specified in the trail.

• HEAD Bucket – Specify a bucket and an empty prefix.

• Delete Multiple Objects – Specify a bucket and an empty prefix.

Note
CloudTrail does not log key names for the keys that are deleted using the Delete Multiple
Objects operation.

Object-Level Actions in Cross-Account Scenarios

The following are special use cases involving the object-level API calls in cross-account scenarios and how
CloudTrail logs are reported. CloudTrail always delivers logs to the requester (who made the API call).
When setting up cross-account access, consider the examples in this section.

Note
The examples assume that CloudTrail logs are appropriately configured.

Example 1: CloudTrail Delivers Access Logs to the Bucket Owner

CloudTrail delivers access logs to the bucket owner only if the bucket owner has permissions for the
same object API. Consider the following cross-account scenario:

• Account-A owns the bucket.

• Account-B (the requester) tries to access an object in that bucket.

CloudTrail always delivers object-level API access logs to the requester. In addition, CloudTrail also
delivers the same logs to the bucket owner only if the bucket owner has permissions for the same API
actions on that object.

API Version 2006-03-01
624

https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListParts.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUTtagging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectCOPY.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectSELECTContent.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPart.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadUploadPartCopy.html
https://docs.aws.amazon.com/AmazonS3/latest/API/v2-RESTBucketGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETVersion.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketHEAD.html
https://docs.aws.amazon.com/AmazonS3/latest/API/multiobjectdeleteapi.html

Amazon Simple Storage Service Developer Guide
Using CloudTrail Logs with Amazon S3

Server Access Logs and CloudWatch Logs

Note
If the bucket owner is also the object owner, the bucket owner gets the object access logs.
Otherwise, the bucket owner must get permissions, through the object ACL, for the same object
API to get the same object-access API logs.

Example 2: CloudTrail Does Not Proliferate Email Addresses Used in Setting Object ACLs

Consider the following cross-account scenario:

• Account-A owns the bucket.

• Account-B (the requester) sends a request to set an object ACL grant using an email address. For
information about ACLs, see Access Control List (ACL) Overview (p. 403).

The request gets the logs along with the email information. However, the bucket owner—if they are
eligible to receive logs, as in example 1—gets the CloudTrail log reporting the event. However, the
bucket owner doesn't get the ACL configuration information, specifically the grantee email and the
grant. The only information that the log tells the bucket owner is that an ACL API call was made by
Account-B.

CloudTrail Tracking with Amazon S3 SOAP API Calls
CloudTrail tracks Amazon S3 SOAP API calls. Amazon S3 SOAP support over HTTP is deprecated, but it is
still available over HTTPS. For more information about Amazon S3 SOAP support, see Appendix A: Using
the SOAP API (p. 682).

Important
Newer Amazon S3 features are not supported for SOAP. We recommend that you use either the
REST API or the AWS SDKs.

Amazon S3 SOAP Actions Tracked by CloudTrail Logging

SOAP API Name API Event Name Used in CloudTrail Log

ListAllMyBuckets ListBuckets

CreateBucket CreateBucket

DeleteBucket DeleteBucket

GetBucketAccessControlPolicy GetBucketAcl

SetBucketAccessControlPolicy PutBucketAcl

GetBucketLoggingStatus GetBucketLogging

SetBucketLoggingStatus PutBucketLogging

Using CloudTrail Logs with Amazon S3 Server Access
Logs and CloudWatch Logs
AWS CloudTrail logs provide a record of actions taken by a user, role, or an AWS service in Amazon S3,
while Amazon S3 server access logs provides detailed records for the requests that are made to an S3
bucket. For more information on how the different logs work and their properties, performance and
costs, see the section called “Logging with Amazon S3” (p. 619). You can use AWS CloudTrail logs
together with server access logs for Amazon S3. CloudTrail logs provide you with detailed API tracking

API Version 2006-03-01
625

https://docs.aws.amazon.com/AmazonS3/latest/API/SOAPListAllMyBuckets.html
https://docs.aws.amazon.com/AmazonS3/latest/API/SOAPCreateBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/API/SOAPDeleteBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/API/SOAPGetBucketAccessControlPolicy.html
https://docs.aws.amazon.com/AmazonS3/latest/API/SOAPSetBucketAccessControlPolicy.html
https://docs.aws.amazon.com/AmazonS3/latest/API/SOAPGetBucketLoggingStatus.html
https://docs.aws.amazon.com/AmazonS3/latest/API/SOAPSetBucketLoggingStatus.html

Amazon Simple Storage Service Developer Guide
Example: Amazon S3 Log File Entries

for Amazon S3 bucket-level and object-level operations. Server access logs for Amazon S3 provide you
visibility into object-level operations on your data in Amazon S3. For more information about server
access logs, see Amazon S3 Server Access Logging (p. 647).

You can also use CloudTrail logs together with CloudWatch for Amazon S3. CloudTrail integration with
CloudWatch Logs delivers S3 bucket-level API activity captured by CloudTrail to a CloudWatch log stream
in the CloudWatch log group that you specify. You can create CloudWatch alarms for monitoring specific
API activity and receive email notifications when the specific API activity occurs. For more information
about CloudWatch alarms for monitoring specific API activity, see the AWS CloudTrail User Guide. For
more information about using CloudWatch with Amazon S3, see Monitoring Metrics with Amazon
CloudWatch (p. 611).

Example: Amazon S3 Log File Entries
A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that you
specify. CloudTrail log files contain one or more log entries. An event represents a single request from
any source. It includes information about the requested action, the date and time of the action, request
parameters, and so on. CloudTrail log files are not an ordered stack trace of the public API calls, so they
do not appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the GET Service, PUT Bucket acl,
and GET Bucket versioning actions.

{
 "Records": [
 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "111122223333",
 "arn": "arn:aws:iam::111122223333:user/myUserName",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "myUserName"
 },
 "eventTime": "2019-02-01T03:18:19Z",
 "eventSource": "s3.amazonaws.com",
 "eventName": "ListBuckets",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "[]",
 "requestParameters": {
 "host": [
 "s3.us-west-2.amazonaws.com"
]
 },
 "responseElements": null,
 "additionalEventData": {
 "SignatureVersion": "SigV2",
 "AuthenticationMethod": "QueryString"
 },
 "requestID": "47B8E8D397DCE7A6",
 "eventID": "cdc4b7ed-e171-4cef-975a-ad829d4123e8",
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 },
 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "111122223333",

API Version 2006-03-01
626

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTacl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETversioningStatus.html

Amazon Simple Storage Service Developer Guide
Example: Amazon S3 Log File Entries

 "arn": "arn:aws:iam::111122223333:user/myUserName",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "myUserName"
 },
 "eventTime": "2019-02-01T03:22:33Z",
 "eventSource": "s3.amazonaws.com",
 "eventName": "PutBucketAcl",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "",
 "userAgent": "[]",
 "requestParameters": {
 "bucketName": "",
 "AccessControlPolicy": {
 "AccessControlList": {
 "Grant": {
 "Grantee": {
 "xsi:type": "CanonicalUser",
 "xmlns:xsi": "http://www.w3.org/2001/XMLSchema-instance",
 "ID":
 "d25639fbe9c19cd30a4c0f43fbf00e2d3f96400a9aa8dabfbbebe1906Example"
 },
 "Permission": "FULL_CONTROL"
 }
 },
 "xmlns": "http://s3.amazonaws.com/doc/2006-03-01/",
 "Owner": {
 "ID": "d25639fbe9c19cd30a4c0f43fbf00e2d3f96400a9aa8dabfbbebe1906Example"
 }
 }
 "host": [
 "s3-us-west-2.amazonaws.com"
],
 "acl": [
 ""
]
 },
 "responseElements": null,
 "additionalEventData": {
 "SignatureVersion": "SigV4",
 "CipherSuite": "ECDHE-RSA-AES128-SHA",
 "AuthenticationMethod": "AuthHeader"
 },
 "requestID": "BD8798EACDD16751",
 "eventID": "607b9532-1423-41c7-b048-ec2641693c47",
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 },
 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "111122223333",
 "arn": "arn:aws:iam::111122223333:user/myUserName",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "myUserName"
 },
 "eventTime": "2019-02-01T03:26:37Z",
 "eventSource": "s3.amazonaws.com",
 "eventName": "GetBucketVersioning",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "",
 "userAgent": "[]",
 "requestParameters": {
 "host": [

API Version 2006-03-01
627

Amazon Simple Storage Service Developer Guide
Related Resources

 "s3.us-west-2.amazonaws.com"
],
 "bucketName": "myawsbucket",
 "versioning": [
 ""
]
 },
 "responseElements": null,
 "additionalEventData": {
 "SignatureVersion": "SigV4",
 "CipherSuite": "ECDHE-RSA-AES128-SHA",
 "AuthenticationMethod": "AuthHeader",
 },
 "requestID": "07D681279BD94AED",
 "eventID": "f2b287f3-0df1-4961-a2f4-c4bdfed47657",
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 }
]
}

Related Resources
• AWS CloudTrail User Guide

• CloudTrail Event Reference

• Using AWS CloudTrail to Identify Amazon S3 Requests (p. 628)

Using AWS CloudTrail to Identify Amazon S3
Requests

Amazon S3 lets you identify requests using an AWS CloudTrail event log. AWS CloudTrail is the preferred
way of identifying Amazon S3 requests, but if you are using Amazon S3 server access logs, see the
section called “Using Amazon S3 access logs to identify Amazon S3 requests” (p. 662).

Topics

• How CloudTrail Captures Requests Made to Amazon S3 (p. 628)

• Enabling CloudTrail Event Logging for S3 Buckets and Objects (p. 629)

• Identifying Requests Made to Amazon S3 in a CloudTrail Log (p. 629)

• Using AWS CloudTrail to Identify Amazon S3 Signature Version 2 Requests (p. 631)

• Using AWS CloudTrail to Identify Access to Amazon S3 Objects (p. 633)

• Related Resources (p. 628)

How CloudTrail Captures Requests Made to Amazon
S3
By default, CloudTrail logs S3 bucket-level API calls that were made in the last 90 days, but not log
requests made to objects. Bucket-level calls include events like CreateBucket, DeleteBucket,
PutBucketLifeCycle, PutBucketPolicy, etc. You can see bucket-level events on the CloudTrail
console. However, you can't view data events (Amazon S3 object-level calls) there—you must parse or
query CloudTrail logs for them.

API Version 2006-03-01
628

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference.html

Amazon Simple Storage Service Developer Guide
Enabling CloudTrail Event Logging

for S3 Buckets and Objects

For information about what Amazon S3 API calls are captured by CloudTrail, see Amazon S3 Information
in CloudTrail (p. 621).

Enabling CloudTrail Event Logging for S3 Buckets
and Objects
CloudTrail data events allow you to get information about bucket and object-level requests. To enable
CloudTrail data events for a specific bucket, see How Do I Enable Object-Level Logging for an S3 Bucket
with AWS CloudTrail Data Events? in the Amazon Simple Storage Service Console User Guide.

To enable CloudTrail data events for all your buckets or for a list of specific buckets, you must create a
trail manually in CloudTrail.

Note

• The default setting for CloudTrail is to find only management events. Check to ensure that
you have the data events enabled for your account.

• With an S3 bucket that is generating a high workload, you could quickly generate thousands
of logs in a short amount of time. Be mindful of how long you choose to enable CloudTrail
data events for a busy bucket.

CloudTrail stores Amazon S3 data event logs in an S3 bucket of your choosing. You should consider using
a bucket in a separate AWS account to better organize events from multiple buckets you might own
into a central place for easier querying and analysis. AWS Organizations makes it easy to create an AWS
account that is linked the account owning the bucket you are monitoring. For more information, see
What Is AWS Organizations? in the AWS Organizations User Guide

When you create a trail in CloudTrail, in the data events section, you can select the Select all S3 buckets
in your account check box to log all object level events.

Note

• It's a best practice to create an Amazon S3 lifecycle policy for your AWS CloudTrail data event
bucket. Configure the lifecycle policy to periodically remove log files after the period of
time you believe you need to audit them. Doing so reduces the amount of data that Athena
analyzes for each query.

• For information about logging format, see Logging Amazon S3 API Calls by Using AWS
CloudTrail.

• For examples of how to query CloudTrail logs, see Analyze Security, Compliance, and
Operational Activity Using AWS CloudTrail and Amazon Athena.

Identifying Requests Made to Amazon S3 in a
CloudTrail Log
Events logged by CloudTrail are stored as compressed, GZipped JSON objects in your S3 bucket. To
efficiently find requests, you should use a service like Amazon Athena to index and query the CloudTrail
logs. For more information about CloudTrail and Athena, see Querying AWS CloudTrail Logs.

Using Athena with CloudTrail Logs
After you set up CloudTrail to deliver events to a bucket, you should start to see objects
go to your destination bucket on the Amazon S3 console. These are formatted as follows:
s3://<myawsexamplebucket>/AWSLogs/<111122223333>/CloudTrail/<Region>/<yyyy>/
<mm>/<dd>

API Version 2006-03-01
629

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-cloudtrail-events.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-lifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/cloudtrail-logging.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/cloudtrail-logging.html
http://aws.amazon.com/blogs/big-data/aws-cloudtrail-and-amazon-athena-dive-deep-to-analyze-security-compliance-and-operational-activity/
http://aws.amazon.com/blogs/big-data/aws-cloudtrail-and-amazon-athena-dive-deep-to-analyze-security-compliance-and-operational-activity/
https://docs.aws.amazon.com/athena/latest/ug/cloudtrail-logs.html

Amazon Simple Storage Service Developer Guide
Identifying Requests Made to

Amazon S3 in a CloudTrail Log

Example — Use Athena to query CloudTrail event logs for specific requests

Locate your CloudTrail event logs:

s3://myawsexamplebucket/AWSLogs/111122223333/CloudTrail/us-east-2/2019/04/14

With CloudTrail event logs, you can now create an Athena database and table to query them as follows:

1. Open the Athena console at https://console.aws.amazon.com/athena/.
2. Change the AWS Region to be the same as your CloudTrail destination S3 bucket.
3. In the query window, create an Athena database for your CloudTrail events:

CREATE DATABASE s3_cloudtrail_events_db

4. Use the following query to create a table for all of your CloudTrail events in the bucket. Be sure to
change the bucket name from <CloudTrail_myawsexamplebucket> to your bucket's name. Also
provide the AWS_account_ID CloudTrail that is used in your bucket.

CREATE EXTERNAL TABLE s3_cloudtrail_events_db.cloudtrail_myawsexamplebucket_table(
 eventversion STRING,
 useridentity STRUCT<
 type:STRING,
 principalid:STRING,
 arn:STRING,
 accountid:STRING,
 invokedby:STRING,
 accesskeyid:STRING,
 userName:STRING,
 sessioncontext:STRUCT<
 attributes:STRUCT<
 mfaauthenticated:STRING,
 creationdate:STRING>,
 sessionissuer:STRUCT<
 type:STRING,
 principalId:STRING,
 arn:STRING,
 accountId:STRING,
 userName:STRING>
 >
 >,
 eventtime STRING,
 eventsource STRING,
 eventname STRING,
 awsregion STRING,
 sourceipaddress STRING,
 useragent STRING,
 errorcode STRING,
 errormessage STRING,
 requestparameters STRING,
 responseelements STRING,
 additionaleventdata STRING,
 requestid STRING,
 eventid STRING,
 resources ARRAY<STRUCT<
 ARN:STRING,
 accountId:STRING,
 type:STRING>>,
 eventtype STRING,
 apiversion STRING,
 readonly STRING,
 recipientaccountid STRING,
 serviceeventdetails STRING,

API Version 2006-03-01
630

https://console.aws.amazon.com/athena/home

Amazon Simple Storage Service Developer Guide
Using AWS CloudTrail to Identify Amazon

S3 Signature Version 2 Requests

 sharedeventid STRING,
 vpcendpointid STRING
)
 ROW FORMAT SERDE 'com.amazon.emr.hive.serde.CloudTrailSerde'
 STORED AS INPUTFORMAT 'com.amazon.emr.cloudtrail.CloudTrailInputFormat'
 OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
 LOCATION 's3://<myawsexamplebucket>/AWSLogs/<111122223333>/';

5. Test Athena to ensure that the query works.

SELECT * FROM s3_cloudtrail_events_db.cloudtrail_myawsexamplebucket_table
WHERE eventsource='s3.amazonaws.com'
LIMIT 2;

Using AWS CloudTrail to Identify Amazon S3
Signature Version 2 Requests
Amazon S3 lets you identify what API signature version was used to sign a request using an AWS
CloudTrail event log. This capability is important because support for Signature Version 2 will be turned
off (deprecated). After that, Amazon S3 will no longer accept requests that use Signature Version 2, and
all requests must use Signature Version 4 signing.

We strongly recommend that you use CloudTrail to help determine whether any of your workflows are
using Signature Version 2 signing. Remediate them by upgrading your libraries and code to use Signature
Version 4 instead to prevent any impact to your business.

For more information, see Announcement: AWS CloudTrail for Amazon S3 adds new fields for enhanced
security auditing in the AWS Discussion Forums.

Note
CloudTrail events for Amazon S3 include the signature version in the request details under the
key name of 'additionalEventData'. To find the signature version on requests made for
objects in Amazon S3 like GETs, PUTs, and DELETEs, you must enable CloudTrail data events
because it is turned off by default.

AWS CloudTrail is the preferred method for identifying Signature Version 2 requests, if you are using
Amazon S3 server access logs, see Using Amazon S3 Access Logs to Identify Signature Version 2
Requests (p. 666)

Athena Query Examples for Identifying Amazon S3 Signature
Version 2 Requests

Example — Select all events that are Signature Version 2, and print only EventTime, S3
Action, Request_Parameters, Region, SourceIP, and UserAgent

In the following Athena query, replace
<s3_cloudtrail_events_db.cloudtrail_myawsexamplebucket_table> with your Athena
details and increase or remove the limit as needed.

SELECT EventTime, EventName as S3_Action, requestParameters as Request_Parameters,
 awsregion as AWS_Region, sourceipaddress as Source_IP, useragent as User_Agent

API Version 2006-03-01
631

https://forums.aws.amazon.com/ann.jspa?annID=6551
https://forums.aws.amazon.com/ann.jspa?annID=6551

Amazon Simple Storage Service Developer Guide
Using AWS CloudTrail to Identify Amazon

S3 Signature Version 2 Requests

FROM s3_cloudtrail_events_db.cloudtrail_myawsexamplebucket_table
WHERE eventsource='s3.amazonaws.com'
AND json_extract_scalar(additionalEventData, '$.SignatureVersion')='SigV2'
LIMIT 10;

Example — Select all requesters that are sending Signature Version 2 traffic

SELECT useridentity.arn, Count(requestid) as RequestCount
FROM s3_cloudtrail_events_db.cloudtrail_myawsexamplebucket_table
WHERE eventsource='s3.amazonaws.com'
 and json_extract_scalar(additionalEventData, '$.SignatureVersion')='SigV2'
Group by useridentity.arn

Partitioning Signature Version 2 Data
If you have a large amount of data that you need to query, you can reduce the costs and runtime of
Athena by creating a partitioned table.

To do this, create a new table with partitions as follows.

 CREATE EXTERNAL TABLE
 s3_cloudtrail_events_db.cloudtrail_myawsexamplebucket_table_partitioned(
 eventversion STRING,
 userIdentity STRUCT<
 type:STRING,
 principalid:STRING,
 arn:STRING,
 accountid:STRING,
 invokedby:STRING,
 accesskeyid:STRING,
 userName:STRING,
 sessioncontext:STRUCT<
 attributes:STRUCT<
 mfaauthenticated:STRING,
 creationdate:STRING>,
 sessionIssuer:STRUCT<
 type:STRING,
 principalId:STRING,
 arn:STRING,
 accountId:STRING,
 userName:STRING>
 >
 >,
 eventTime STRING,
 eventSource STRING,
 eventName STRING,
 awsRegion STRING,
 sourceIpAddress STRING,
 userAgent STRING,
 errorCode STRING,
 errorMessage STRING,
 requestParameters STRING,
 responseElements STRING,
 additionalEventData STRING,
 requestId STRING,
 eventId STRING,
 resources ARRAY<STRUCT<ARN:STRING,accountId: STRING,type:STRING>>,
 eventType STRING,

API Version 2006-03-01
632

Amazon Simple Storage Service Developer Guide
Using CloudTrail to Identify Access to Amazon S3 Objects

 apiVersion STRING,
 readOnly STRING,
 recipientAccountId STRING,
 serviceEventDetails STRING,
 sharedEventID STRING,
 vpcEndpointId STRING
)
 PARTITIONED BY (region string, year string, month string, day string)
 ROW FORMAT SERDE 'com.amazon.emr.hive.serde.CloudTrailSerde'
 STORED AS INPUTFORMAT 'com.amazon.emr.cloudtrail.CloudTrailInputFormat'
 OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
 LOCATION 's3://myawsexamplebucket/AWSLogs/111122223333/';

Then, create the partitions individually. You can't get results from dates that you have not created.

ALTER TABLE s3_cloudtrail_events_db.cloudtrail_myawsexamplebucket_table_partitioned ADD
 PARTITION (region= 'us-east-1', year= '2019', month= '02', day= '19') LOCATION 's3://
myawsexamplebucket/AWSLogs/111122223333/CloudTrail/us-east-1/2019/02/19/'
 PARTITION (region= 'us-west-1', year= '2019', month= '02', day= '19') LOCATION 's3://
myawsexamplebucket/AWSLogs/111122223333/CloudTrail/us-west-1/2019/02/19/'
 PARTITION (region= 'us-west-2', year= '2019', month= '02', day= '19') LOCATION 's3://
myawsexamplebucket/AWSLogs/111122223333/CloudTrail/us-west-2/2019/02/19/'
 PARTITION (region= 'ap-southeast-1', year= '2019', month= '02', day= '19') LOCATION
 's3://myawsexamplebucket/AWSLogs/111122223333/CloudTrail/ap-southeast-1/2019/02/19/'
 PARTITION (region= 'ap-southeast-2', year= '2019', month= '02', day= '19') LOCATION
 's3://myawsexamplebucket/AWSLogs/111122223333/CloudTrail/ap-southeast-2/2019/02/19/'
 PARTITION (region= 'ap-northeast-1', year= '2019', month= '02', day= '19') LOCATION
 's3://myawsexamplebucket/AWSLogs/111122223333/CloudTrail/ap-northeast-1/2019/02/19/'
 PARTITION (region= 'eu-west-1', year= '2019', month= '02', day= '19') LOCATION 's3://
myawsexamplebucket/AWSLogs/111122223333/CloudTrail/eu-west-1/2019/02/19/'
 PARTITION (region= 'sa-east-1', year= '2019', month= '02', day= '19') LOCATION 's3://
myawsexamplebucket/AWSLogs/111122223333/CloudTrail/sa-east-1/2019/02/19/';

You can then make the request based on these partitions, and you don't need to load the full bucket.

SELECT useridentity.arn,
Count(requestid) AS RequestCount
FROM s3_cloudtrail_events_db.cloudtrail_myawsexamplebucket_table_partitioned
WHERE eventsource='s3.amazonaws.com'
AND json_extract_scalar(additionalEventData, '$.SignatureVersion')='SigV2'
AND region='us-east-1'
AND year='2019'
AND month='02'
AND day='19'
Group by useridentity.arn

Using AWS CloudTrail to Identify Access to Amazon
S3 Objects
You can use your AWS CloudTrail event log to identify Amazon S3 object access requests for data events
such as GetObject, DeleteObject, and PutObject, and discover further information about those requests.

The following example shows how to get all PUT object requests for Amazon S3 from the AWS
CloudTrail event log.

API Version 2006-03-01
633

Amazon Simple Storage Service Developer Guide
Using CloudTrail to Identify Access to Amazon S3 Objects

Athena Query Example for Identifying Amazon S3 Object Access
Requests
In the following Athena query examples, replace
<s3_cloudtrail_events_db.cloudtrail_myawsexamplebucket_table> with your Athena
details, and modify the date range as needed.

Example — Select all events that have PUT object access requests, and print only EventTime,
EventSource, SourceIP, UserAgent, BucketName, Object, and UserARN

SELECT
 eventTime,
 eventName,
 eventSource,
 sourceIpAddress,
 userAgent,
 requestParameters.bucketName as bucketName,
 requestParameters.key as object,
 userIdentity.arn as userArn
FROM
 s3_cloudtrail_events_db.cloudtrail_myawsexamplebucket_table
WHERE
 eventName = ‘PutObject'
 AND eventTime BETWEEN "2019-07-05T00:00:00Z" and "2019-07-06T00:00:00Z"

Example — Select all events that have GET object access requests, and print only EventTime,
EventSource, SourceIP, UserAgent, BucketName, Object, and UserARN

SELECT
 eventTime,
 eventName,
 eventSource,
 sourceIpAddress,
 userAgent,
 requestParameters.bucketName as bucketName,
 requestParameters.key as object,
 userIdentity.arn as userArn
FROM
 s3_cloudtrail_events_db.cloudtrail_myawsexamplebucket_table
WHERE
 eventName = ‘GetObject'
 AND eventTime BETWEEN "2019-07-05T00:00:00Z" and "2019-07-06T00:00:00Z"

Example — Select all anonymous requester events to a bucket in a certain period and print
only EventTime, EventSource, SourceIP, UserAgent, BucketName, UserIdentity, and UserARN

SELECT
 eventTime,
 eventName,
 eventSource,
 sourceIpAddress,
 userAgent,
 requestParameters.bucketName as bucketName,
 userIdentity.arn as userArn,
 userIdentity.principalId
FROM
 s3_cloudtrail_events_db.cloudtrail_myawsexamplebucket_table

API Version 2006-03-01
634

Amazon Simple Storage Service Developer Guide
Related Resources

WHERE
 userIdentity.principalId='ANONYMOUS_PRINCIPAL'
 AND eventTime BETWEEN "2019-07-05T00:00:00Z" and "2019-07-06T00:00:00Z"

Note

• These query examples may also be useful for security monitoring. You can review the results
for PutObject or GetObject calls from unexpected or unauthorized IP addresses/requesters
and for identifying any anonymous requests to your buckets.

• This query only retrieves information from the time at which logging was enabled.

If you are using Amazon S3 server access logs, see Using Amazon S3 Access Logs to Identify Object
Access Requests (p. 667).

Related Resources
• AWS CloudTrail User Guide
• CloudTrail Event Reference

API Version 2006-03-01
635

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference.html

Amazon Simple Storage Service Developer Guide
How You are Charged for BitTorrent Delivery

Using BitTorrent with Amazon S3
Topics

• How You are Charged for BitTorrent Delivery (p. 636)
• Using BitTorrent to Retrieve Objects Stored in Amazon S3 (p. 637)
• Publishing Content Using Amazon S3 and BitTorrent (p. 637)

BitTorrent is an open, peer-to-peer protocol for distributing files. You can use the BitTorrent protocol to
retrieve any publicly-accessible object in Amazon S3. This section describes why you might want to use
BitTorrent to distribute your data out of Amazon S3 and how to do so.

Amazon S3 supports the BitTorrent protocol so that developers can save costs when distributing content
at high scale. Amazon S3 is useful for simple, reliable storage of any data. The default distribution
mechanism for Amazon S3 data is via client/server download. In client/server distribution, the entire
object is transferred point-to-point from Amazon S3 to every authorized user who requests that object.
While client/server delivery is appropriate for a wide variety of use cases, it is not optimal for everybody.
Specifically, the costs of client/server distribution increase linearly as the number of users downloading
objects increases. This can make it expensive to distribute popular objects.

BitTorrent addresses this problem by recruiting the very clients that are downloading the object as
distributors themselves: Each client downloads some pieces of the object from Amazon S3 and some
from other clients, while simultaneously uploading pieces of the same object to other interested "peers."
The benefit for publishers is that for large, popular files the amount of data actually supplied by Amazon
S3 can be substantially lower than what it would have been serving the same clients via client/server
download. Less data transferred means lower costs for the publisher of the object.

Note

• Amazon S3 does not support the BitTorrent protocol in AWS Regions launched after May 30,
2016.

• You can get torrent only for objects that are less than 5 GB in size.

How You are Charged for BitTorrent Delivery
There is no extra charge for use of BitTorrent with Amazon S3. Data transfer via the BitTorrent
protocol is metered at the same rate as client/server delivery. To be precise, whenever a downloading
BitTorrent client requests a "piece" of an object from the Amazon S3 "seeder," charges accrue just as if an
anonymous request for that piece had been made using the REST or SOAP protocol. These charges will
appear on your Amazon S3 bill and usage reports in the same way. The difference is that if a lot of clients
are requesting the same object simultaneously via BitTorrent, then the amount of data Amazon S3 must
serve to satisfy those clients will be lower than with client/server delivery. This is because the BitTorrent
clients are simultaneously uploading and downloading amongst themselves.

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or the
AWS SDKs.

The data transfer savings achieved from use of BitTorrent can vary widely depending on how popular
your object is. Less popular objects require heavier use of the "seeder" to serve clients, and thus the
difference between BitTorrent distribution costs and client/server distribution costs might be small for
such objects. In particular, if only one client is ever downloading a particular object at a time, the cost of
BitTorrent delivery will be the same as direct download.

API Version 2006-03-01
636

Amazon Simple Storage Service Developer Guide
Using BitTorrent to Retrieve Objects Stored in Amazon S3

Using BitTorrent to Retrieve Objects Stored in
Amazon S3

Any object in Amazon S3 that can be read anonymously can also be downloaded via BitTorrent. Doing so
requires use of a BitTorrent client application. Amazon does not distribute a BitTorrent client application,
but there are many free clients available. The Amazon S3BitTorrent implementation has been tested to
work with the official BitTorrent client (go to http://www.bittorrent.com/).

The starting point for a BitTorrent download is a .torrent file. This small file describes for BitTorrent
clients both the data to be downloaded and where to get started finding that data. A .torrent file is a
small fraction of the size of the actual object to be downloaded. Once you feed your BitTorrent client
application an Amazon S3 generated .torrent file, it should start downloading immediately from Amazon
S3 and from any "peer" BitTorrent clients.

Retrieving a .torrent file for any publicly available object is easy. Simply add a "?torrent" query string
parameter at the end of the REST GET request for the object. No authentication is required. Once you
have a BitTorrent client installed, downloading an object using BitTorrent download might be as easy as
opening this URL in your web browser.

There is no mechanism to fetch the .torrent for an Amazon S3 object using the SOAP API.

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or the
AWS SDKs.

Example

This example retrieves the Torrent file for the "Nelson" object in the "quotes" bucket.

Sample Request

GET /quotes/Nelson?torrent HTTP/1.0
Date: Wed, 25 Nov 2009 12:00:00 GMT

Sample Response

HTTP/1.1 200 OK
x-amz-request-id: 7CD745EBB7AB5ED9
Date: Wed, 25 Nov 2009 12:00:00 GMT
Content-Disposition: attachment; filename=Nelson.torrent;
Content-Type: application/x-bittorrent
Content-Length: 537
Server: AmazonS3

<body: a Bencoded dictionary as defined by the BitTorrent specification>

Publishing Content Using Amazon S3 and
BitTorrent

Every anonymously readable object stored in Amazon S3 is automatically available for download using
BitTorrent. The process for changing the ACL on an object to allow anonymous READ operations is
described in Identity and Access Management in Amazon S3 (p. 301).

API Version 2006-03-01
637

http://www.bittorrent.com/

Amazon Simple Storage Service Developer Guide
Publishing Content Using Amazon S3 and BitTorrent

You can direct your clients to your BitTorrent accessible objects by giving them the .torrent file directly or
by publishing a link to the ?torrent URL of your object. One important thing to note is that the .torrent
file describing an Amazon S3 object is generated on-demand, the first time it is requested (via the REST ?
torrent resource). Generating the .torrent for an object takes time proportional to the size of that object.
For large objects, this time can be significant. Therefore, before publishing a ?torrent link, we suggest
making the first request for it yourself. Amazon S3 might take several minutes to respond to this first
request, as it generates the .torrent file. Unless you update the object in question, subsequent requests
for the .torrent will be fast. Following this procedure before distributing a ?torrent link will ensure a
smooth BitTorrent downloading experience for your customers.

To stop distributing a file using BitTorrent, simply remove anonymous access to it. This can be
accomplished by either deleting the file from Amazon S3, or modifying your access control policy to
prohibit anonymous reads. After doing so, Amazon S3 will no longer act as a "seeder" in the BitTorrent
network for your file, and will no longer serve the .torrent file via the ?torrent REST API. However, after
a .torrent for your file is published, this action might not stop public downloads of your object that
happen exclusively using the BitTorrent peer to peer network.

API Version 2006-03-01
638

Amazon Simple Storage Service Developer Guide
The REST Error Response

Handling REST and SOAP Errors
Topics

• The REST Error Response (p. 639)

• The SOAP Error Response (p. 640)

• Amazon S3 Error Best Practices (p. 641)

This section describes REST and SOAP errors and how to handle them.

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or the
AWS SDKs.

The REST Error Response
Topics

• Response Headers (p. 639)

• Error Response (p. 640)

If a REST request results in an error, the HTTP reply has:

• An XML error document as the response body

• Content-Type: application/xml

• An appropriate 3xx, 4xx, or 5xx HTTP status code

Following is an example of a REST Error Response.

<?xml version="1.0" encoding="UTF-8"?>
<Error>
 <Code>NoSuchKey</Code>
 <Message>The resource you requested does not exist</Message>
 <Resource>/mybucket/myfoto.jpg</Resource>
 <RequestId>4442587FB7D0A2F9</RequestId>
</Error>

For more information about Amazon S3 errors, go to ErrorCodeList.

Response Headers
Following are response headers returned by all operations:

• x-amz-request-id: A unique ID assigned to each request by the system. In the unlikely event that
you have problems with Amazon S3, Amazon can use this to help troubleshoot the problem.

• x-amz-id-2: A special token that will help us to troubleshoot problems.

API Version 2006-03-01
639

https://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html

Amazon Simple Storage Service Developer Guide
Error Response

Error Response
Topics

• Error Code (p. 640)
• Error Message (p. 640)
• Further Details (p. 640)

When an Amazon S3 request is in error, the client receives an error response. The exact format of the
error response is API specific: For example, the REST error response differs from the SOAP error response.
However, all error responses have common elements.

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or the
AWS SDKs.

Error Code
The error code is a string that uniquely identifies an error condition. It is meant to be read and
understood by programs that detect and handle errors by type. Many error codes are common
across SOAP and REST APIs, but some are API-specific. For example, NoSuchKey is universal, but
UnexpectedContent can occur only in response to an invalid REST request. In all cases, SOAP fault codes
carry a prefix as indicated in the table of error codes, so that a NoSuchKey error is actually returned in
SOAP as Client.NoSuchKey.

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or the
AWS SDKs.

Error Message
The error message contains a generic description of the error condition in English. It is intended for
a human audience. Simple programs display the message directly to the end user if they encounter
an error condition they don't know how or don't care to handle. Sophisticated programs with more
exhaustive error handling and proper internationalization are more likely to ignore the error message.

Further Details
Many error responses contain additional structured data meant to be read and understood by a
developer diagnosing programming errors. For example, if you send a Content-MD5 header with a REST
PUT request that doesn't match the digest calculated on the server, you receive a BadDigest error. The
error response also includes as detail elements the digest we calculated, and the digest you told us to
expect. During development, you can use this information to diagnose the error. In production, a well-
behaved program might include this information in its error log.

The SOAP Error Response
Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or the
AWS SDKs.

In SOAP, an error result is returned to the client as a SOAP fault, with the HTTP response code 500. If
you do not receive a SOAP fault, then your request was successful. The Amazon S3 SOAP fault code is

API Version 2006-03-01
640

Amazon Simple Storage Service Developer Guide
Amazon S3 Error Best Practices

comprised of a standard SOAP 1.1 fault code (either "Server" or "Client") concatenated with the Amazon
S3-specific error code. For example: "Server.InternalError" or "Client.NoSuchBucket". The SOAP fault
string element contains a generic, human readable error message in English. Finally, the SOAP fault
detail element contains miscellaneous information relevant to the error.

For example, if you attempt to delete the object "Fred", which does not exist, the body of the SOAP
response contains a "NoSuchKey" SOAP fault.

Example

<soapenv:Body>
 <soapenv:Fault>
 <Faultcode>soapenv:Client.NoSuchKey</Faultcode>
 <Faultstring>The specified key does not exist.</Faultstring>
 <Detail>
 <Key>Fred</Key>
 </Detail>
 </soapenv:Fault>
</soapenv:Body>

For more information about Amazon S3 errors, go to ErrorCodeList.

Amazon S3 Error Best Practices
When designing an application for use with Amazon S3, it is important to handle Amazon S3 errors
appropriately. This section describes issues to consider when designing your application.

Retry InternalErrors
Internal errors are errors that occur within the Amazon S3 environment.

Requests that receive an InternalError response might not have processed. For example, if a PUT request
returns InternalError, a subsequent GET might retrieve the old value or the updated value.

If Amazon S3 returns an InternalError response, retry the request.

Tune Application for Repeated SlowDown errors
As with any distributed system, S3 has protection mechanisms which detect intentional or unintentional
resource over-consumption and react accordingly. SlowDown errors can occur when a high request rate
triggers one of these mechanisms. Reducing your request rate will decrease or eliminate errors of this
type. Generally speaking, most users will not experience these errors regularly; however, if you would like
more information or are experiencing high or unexpected SlowDown errors, please post to our Amazon
S3 developer forum https://forums.aws.amazon.com/ or sign up for AWS Premium Support https://
aws.amazon.com/premiumsupport/.

Isolate Errors
Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or the
AWS SDKs.

Amazon S3 provides a set of error codes that are used by both the SOAP and REST API. The SOAP API
returns standard Amazon S3 error codes. The REST API is designed to look like a standard HTTP server

API Version 2006-03-01
641

https://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html
https://forums.aws.amazon.com/
https://aws.amazon.com/premiumsupport/
https://aws.amazon.com/premiumsupport/

Amazon Simple Storage Service Developer Guide
Isolate Errors

and interact with existing HTTP clients (e.g., browsers, HTTP client libraries, proxies, caches, and so on).
To ensure the HTTP clients handle errors properly, we map each Amazon S3 error to an HTTP status
code.

HTTP status codes are less expressive than Amazon S3 error codes and contain less information about
the error. For example, the NoSuchKey and NoSuchBucket Amazon S3 errors both map to the HTTP
404 Not Found status code.

Although the HTTP status codes contain less information about the error, clients that understand HTTP,
but not the Amazon S3 API, will usually handle the error correctly.

Therefore, when handling errors or reporting Amazon S3 errors to end users, use the Amazon S3 error
code instead of the HTTP status code as it contains the most information about the error. Additionally,
when debugging your application, you should also consult the human readable <Details> element of the
XML error response.

API Version 2006-03-01
642

Amazon Simple Storage Service Developer Guide
Troubleshooting Amazon S3 by Symptom

Troubleshooting Amazon S3
This section describes how to troubleshoot Amazon S3 and explains how to get request IDs that you'll
need when you contact AWS Support.

Topics
• Troubleshooting Amazon S3 by Symptom (p. 643)
• Getting Amazon S3 Request IDs for AWS Support (p. 644)
• Related Topics (p. 646)

Troubleshooting Amazon S3 by Symptom
The following topics lists symptoms to help you troubleshoot some of the issues that you might
encounter when working with Amazon S3.

Symptoms
• Significant Increases in HTTP 503 Responses to Amazon S3 Requests to Buckets with Versioning

Enabled (p. 643)
• Unexpected Behavior When Accessing Buckets Set with CORS (p. 643)

Significant Increases in HTTP 503 Responses to
Amazon S3 Requests to Buckets with Versioning
Enabled
If you notice a significant increase in the number of HTTP 503-slow down responses received for Amazon
S3 PUT or DELETE object requests to a bucket that has versioning enabled, you might have one or more
objects in the bucket for which there are millions of versions. When you have objects with millions of
versions, Amazon S3 automatically throttles requests to the bucket to protect the customer from an
excessive amount of request traffic, which could potentially impede other requests made to the same
bucket.

To determine which S3 objects have millions of versions, use the Amazon S3 inventory tool. The
inventory tool generates a report that provides a flat file list of the objects in a bucket. For more
information, see Amazon S3 Inventory (p. 422).

The Amazon S3 team encourages customers to investigate applications that repeatedly overwrite the
same S3 object, potentially creating millions of versions for that object, to determine whether the
application is working as intended. If you have a use case that requires millions of versions for one or
more S3 objects, contact the AWS Support team at AWS Support to discuss your use case and to help us
assist you in determining the optimal solution for your use case scenario.

Unexpected Behavior When Accessing Buckets Set
with CORS
If you encounter unexpected behavior when accessing buckets set with the cross-origin resource sharing
(CORS) configuration, see Troubleshooting CORS Issues (p. 160).

API Version 2006-03-01
643

https://console.aws.amazon.com/support/home

Amazon Simple Storage Service Developer Guide
Getting Amazon S3 Request IDs for AWS Support

Getting Amazon S3 Request IDs for AWS Support
Whenever you need to contact AWS Support due to encountering errors or unexpected behavior in
Amazon S3, you will need to get the request IDs associated with the failed action. Getting these request
IDs enables AWS Support to help you resolve the problems you're experiencing. Request IDs come in
pairs, are returned in every response that Amazon S3 processes (even the erroneous ones), and can be
accessed through verbose logs. There are a number of common methods for getting your request IDs
including, S3 access logs and CloudTrail events/data events.

After you've recovered these logs, copy and retain those two values, because you'll need them when you
contact AWS Support. For information about contacting AWS Support, see Contact Us.

Topics
• Using HTTP to Obtain Request IDs (p. 644)
• Using a Web Browser to Obtain Request IDs (p. 644)
• Using AWS SDKs to Obtain Request IDs (p. 644)
• Using the AWS CLI to Obtain Request IDs (p. 646)

Using HTTP to Obtain Request IDs
You can obtain your request IDs, x-amz-request-id and x-amz-id-2 by logging the bits of an HTTP
request before it reaches the target application. There are a variety of third-party tools that can be used
to recover verbose logs for HTTP requests. Choose one you trust, and run the tool, listening on the port
that your Amazon S3 traffic travels on, as you send out another Amazon S3 HTTP request.

For HTTP requests, the pair of request IDs will look like the following examples.

x-amz-request-id: 79104EXAMPLEB723
x-amz-id-2: IOWQ4fDEXAMPLEQM+ey7N9WgVhSnQ6JEXAMPLEZb7hSQDASK+Jd1vEXAMPLEa3Km

Note
HTTPS requests are encrypted and hidden in most packet captures.

Using a Web Browser to Obtain Request IDs
Most web browsers have developer tools that allow you to view request headers.

For web browser-based requests that return an error, the pair of requests IDs will look like the following
examples.

<Error><Code>AccessDenied</Code><Message>Access Denied</Message>
<RequestId>79104EXAMPLEB723</RequestId><HostId>IOWQ4fDEXAMPLEQM
+ey7N9WgVhSnQ6JEXAMPLEZb7hSQDASK+Jd1vEXAMPLEa3Km</HostId></Error>

For obtaining the request ID pair from successful requests, you'll need to use the developer tools to look
at the HTTP response headers. For information about developer tools for specific browsers, see Amazon
S3 Troubleshooting - How to recover your S3 request IDs in the AWS Developer Forums.

Using AWS SDKs to Obtain Request IDs
The following sections include information for configuring logging using an AWS SDK. While you can
enable verbose logging on every request and response, you should not enable logging in production
systems since large requests/responses can cause significant slowdown in an application.

API Version 2006-03-01
644

https://aws.amazon.com/contact-us/

Amazon Simple Storage Service Developer Guide
Using AWS SDKs to Obtain Request IDs

For AWS SDK requests, the pair of request IDs will look like the following examples.

Status Code: 403, AWS Service: Amazon S3, AWS Request ID: 79104EXAMPLEB723
AWS Error Code: AccessDenied AWS Error Message: Access Denied
S3 Extended Request ID: IOWQ4fDEXAMPLEQM+ey7N9WgVhSnQ6JEXAMPLEZb7hSQDASK+Jd1vEXAMPLEa3Km

Using the SDK for PHP to Obtain Request IDs
You can configure logging using PHP. For more information, see How can I see what data is sent over the
wire? in the FAQ for the AWS SDK for PHP.

Using the SDK for Java to Obtain Request IDs
You can enable logging for specific requests or responses, allowing you to catch and return only the
relevant headers. To do this, import the com.amazonaws.services.s3.s3ResponseMetadata
class. Afterwards, you can store the request in a variable before performing the actual request. Call
getCachedResponseMetadata(AmazonWebServiceRequest request).getRequestID() to get
the logged request or response.

Example

PutObjectRequest req = new PutObjectRequest(bucketName, key, createSampleFile());
s3.putObject(req);
S3ResponseMetadata md = s3.getCachedResponseMetadata(req);
System.out.println("Host ID: " + md.getHostId() + " RequestID: " + md.getRequestId());

Alternatively, you can use verbose logging of every Java request and response. For more information, see
Verbose Wire Logging in the Logging AWS SDK for Java Calls topic in the AWS SDK for Java Developer
Guide.

Using the AWS SDK for .NET to Obtain Request IDs
You can configure logging in AWS SDK for .NET using the built-in System.Diagnostics logging tool.
For more information, see the Logging with the AWS SDK for .NET AWS Developer Blog post.

Note
By default, the returned log contains only error information. The config file needs to have
AWSLogMetrics (and optionally, AWSResponseLogging) added to get the request IDs.

Using the SDK for Python to Obtain Request IDs
You can configure logging in Python by adding the following lines to your code to output debug
information to a file.

import logging
logging.basicConfig(filename="mylog.log", level=logging.DEBUG)

If you’re using the Boto Python interface for AWS, you can set the debug level to two as per the Boto
docs, here.

Using the SDK for Ruby to Obtain Request IDs
You can get your request IDs using either the SDK for Ruby - Version 1, Version 2, or Version 3.

• Using the SDK for Ruby - Version 1– You can enable HTTP wire logging globally with the following
line of code.

API Version 2006-03-01
645

https://docs.aws.amazon.com/aws-sdk-php/guide/latest/faq.html#how-can-i-see-what-data-is-sent-over-the-wire
https://docs.aws.amazon.com/aws-sdk-php/guide/latest/faq.html#how-can-i-see-what-data-is-sent-over-the-wire
https://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-logging.html#sdk-net-logging-verbose
https://aws.amazon.com/blogs/developer/logging-with-the-aws-sdk-for-net/
http://docs.pythonboto.org/en/latest/boto_config_tut.html#boto

Amazon Simple Storage Service Developer Guide
Using the AWS CLI to Obtain Request IDs

s3 = AWS::S3.new(:logger => Logger.new($stdout), :http_wire_trace => true)

• Using the SDK for Ruby - Version 2 or Version 3– You can enable HTTP wire logging globally with the
following line of code.

s3 = Aws::S3::Client.new(:logger => Logger.new($stdout), :http_wire_trace => true)

Using the AWS CLI to Obtain Request IDs
You can get your request IDs in the AWS CLI by adding --debug to your command.

Related Topics
For other troubleshooting and support topics, see the following:

• Troubleshooting CORS Issues (p. 160)
• Handling REST and SOAP Errors (p. 639)
• AWS Support Documentation

For troubleshooting information regarding third-party tools, see Getting Amazon S3 request IDs in the
AWS Developer Forums.

API Version 2006-03-01
646

https://aws.amazon.com/documentation/aws-support/
https://forums.aws.amazon.com/thread.jspa?threadID=182409

Amazon Simple Storage Service Developer Guide
How to Enable Server Access Logging

Amazon S3 Server Access Logging
Server access logging provides detailed records for the requests that are made to a bucket. Server access
logs are useful for many applications. For example, access log information can be useful in security and
access audits. It can also help you learn about your customer base and understand your Amazon S3 bill.

Note
Server access logs do not log information regarding wrong-region redirect errors for Regions
that launched after March 20, 2019. Wrong-region redirect errors occur when a request for
an object/bucket is made to an endpoint other than the endpoint of the Region in which the
bucket exists.

Topics
• How to Enable Server Access Logging (p. 647)
• Log Object Key Format (p. 648)
• How Are Logs Delivered? (p. 649)
• Best Effort Server Log Delivery (p. 649)
• Bucket Logging Status Changes Take Effect Over Time (p. 649)
• Enabling Logging Using the Console (p. 649)
• Enabling Logging Programmatically (p. 650)
• Amazon S3 Server Access Log Format (p. 653)
• Deleting Amazon S3 Log Files (p. 661)
• Using Amazon S3 Access Logs to Identify Requests (p. 662)

How to Enable Server Access Logging
To track requests for access to your bucket, you can enable server access logging. Each access log record
provides details about a single access request, such as the requester, bucket name, request time, request
action, response status, and an error code, if relevant.

Note
There is no extra charge for enabling server access logging on an Amazon S3 bucket. However,
any log files that the system delivers to you accrue the usual charges for storage. (You can
delete the log files at any time.) No data transfer charges are assessed for log file delivery, but
access to the delivered log files is charged the same as any other data transfer.

By default, logging is disabled. When logging is enabled, logs are saved to a bucket in the same AWS
Region as the source bucket.

To enable access logging, you must do the following:

• Turn on the log delivery by adding logging configuration on the bucket for which you want Amazon S3
to deliver access logs. We refer to this bucket as the source bucket.

• Grant the Amazon S3 Log Delivery group write permission on the bucket where you want the access
logs saved. We refer to this bucket as the target bucket.

Note

• Amazon S3 only supports granting permission to deliver access logs via bucket ACL, not via
bucket policy.

API Version 2006-03-01
647

Amazon Simple Storage Service Developer Guide
Log Object Key Format

• Adding deny conditions to a bucket policy may prevent Amazon S3 from delivering access
logs.

• Default bucket encryption on the destination bucket may only be used if AES256 (SSE-S3) is
selected. SSE-KMS encryption is not supported.

• Amazon S3 object lock cannot be enabled on the log destination bucket.

To turn on log delivery, you provide the following logging configuration information:

• The name of the target bucket where you want Amazon S3 to save the access logs as objects. You
can have logs delivered to any bucket that you own that is in the same Region as the source bucket,
including the source bucket itself.

We recommend that you save access logs in a different bucket so that you can easily manage the logs.
If you choose to save access logs in the source bucket, we recommend that you specify a prefix for all
log object keys so that the object names begin with a common string and the log objects are easier to
identify.

When your source bucket and target bucket are the same bucket, additional logs are created for the
logs that are written to the bucket. This behavior might not be ideal for your use case because it could
result in a small increase in your storage billing. In addition, the extra logs about logs might make it
harder to find the log that you're looking for.

Note
Both the source and target buckets must be owned by the same AWS account, and the
buckets must both be in the same Region.

• (Optional) A prefix for Amazon S3 to assign to all log object keys. The prefix makes it simpler for you
to locate the log objects.

For example, if you specify the prefix value logs/, each log object that Amazon S3 creates begins with
the logs/ prefix in its key, as in this example:

logs/2013-11-01-21-32-16-E568B2907131C0C0

The key prefix can help when you delete the logs. For example, you can set a lifecycle configuration
rule for Amazon S3 to delete objects with a specific key prefix. For more information, see Deleting
Amazon S3 Log Files (p. 661).

• (Optional) Permissions so that others can access the generated logs. By default, the bucket owner
always has full access to the log objects. You can optionally grant access to other users.

For more information about enabling server access logging, see Enabling Logging Using the
Console (p. 649) and Enabling Logging Programmatically (p. 650).

Log Object Key Format
Amazon S3 uses the following object key format for the log objects it uploads in the target bucket:

TargetPrefixYYYY-mm-DD-HH-MM-SS-UniqueString

In the key, YYYY, mm, DD, HH, MM, and SS are the digits of the year, month, day, hour, minute, and seconds
(respectively) when the log file was delivered, these dates and times are in Coordinated Universal time
(UTC).

A log file delivered at a specific time can contain records written at any point before that time. There is
no way to know whether all log records for a certain time interval have been delivered or not.

API Version 2006-03-01
648

bucket-encryption.html

Amazon Simple Storage Service Developer Guide
How Are Logs Delivered?

The UniqueString component of the key is there to prevent overwriting of files. It has no meaning, and
log processing software should ignore it.

How Are Logs Delivered?
Amazon S3 periodically collects access log records, consolidates the records in log files, and then uploads
log files to your target bucket as log objects. If you enable logging on multiple source buckets that
identify the same target bucket, the target bucket will have access logs for all those source buckets.
However, each log object reports access log records for a specific source bucket.

Amazon S3 uses a special log delivery account, called the Log Delivery group, to write access logs. These
writes are subject to the usual access control restrictions. You must grant the Log Delivery group write
permission on the target bucket by adding a grant entry in the bucket's access control list (ACL). If you
use the Amazon S3 console to enable logging on a bucket, the console both enables logging on the
source bucket and updates the ACL on the target bucket to grant write permission to the Log Delivery
group.

Best Effort Server Log Delivery
Server access log records are delivered on a best effort basis. Most requests for a bucket that is properly
configured for logging result in a delivered log record. Most log records are delivered within a few hours
of the time that they are recorded, but they can be delivered more frequently.

The completeness and timeliness of server logging is not guaranteed. The log record for a particular
request might be delivered long after the request was actually processed, or it might not be delivered at
all. The purpose of server logs is to give you an idea of the nature of traffic against your bucket. It is rare
to lose log records, but server logging is not meant to be a complete accounting of all requests.

It follows from the best-effort nature of the server logging feature that the usage reports available at
the AWS portal (Billing and Cost Management reports on the AWS Management Console) might include
one or more access requests that do not appear in a delivered server log.

Bucket Logging Status Changes Take Effect Over
Time

Changes to the logging status of a bucket take time to actually affect the delivery of log files. For
example, if you enable logging for a bucket, some requests made in the following hour might be logged,
while others might not. If you change the target bucket for logging from bucket A to bucket B, some logs
for the next hour might continue to be delivered to bucket A, while others might be delivered to the new
target bucket B. In all cases, the new settings eventually take effect without any further action on your
part.

Enabling Logging Using the Console
For information about enabling Amazon S3 Server Access Logging (p. 647) in the AWS Management
Console, see How Do I Enable Server Access Logging for an S3 Bucket? in the Amazon Simple Storage
Service Console User Guide.

When you enable logging on a bucket, the console both enables logging on the source bucket and adds a
grant in the target bucket's access control list (ACL) granting write permission to the Log Delivery group.

API Version 2006-03-01
649

https://console.aws.amazon.com/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/server-access-logging.html

Amazon Simple Storage Service Developer Guide
Enabling Logging Programmatically

For information about how to enable logging programmatically, see Enabling Logging
Programmatically (p. 650).

For information about the log record format, including the list of fields and their descriptions, see
Amazon S3 Server Access Log Format (p. 653).

Enabling Logging Programmatically
You can enable or disable logging programmatically by using either the Amazon S3 API or the AWS SDKs.
To do so, you both enable logging on the bucket and grant the Log Delivery group permission to write
logs to the target bucket.

Topics
• Enabling Logging (p. 650)
• Granting the Log Delivery Group WRITE and READ_ACP Permissions (p. 650)
• Example: AWS SDK for .NET (p. 651)
• Related Resources (p. 652)

Enabling Logging
To enable logging, you submit a PUT Bucket logging request to add the logging configuration on the
source bucket. The request specifies the target bucket and, optionally, the prefix to be used with all log
object keys. The following example identifies logbucket as the target bucket and logs/ as the prefix.

<BucketLoggingStatus xmlns="http://doc.s3.amazonaws.com/2006-03-01">
 <LoggingEnabled>
 <TargetBucket>logbucket</TargetBucket>
 <TargetPrefix>logs/</TargetPrefix>
 </LoggingEnabled>
</BucketLoggingStatus>

The log objects are written and owned by the Log Delivery account, and the bucket owner is granted full
permissions on the log objects. In addition, you can optionally grant permissions to other users so that
they can access the logs. For more information, see PUT Bucket logging.

Amazon S3 also provides the GET Bucket logging API to retrieve logging configuration on a bucket.
To delete the logging configuration, you send the PUT Bucket logging request with an empty
BucketLoggingStatus.

<BucketLoggingStatus xmlns="http://doc.s3.amazonaws.com/2006-03-01">
</BucketLoggingStatus>

You can use either the Amazon S3 API or the AWS SDK wrapper libraries to enable logging on a bucket.

Granting the Log Delivery Group WRITE and
READ_ACP Permissions
Amazon S3 writes the log files to the target bucket as a member of the predefined Amazon S3
group Log Delivery. These writes are subject to the usual access control restrictions. You must grant
s3:GetObjectAcl and s3:PutObject permissions to this group by adding grants to the access control
list (ACL) of the target bucket. The Log Delivery group is represented by the following URL.

API Version 2006-03-01
650

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlogging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlogging.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETlogging.html

Amazon Simple Storage Service Developer Guide
Example: AWS SDK for .NET

http://acs.amazonaws.com/groups/s3/LogDelivery

To grant WRITE and READ_ACP permissions, add the following grants. For information about ACLs, see
Managing Access with ACLs (p. 403).

<Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="Group">
 <URI>http://acs.amazonaws.com/groups/s3/LogDelivery</URI>
 </Grantee>
 <Permission>WRITE</Permission>
</Grant>
<Grant>
 <Grantee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="Group">
 <URI>http://acs.amazonaws.com/groups/s3/LogDelivery</URI>
 </Grantee>
 <Permission>READ_ACP</Permission>
</Grant>

For examples of adding ACL grants programmatically using the AWS SDKs, see Managing ACLs Using the
AWS SDK for Java (p. 409) and Managing ACLs Using the AWS SDK for .NET (p. 411).

Example: AWS SDK for .NET
The following C# example enables logging on a bucket. You need to create two buckets, a source bucket
and a target bucket. The example first grants the Log Delivery group the necessary permission to write
logs to the target bucket and then enables logging on the source bucket. For more information, see
Enabling Logging Programmatically (p. 650). For instructions on how to create and test a working
sample, see Running the Amazon S3 .NET Code Examples (p. 678).

Example

using Amazon.S3;
using Amazon.S3.Model;
using System;
using System.Threading.Tasks;

namespace Amazon.DocSamples.S3
{
 class ServerAccesLoggingTest
 {
 private const string bucketName = "*** bucket name for which to enable logging
 ***";
 private const string targetBucketName = "*** bucket name where you want access logs
 stored ***";
 private const string logObjectKeyPrefix = "Logs";
 // Specify your bucket region (an example region is shown).
 private static readonly RegionEndpoint bucketRegion = RegionEndpoint.USWest2;
 private static IAmazonS3 client;

 public static void Main()
 {
 client = new AmazonS3Client(bucketRegion);
 EnableLoggingAsync().Wait();
 }

 private static async Task EnableLoggingAsync()
 {
 try
 {

API Version 2006-03-01
651

Amazon Simple Storage Service Developer Guide
Related Resources

 // Step 1 - Grant Log Delivery group permission to write log to the target
 bucket.
 await GrantPermissionsToWriteLogsAsync();
 // Step 2 - Enable logging on the source bucket.
 await EnableDisableLoggingAsync();
 }
 catch (AmazonS3Exception e)
 {
 Console.WriteLine("Error encountered on server. Message:'{0}' when writing
 an object", e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("Unknown encountered on server. Message:'{0}' when
 writing an object", e.Message);
 }
 }

 private static async Task GrantPermissionsToWriteLogsAsync()
 {
 var bucketACL = new S3AccessControlList();
 var aclResponse = client.GetACL(new GetACLRequest { BucketName =
 targetBucketName });
 bucketACL = aclResponse.AccessControlList;
 bucketACL.AddGrant(new S3Grantee { URI = "http://acs.amazonaws.com/groups/s3/
LogDelivery" }, S3Permission.WRITE);
 bucketACL.AddGrant(new S3Grantee { URI = "http://acs.amazonaws.com/groups/s3/
LogDelivery" }, S3Permission.READ_ACP);
 var setACLRequest = new PutACLRequest
 {
 AccessControlList = bucketACL,
 BucketName = targetBucketName
 };
 await client.PutACLAsync(setACLRequest);
 }

 private static async Task EnableDisableLoggingAsync()
 {
 var loggingConfig = new S3BucketLoggingConfig
 {
 TargetBucketName = targetBucketName,
 TargetPrefix = logObjectKeyPrefix
 };

 // Send request.
 var putBucketLoggingRequest = new PutBucketLoggingRequest
 {
 BucketName = bucketName,
 LoggingConfig = loggingConfig
 };
 await client.PutBucketLoggingAsync(putBucketLoggingRequest);
 }
 }
}

Related Resources
• Amazon S3 Server Access Logging (p. 647)

• AWS::S3::Bucket in the AWS CloudFormation User Guide

API Version 2006-03-01
652

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-s3-bucket.html

Amazon Simple Storage Service Developer Guide
Log Format

Amazon S3 Server Access Log Format
This section describes the Amazon S3 server access log files.

Topics
• Additional Logging for Copy Operations (p. 657)
• Custom Access Log Information (p. 661)
• Programming Considerations for Extensible Server Access Log Format (p. 661)

The server access log files consist of a sequence of newline-delimited log records. Each log record
represents one request and consists of space-delimited fields. The following is an example log consisting
of five log records.

79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be
 awsexamplebucket [06/Feb/2019:00:00:38 +0000] 192.0.2.3
 79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be 3E57427F3EXAMPLE
 REST.GET.VERSIONING - "GET /awsexamplebucket?versioning HTTP/1.1" 200 - 113 - 7 - "-"
 "S3Console/0.4" - s9lzHYrFp76ZVxRcpX9+5cjAnEH2ROuNkd2BHfIa6UkFVdtjf5mKR3/eTPFvsiP/XV/
VLi31234= SigV2 ECDHE-RSA-AES128-GCM-SHA256 AuthHeader awsexamplebucket.s3.amazonaws.com
 TLSV1.1
79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be
 awsexamplebucket [06/Feb/2019:00:00:38 +0000] 192.0.2.3
 79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be 891CE47D2EXAMPLE
 REST.GET.LOGGING_STATUS - "GET /awsexamplebucket?logging HTTP/1.1" 200 - 242
 - 11 - "-" "S3Console/0.4" - 9vKBE6vMhrNiWHZmb2L0mXOcqPGzQOI5XLnCtZNPxev+Hf
+7tpT6sxDwDty4LHBUOZJG96N1234= SigV2 ECDHE-RSA-AES128-GCM-SHA256 AuthHeader
 awsexamplebucket.s3.amazonaws.com TLSV1.1
79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be
 awsexamplebucket [06/Feb/2019:00:00:38 +0000] 192.0.2.3
 79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be A1206F460EXAMPLE
 REST.GET.BUCKETPOLICY - "GET /awsexamplebucket?policy HTTP/1.1" 404
 NoSuchBucketPolicy 297 - 38 - "-" "S3Console/0.4" - BNaBsXZQQDbssi6xMBdBU2sLt
+Yf5kZDmeBUP35sFoKa3sLLeMC78iwEIWxs99CRUrbS4n11234= SigV2 ECDHE-RSA-AES128-GCM-SHA256
 AuthHeader awsexamplebucket.s3.amazonaws.com TLSV1.1
79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be
 awsexamplebucket [06/Feb/2019:00:01:00 +0000] 192.0.2.3
 79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be 7B4A0FABBEXAMPLE
 REST.GET.VERSIONING - "GET /awsexamplebucket?versioning HTTP/1.1" 200 - 113 - 33 - "-"
 "S3Console/0.4" - Ke1bUcazaN1jWuUlPJaxF64cQVpUEhoZKEG/hmy/gijN/I1DeWqDfFvnpybfEseEME/
u7ME1234= SigV2 ECDHE-RSA-AES128-GCM-SHA256 AuthHeader awsexamplebucket.s3.amazonaws.com
 TLSV1.1
79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be
 awsexamplebucket [06/Feb/2019:00:01:57 +0000] 192.0.2.3
 79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be
 DD6CC733AEXAMPLE REST.PUT.OBJECT s3-dg.pdf "PUT /awsexamplebucket/
s3-dg.pdf HTTP/1.1" 200 - - 4406583 41754 28 "-" "S3Console/0.4" -
 10S62Zv81kBW7BB6SX4XJ48o6kpcl6LPwEoizZQQxJd5qDSCTLX0TgS37kYUBKQW3+bPdrg1234= SigV4 ECDHE-
RSA-AES128-SHA AuthHeader awsexamplebucket.s3.amazonaws.com TLSV1.1

Note
Any field can be set to - to indicate that the data was unknown or unavailable, or that the field
was not applicable to this request.

The following list describes the log record fields.

Bucket Owner

The canonical user ID of the owner of the source bucket. The canonical user ID is another form of
the AWS account ID. For more information about the canonical user ID, see AWS Account Identifiers.

API Version 2006-03-01
653

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html

Amazon Simple Storage Service Developer Guide
Log Format

For information about how to find the canonical user ID for your account, see Finding Your Account
Canonical User ID.

Example Entry

79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be

Bucket

The name of the bucket that the request was processed against. If the system receives a malformed
request and cannot determine the bucket, the request will not appear in any server access log.

Example Entry

awsexamplebucket

Time

The time at which the request was received; these dates and times are in Coordinated Universal time
(UTC). The format, using strftime() terminology, is as follows: [%d/%b/%Y:%H:%M:%S %z]

Example Entry

[06/Feb/2019:00:00:38 +0000]

Remote IP

The apparent internet address of the requester. Intermediate proxies and firewalls might obscure the
actual address of the machine making the request.

Example Entry

192.0.2.3

Requester

The canonical user ID of the requester, or a - for unauthenticated requests. If the requester was an
IAM user, this field returns the requester's IAM user name along with the AWS root account that the
IAM user belongs to. This identifier is the same one used for access control purposes.

Example Entry

79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be

Request ID

A string generated by Amazon S3 to uniquely identify each request.

Example Entry

3E57427F33A59F07

Operation

The operation listed here is declared as SOAP.operation, REST.HTTP_method.resource_type,
WEBSITE.HTTP_method.resource_type, or BATCH.DELETE.OBJECT.

API Version 2006-03-01
654

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingCanonicalId
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingCanonicalId

Amazon Simple Storage Service Developer Guide
Log Format

Example Entry

REST.PUT.OBJECT

Key

The "key" part of the request, URL encoded, or "-" if the operation does not take a key parameter.

Example Entry

/photos/2019/08/puppy.jpg

Request-URI

The Request-URI part of the HTTP request message.

Example Entry

"GET /awsexamplebucket/photos/2019/08/puppy.jpg?x-foo=bar HTTP/1.1"

HTTP status

The numeric HTTP status code of the response.

Example Entry

200

Error Code

The Amazon S3 Error Code (p. 640), or "-" if no error occurred.

Example Entry

NoSuchBucket

Bytes Sent

The number of response bytes sent, excluding HTTP protocol overhead, or "-" if zero.

Example Entry

2662992

Object Size

The total size of the object in question.

Example Entry

3462992

Total Time

The number of milliseconds the request was in flight from the server's perspective. This value is
measured from the time your request is received to the time that the last byte of the response is
sent. Measurements made from the client's perspective might be longer due to network latency.

API Version 2006-03-01
655

Amazon Simple Storage Service Developer Guide
Log Format

Example Entry

70

Turn-Around Time

The number of milliseconds that Amazon S3 spent processing your request. This value is measured
from the time the last byte of your request was received until the time the first byte of the response
was sent.

Example Entry

10

Referrer

The value of the HTTP Referrer header, if present. HTTP user-agents (for example, browsers)
typically set this header to the URL of the linking or embedding page when making a request.

Example Entry

"http://www.amazon.com/webservices"

User-Agent

The value of the HTTP User-Agent header.

Example Entry

"curl/7.15.1"

Version Id

The version ID in the request, or "-" if the operation does not take a versionId parameter.

Example Entry

3HL4kqtJvjVBH40Nrjfkd

Host Id

The x-amz-id-2 or Amazon S3 extended request ID.

Example Entry

s9lzHYrFp76ZVxRcpX9+5cjAnEH2ROuNkd2BHfIa6UkFVdtjf5mKR3/eTPFvsiP/XV/VLi31234=

Signature Version

The signature version, SigV2 or SigV4, that was used to authenticate the request or a - for
unauthenticated requests.

Example Entry

SigV2

API Version 2006-03-01
656

Amazon Simple Storage Service Developer Guide
Additional Logging for Copy Operations

Cipher Suite

The Secure Sockets Layer (SSL) cipher that was negotiated for HTTPS request or a - for HTTP.

Example Entry

ECDHE-RSA-AES128-GCM-SHA256

Authentication Type

The type of request authentication used, AuthHeader for authentication headers, QueryString for
query string (pre-signed URL) or a - for unauthenticated requests.

Example Entry

AuthHeader

Host Header

The endpoint used to connect to Amazon S3

Example Entry

s3-us-west-2.amazonaws.com

TLS version

The Transport Layer Security (TLS) version negotiated by the client. The value is one of following:
TLSv1, TLSv1.1, TLSv1.2; or - if TLS wasn't used.

Example Entry

TLSv1.2

Additional Logging for Copy Operations
A copy operation involves a GET and a PUT. For that reason, we log two records when performing a copy
operation. The previous table describes the fields related to the PUT part of the operation. The following
list describes the fields in the record that relate to the GET part of the copy operation.

Bucket Owner

The canonical user ID of the bucket that stores the object being copied. The canonical user ID is
another form of the AWS account ID. For more information about the canonical user ID, see AWS
Account Identifiers. For information about how to find the canonical user ID for your account, see
Finding Your Account Canonical User ID.

Example Entry

79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be

Bucket

The name of the bucket that stores the object being copied.

API Version 2006-03-01
657

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingCanonicalId

Amazon Simple Storage Service Developer Guide
Additional Logging for Copy Operations

Example Entry

awsexamplebucket

Time

The time at which the request was received; these dates and times are in Coordinated Universal time
(UTC). The format, using strftime() terminology, is as follows: [%d/%B/%Y:%H:%M:%S %z]

Example Entry

[06/Feb/2019:00:00:38 +0000]

Remote IP

The apparent internet address of the requester. Intermediate proxies and firewalls might obscure the
actual address of the machine making the request.

Example Entry

192.0.2.3

Requester

The canonical user ID of the requester, or a - for unauthenticated requests. If the requester was an
IAM user, this field will return the requester's IAM user name along with the AWS root account that
the IAM user belongs to. This identifier is the same one used for access control purposes.

Example Entry

79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be

Request ID

A string generated by Amazon S3 to uniquely identify each request.

Example Entry

3E57427F33A59F07

Operation

The operation listed here is declared as SOAP.operation, REST.HTTP_method.resource_type,
WEBSITE.HTTP_method.resource_type, or BATCH.DELETE.OBJECT.

Example Entry

REST.COPY.OBJECT_GET

Key

The "key" of the object being copied or "-" if the operation does not take a key parameter.

Example Entry

/photos/2019/08/puppy.jpg

API Version 2006-03-01
658

Amazon Simple Storage Service Developer Guide
Additional Logging for Copy Operations

Request-URI

The Request-URI part of the HTTP request message.

Example Entry

"GET /awsexamplebucket/photos/2019/08/puppy.jpg?x-foo=bar"

HTTP status

The numeric HTTP status code of the GET portion of the copy operation.

Example Entry

200

Error Code

The Amazon S3 Error Code (p. 640), of the GET portion of the copy operation or "-" if no error
occurred.

Example Entry

NoSuchBucket

Bytes Sent

The number of response bytes sent, excluding HTTP protocol overhead, or "-" if zero.

Example Entry

2662992

Object Size

The total size of the object in question.

Example Entry

3462992

Total Time

The number of milliseconds the request was in flight from the server's perspective. This value is
measured from the time your request is received to the time that the last byte of the response is
sent. Measurements made from the client's perspective might be longer due to network latency.

Example Entry

70

Turn-Around Time

The number of milliseconds that Amazon S3 spent processing your request. This value is measured
from the time the last byte of your request was received until the time the first byte of the response
was sent.

Example Entry

API Version 2006-03-01
659

Amazon Simple Storage Service Developer Guide
Additional Logging for Copy Operations

10

Referrer

The value of the HTTP Referrer header, if present. HTTP user-agents (for example, browsers)
typically set this header to the URL of the linking or embedding page when making a request.

Example Entry

"http://www.amazon.com/webservices"

User-Agent

The value of the HTTP User-Agent header.

Example Entry

"curl/7.15.1"

Version Id

The version ID of the object being copied or "-" if the x-amz-copy-source header didn’t specify a
versionId parameter as part of the copy source.

Example Entry

3HL4kqtJvjVBH40Nrjfkd

Host Id

The x-amz-id-2 or Amazon S3 extended request ID.

Example Entry

s9lzHYrFp76ZVxRcpX9+5cjAnEH2ROuNkd2BHfIa6UkFVdtjf5mKR3/eTPFvsiP/XV/VLi31234=

Signature Version

The signature version, SigV2 or SigV4, that was used to authenticate the request or a - for
unauthenticated requests.

Example Entry

SigV2

Cipher Suite

The Secure Sockets Layer (SSL) cipher that was negotiated for HTTPS request or a - for HTTP.

Example Entry

ECDHE-RSA-AES128-GCM-SHA256

Authentication Type

The type of request authentication used, AuthHeader for authentication headers, QueryString for
query string (pre-signed URL) or a - for unauthenticated requests.

API Version 2006-03-01
660

Amazon Simple Storage Service Developer Guide
Custom Access Log Information

Example Entry

AuthHeader

Host Header

The endpoint used to connect to Amazon S3

Example Entry

s3-us-west-2.amazonaws.com

TLS version

The Transport Layer Security (TLS) version negotiated by the client. The value is one of following:
TLSv1, TLSv1.1, TLSv1.2; or - if TLS wasn't used.

Example Entry

TLSv1.2

Custom Access Log Information
You can include custom information to be stored in the access log record for a request by adding a
custom query-string parameter to the URL for the request. Amazon S3 ignores query-string parameters
that begin with "x-", but includes those parameters in the access log record for the request, as part
of the Request-URI field of the log record. For example, a GET request for "s3.amazonaws.com/
awsexamplebucket/photos/2019/08/puppy.jpg?x-user=johndoe" works the same as the same
request for "s3.amazonaws.com/awsexamplebucket/photos/2019/08/puppy.jpg", except that the
"x-user=johndoe" string is included in the Request-URI field for the associated log record. This
functionality is available in the REST interface only.

Programming Considerations for Extensible Server
Access Log Format
From time to time, we might extend the access log record format by adding new fields to the end of
each line. Code that parses server access logs must be written to handle trailing fields that it does not
understand.

Deleting Amazon S3 Log Files
An S3 bucket with server access logging enabled can accumulate many server log objects over time.
Your application might need these access logs for a specific period after creation, and after that, you
might want to delete them. You can use Amazon S3 lifecycle configuration to set rules so that Amazon
S3 automatically queues these objects for deletion at the end of their life.

You can define a lifecycle configuration for a subset of objects in your S3 bucket by using a shared prefix
(that is, objects that have names that begin with a common string). If you specified a prefix in your server
access logging configuration, you can set a lifecycle configuration rule to delete log objects that have
that prefix. For example, if your log objects have the prefix logs/, you can set a lifecycle configuration
rule to delete all objects in the bucket that have the prefix /logs after a specified period of time. For
more information about lifecycle configuration, see Object Lifecycle Management (p. 119).

API Version 2006-03-01
661

Amazon Simple Storage Service Developer Guide
Related Resources

Related Resources
Amazon S3 Server Access Logging (p. 647)

Using Amazon S3 Access Logs to Identify Requests
You can identify Amazon S3 requests using Amazon S3 access logs.

Note

• We recommend that you use AWS CloudTrail data events instead of Amazon S3 access
logs. CloudTrail data events are easier to set up and contain more information. For more
information, see Using AWS CloudTrail to Identify Amazon S3 Requests (p. 628).

• Depending on how many access requests you get, it may require more resources and/or more
time to analyze your logs.

Topics

• Enabling Amazon S3 Access Logs for Requests (p. 662)

• Querying Amazon S3 Access Logs for Requests (p. 664)

• Using Amazon S3 Access Logs to Identify Signature Version 2 Requests (p. 666)

• Using Amazon S3 Access Logs to Identify Object Access Requests (p. 667)

• Related Resources (p. 668)

Enabling Amazon S3 Access Logs for Requests
We recommend that you create a dedicated logging bucket in each AWS Region that you have S3 buckets
in. Then have the Amazon S3 access log delivered to that S3 bucket.

Example — Enable access logs with five buckets across two Regions

In this example, you have the following five buckets:

• 1-awsexamplebucket-us-east-1

• 2-awsexamplebucket-us-east-1

• 3-awsexamplebucket-us-east-1

• 1-awsexamplebucket-us-west-2

• 2-awsexamplebucket-us-west-2

1. Create two logging buckets in the following Regions:

• awsexamplebucket-logs-us-east-1

• awsexamplebucket-logs-us-west-2

2. Then enable the Amazon S3 access logs as follows:

• 1-awsexamplebucket-us-east-1 logs to s3://awsexamplebucket-logs-us-east-1/1-
awsexamplebucket-us-east-1

• 2-awsexamplebucket-us-east-1 logs to s3://awsexamplebucket-logs-us-east-1/2-
awsexamplebucket-us-east-1

API Version 2006-03-01
662

Amazon Simple Storage Service Developer Guide
Enabling Amazon S3 Access Logs for Requests

• 1-awsexamplebucket-us-east-1 logs to s3://awsexamplebucket-logs-us-east-1/3-
awsexamplebucket-us-east-1

• 1-awsexamplebucket-us-west-2 logs to s3://awsexamplebucket-logs-us-west-2/1-
awsexamplebucket-us-west-2

• 2-awsexamplebucket-us-west-2 logs to s3://awsexamplebucket-logs-us-west-2/2-
awsexamplebucket-us-west-2

3. You can then enable the Amazon S3 access logs using the following methods:

• Using the AWS Management Console or,

• Enabling Logging Programmatically (p. 650) or,

• Using the AWS CLI put-bucket-logging command to programmatically enable access logs on a
bucket using the following commands:

1. First, grant Amazon S3 permission using put-bucket-acl:

 aws s3api put-bucket-acl --bucket awsexamplebucket-logs --grant-write
 URI=http://acs.amazonaws.com/groups/s3/LogDelivery --grant-read-acp URI=http://
acs.amazonaws.com/groups/s3/LogDelivery

2. Then, apply the logging policy:

aws s3api put-bucket-logging --bucket awsexamplebucket --bucket-logging-status
 file://logging.json

Logging.json is a JSON document in the current folder that contains the logging policy:

 {
 "LoggingEnabled": {
 "TargetBucket": "awsexamplebucket-logs",
 "TargetPrefix": "awsexamplebucket/",
 "TargetGrants": [
 {
 "Grantee": {
 "Type": "AmazonCustomerByEmail",
 "EmailAddress": "user@example.com"
 },
 "Permission": "FULL_CONTROL"
 }
]
 }
 }

Note
The put-bucket-acl command is required to grant the Amazon S3 log delivery
system the necessary permissions (write and read-acp permissions).

3. Use a bash script to add access logging for all the buckets in your account:

 loggingBucket='awsexamplebucket-logs'
 region='us-west-2'

API Version 2006-03-01
663

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/server-access-logging.html
https://docs.aws.amazon.com//cli/latest/reference/s3api/put-bucket-logging.html

Amazon Simple Storage Service Developer Guide
Querying Amazon S3 Access Logs for Requests

 # Create Logging bucket
 aws s3 mb s3://$loggingBucket --region $region

 aws s3api put-bucket-acl --bucket $loggingBucket --grant-write URI=http://
acs.amazonaws.com/groups/s3/LogDelivery --grant-read-acp URI=http://
acs.amazonaws.com/groups/s3/LogDelivery

 # List buckets in this account
 buckets="$(aws s3 ls | awk '{print $3}')"

 # Put bucket logging on each bucket
 for bucket in $bucenable-logging-programmingkets
 do printf '{
 "LoggingEnabled": {
 "TargetBucket": "%s",
 "TargetPrefix": "%s/"
 }
 }' "$loggingBucket" "$bucket" > logging.json
 aws s3api put-bucket-logging --bucket $bucket --bucket-logging-status
 file://logging.json
 echo "$bucket done"
 done

 rm logging.json

 echo "Complete"

Note
This only works if all your buckets are in the same Region. If you have buckets in
multiple Regions, you must adjust the script.

Querying Amazon S3 Access Logs for Requests
Amazon S3 stores server access logs as objects in an S3 bucket. It is often easier to use a tool that can
analyze the logs in Amazon S3. Athena supports analysis of S3 objects and can be used to query Amazon
S3 access logs.

Example

The following example shows how you can query Amazon S3 server access logs in Amazon Athena.

Note
To specify the Amazon S3 location in an Athena query, you need the target bucket name and
the target prefix, as follows: s3://awsexamplebucket-logs/prefix/

1. Open the Athena console at https://console.aws.amazon.com/athena/.
2. In the Query Editor, run a command similar to the following:

create database s3_access_logs_db

Note
It's a best practice to create the database in the same AWS Region as your S3 bucket.

3. In the Query Editor, run a command similar to the following to create a table schema in the
database that you created in step 2. The STRING and BIGINT data type values are the access log
properties. You can query these properties in Athena. For LOCATION, enter the S3 bucket and prefix
path as noted earlier.

API Version 2006-03-01
664

https://console.aws.amazon.com/athena/home

Amazon Simple Storage Service Developer Guide
Querying Amazon S3 Access Logs for Requests

 CREATE EXTERNAL TABLE IF NOT EXISTS s3_access_logs_db.mybucket_logs(
 BucketOwner STRING,
 Bucket STRING,
 RequestDateTime STRING,
 RemoteIP STRING,
 Requester STRING,
 RequestID STRING,
 Operation STRING,
 Key STRING,
 RequestURI_operation STRING,
 RequestURI_key STRING,
 RequestURI_httpProtoversion STRING,
 HTTPstatus STRING,
 ErrorCode STRING,
 BytesSent BIGINT,
 ObjectSize BIGINT,
 TotalTime STRING,
 TurnAroundTime STRING,
 Referrer STRING,
 UserAgent STRING,
 VersionId STRING,
 HostId STRING,
 SigV STRING,
 CipherSuite STRING,
 AuthType STRING,
 HostHeader STRING
)
 ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
 WITH SERDEPROPERTIES (
 'serialization.format' = '1', 'input.regex' = '([^]*) ([^]*)
 \\[(.*?)\\] ([^]*) ([^]*) ([^]*) ([^]*) ([^]*)
 \\\"([^]*) ([^]*) (- |[^]*)\\\" (-|[0-9]*) ([^]*) ([^]*) ([^]*) ([^]*)
 ([^]*)
 ([^]*) (\"[^\"]*\") ([^]*) ([^]*) ([^]*) ([^]*) ([^]*) ([^]*).*$')
 LOCATION 's3://awsexamplebucket-logs/prefix'

4. In the navigation pane, under Database, choose your database.

5. Under Tables, choose Preview table next to your table name.

In the Results pane, you should see data from the server access logs, such as bucketowner,
bucket, requestdatetime, and so on. This means that you successfully created the Athena table.
You can now query the Amazon S3 server access logs.

Example — Show who deleted an object and when (timestamp, IP address, and IAM user)

SELECT RequestDateTime, RemoteIP, Requester, Key
FROM s3_access_logs_db.mybucket_logs
WHERE key = 'images/picture.jpg' AND operation like '%DELETE%';

Example — Show all operations executed by an IAM user

SELECT *
FROM s3_access_logs_db.mybucket_logs
WHERE requester='arn:aws:iam::123456789123:user/user_name';

API Version 2006-03-01
665

Amazon Simple Storage Service Developer Guide
Using Amazon S3 Log Files to Identify SigV2 Requests

Example — Show all operations that were performed on an object in a specific time period

SELECT *
FROM s3_access_logs_db.mybucket_logs
WHERE Key='prefix/images/picture.jpg'
 AND parse_datetime(RequestDateTime,'dd/MMM/yyyy:HH:mm:ss Z')
 BETWEEN parse_datetime('2017-02-18:07:00:00','yyyy-MM-dd:HH:mm:ss')
 AND parse_datetime('2017-02-18:08:00:00','yyyy-MM-dd:HH:mm:ss');

Example — Show how much data was transferred by a specific IP address in a specific time
period

SELECT SUM(bytessent) AS uploadTotal,
 SUM(objectsize) AS downloadTotal,
 SUM(bytessent + objectsize) AS Total
FROM s3_access_logs_db.mybucket_logs
WHERE RemoteIP='1.2.3.4'
AND parse_datetime(RequestDateTime,'dd/MMM/yyyy:HH:mm:ss Z')
BETWEEN parse_datetime('2017-06-01','yyyy-MM-dd')
AND parse_datetime('2017-07-01','yyyy-MM-dd');

Note
To reduce the time that you retain your log, you can create an Amazon S3 lifecycle policy for
your server access logs bucket. Configure the lifecycle policy to remove log files periodically.
Doing so reduces the amount of data that Athena analyzes for each query.

Using Amazon S3 Access Logs to Identify Signature
Version 2 Requests
Amazon S3 support for Signature Version 2 will be turned off (deprecated). After that, Amazon S3 will
no longer accept requests that use Signature Version 2, and all requests must use Signature Version 4
signing. You can identify Signature Version 2 access requests using Amazon S3 access logs.

Note

• We recommend that you use AWS CloudTrail data events instead of Amazon S3 access
logs. CloudTrail data events are easier to set up and contain more information. For more
information, see Using AWS CloudTrail to Identify Amazon S3 Signature Version 2 Requests
 (p. 631).

Example — Show all requesters that are sending Signature Version 2 traffic

 SELECT requester, Sigv, Count(Sigv) as SigCount
 FROM s3_access_logs_db.mybucket_logs
 GROUP BY requester, Sigv;

API Version 2006-03-01
666

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-lifecycle.html

Amazon Simple Storage Service Developer Guide
Using Amazon S3 Log Files to Identify Object Access

Using Amazon S3 Access Logs to Identify Object
Access Requests
You can use queries on Amazon S3 server access logs to identify Amazon S3 object access requests, for
operations such as GET, PUT, and DELETE, and discover further information about those requests.

The following Amazon Athena query example shows how to get all PUT object requests for Amazon S3
from the server access log.

Example — Show all requesters that are sending PUT object requests in a certain period

SELECT Bucket, Requester, RemoteIP, Key, HTTPStatus, ErrorCode, RequestDateTime
FROM s3_access_logs_db
WHERE Operation='REST.PUT.OBJECT' AND
parse_datetime(RequestDateTime,'dd/MMM/yyyy:HH:mm:ss Z')
BETWEEN parse_datetime('2019-07-01:00:42:42','yyyy-MM-dd:HH:mm:ss')
AND
parse_datetime('2019-07-02:00:42:42','yyyy-MM-dd:HH:mm:ss')

The following Amazon Athena query example shows how to get all GET object requests for Amazon S3
from the server access log.

Example — Show all requesters that are sending GET object requests in a certain period

SELECT Bucket, Requester, RemoteIP, Key, HTTPStatus, ErrorCode, RequestDateTime
FROM s3_access_logs_db
WHERE Operation='REST.GET.OBJECT' AND
parse_datetime(RequestDateTime,'dd/MMM/yyyy:HH:mm:ss Z')
BETWEEN parse_datetime('2019-07-01:00:42:42','yyyy-MM-dd:HH:mm:ss')
AND
parse_datetime('2019-07-02:00:42:42','yyyy-MM-dd:HH:mm:ss')

The following Amazon Athena query example shows how to get all annonymous requests to your S3
buckets from the server access log.

Example — Show all anonymous requesters that are making requests to a bucket in a certain
period

SELECT Bucket, Requester, RemoteIP, Key, HTTPStatus, ErrorCode, RequestDateTime
FROM s3_access_logs_db.mybucket_logs
WHERE Requester IS NULL AND
parse_datetime(RequestDateTime,'dd/MMM/yyyy:HH:mm:ss Z')
BETWEEN parse_datetime('2019-07-01:00:42:42','yyyy-MM-dd:HH:mm:ss')
AND
parse_datetime('2019-07-02:00:42:42','yyyy-MM-dd:HH:mm:ss')

Note

• You can modify the date range as needed to suit your needs.
• These query examples may also be useful for security monitoring. You can review the results

for PutObject or GetObject calls from unexpected or unauthorized IP addresses/requesters
and for identifying any anonymous requests to your buckets.

• This query only retrieves information from the time at which logging was enabled.

API Version 2006-03-01
667

Amazon Simple Storage Service Developer Guide
Related Resources

• If you are using Amazon S3 AWS CloudTrail logs, see Using AWS CloudTrail to Identify Access
to Amazon S3 Objects (p. 633).

Related Resources
• Amazon S3 Server Access Log Format (p. 653)
• Querying AWS Service Logs

API Version 2006-03-01
668

https://docs.aws.amazon.com/athena/latest/ug/querying-AWS-service-logs.html

Amazon Simple Storage Service Developer Guide

Using the AWS SDKs, CLI, and
Explorers

You can use the AWS SDKs when developing applications with Amazon S3. The AWS SDKs simplify your
programming tasks by wrapping the underlying REST API. The AWS Mobile SDKs and the AWS Amplify
JavaScript library are also available for building connected mobile and web applications using AWS.

This section provides an overview of using AWS SDKs for developing Amazon S3 applications. This
section also describes how you can test the AWS SDK code examples provided in this guide.

Topics
• Specifying the Signature Version in Request Authentication (p. 670)
• Setting Up the AWS CLI (p. 675)
• Using the AWS SDK for Java (p. 676)
• Using the AWS SDK for .NET (p. 677)
• Using the AWS SDK for PHP and Running PHP Examples (p. 678)
• Using the AWS SDK for Ruby - Version 3 (p. 679)
• Using the AWS SDK for Python (Boto) (p. 681)
• Using the AWS Mobile SDKs for iOS and Android (p. 681)
• Using the AWS Amplify JavaScript Library (p. 681)

In addition to the AWS SDKs, AWS Explorers are available for Visual Studio and Eclipse for Java IDE. In
this case, the SDKs and the explorers are available bundled together as AWS Toolkits.

You can also use the AWS Command Line Interface (AWS CLI) to manage Amazon S3 buckets and objects.

AWS Toolkit for Eclipse

The AWS Toolkit for Eclipse includes both the AWS SDK for Java and AWS Explorer for Eclipse. The AWS
Explorer for Eclipse is an open source plugin for Eclipse for Java IDE that makes it easier for developers
to develop, debug, and deploy Java applications using AWS. The easy-to-use GUI enables you to access
and administer your AWS infrastructure including Amazon S3. You can perform common operations such
as managing your buckets and objects and setting IAM policies, while developing applications, all from
within the context of Eclipse for Java IDE. For set up instructions, see Set up the Toolkit. For examples of
using the explorer, see How to Access AWS Explorer.

AWS Toolkit for Visual Studio

AWS Explorer for Visual Studio is an extension for Microsoft Visual Studio that makes it easier for
developers to develop, debug, and deploy .NET applications using Amazon Web Services. The easy-to-
use GUI enables you to access and administer your AWS infrastructure including Amazon S3. You can
perform common operations such as managing your buckets and objects or setting IAM policies, while
developing applications, all from within the context of Visual Studio. For setup instructions, go to Setting
Up the AWS Toolkit for Visual Studio. For examples of using Amazon S3 using the explorer, see Using
Amazon S3 from AWS Explorer.

AWS SDKs

You can download only the SDKs. For information about downloading the SDK libraries, see Sample Code
Libraries.

API Version 2006-03-01
669

https://docs.aws.amazon.com/eclipse-toolkit/latest/user-guide/setup-install.html
https://docs.aws.amazon.com/eclipse-toolkit/latest/user-guide/open-aws-explorer.html
https://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/tkv_setup.html
https://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/tkv_setup.html
https://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/using-s3.html
https://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/using-s3.html
https://aws.amazon.com/tools/
https://aws.amazon.com/tools/

Amazon Simple Storage Service Developer Guide
Specifying the Signature Version in Request Authentication

AWS CLI

The AWS CLI is a unified tool to manage your AWS services, including Amazon S3. For information about
downloading the AWS CLI, see AWS Command Line Interface.

Specifying the Signature Version in Request
Authentication

Amazon S3 supports only AWS Signature Version 4 in most AWS Regions. In some of the older AWS
Regions, Amazon S3 supports both Signature Version 4 and Signature Version 2. However, Signature
Version 2 is being turned off (deprecated). For more information about the end of support for Signature
Version 2, see AWS Signature Version 2 Turned Off (Deprecated) for Amazon S3 (p. 671).

For a list of all the Amazon S3 Regions and the signature versions they support, see Regions and
Endpoints in the AWS General Reference.

For all AWS Regions, AWS SDKs use Signature Version 4 by default to authenticate requests. When using
AWS SDKs that were released before May 2016, you might be required to request Signature Version 4, as
shown in the following table.

SDK Requesting Signature Version 4 for Request Authentication

AWS CLI For the default profile, run the following command:

$ aws configure set default.s3.signature_version s3v4

For a custom profile, run the following command:

$ aws configure set
 profile.your_profile_name.s3.signature_version s3v4

Java SDK Add the following in your code:

System.setProperty(SDKGlobalConfiguration.ENABLE_S3_SIGV4_SYSTEM_PROPERTY,
 "true");

Or, on the command line, specify the following:

-Dcom.amazonaws.services.s3.enableV4

JavaScript SDK Set the signatureVersion parameter to v4 when constructing
the client:

var s3 = new AWS.S3({signatureVersion: 'v4'});

PHP SDK Set the signature parameter to v4 when constructing the
Amazon S3 service client for PHP SDK v2:

<?php
$client = S3Client::factory([
 'region' => 'YOUR-REGION',
 'version' => 'latest',

API Version 2006-03-01
670

https://aws.amazon.com/cli/
https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Amazon Simple Storage Service Developer Guide
AWS Signature Version 2 Turned
Off (Deprecated) for Amazon S3

SDK Requesting Signature Version 4 for Request Authentication
 'signature' => 'v4'
]);

When using the PHP SDK v3, set the signature_version
parameter to v4 during construction of the Amazon S3 service
client:

<?php
$s3 = new Aws\S3\S3Client([
 'version' => '2006-03-01',
 'region' => 'YOUR-REGION',
 'signature_version' => 'v4'
]);

Python-Boto SDK Specify the following in the boto default config file:

[s3] use-sigv4 = True

Ruby SDK Ruby SDK - Version 1: Set the :s3_signature_version
parameter to :v4 when constructing the client:

s3 = AWS::S3::Client.new(:s3_signature_version => :v4)

Ruby SDK - Version 3: Set the signature_version parameter to
v4 when constructing the client:

s3 = Aws::S3::Client.new(signature_version: 'v4')

.NET SDK Add the following to the code before creating the Amazon S3
client:

AWSConfigsS3.UseSignatureVersion4 = true;

Or, add the following to the config file:

<appSettings>
 <add key="AWS.S3.UseSignatureVersion4" value="true" />
</appSettings>

AWS Signature Version 2 Turned Off (Deprecated) for
Amazon S3
Signature Version 2 is being turned off (deprecated) in Amazon S3. Amazon S3 will then only accept API
requests that are signed using Signature Version 4.

This section provides answers to common questions regarding the end of support for Signature Version
2.

What is Signature Version 2/4, and What Does It Mean to Sign Requests?

API Version 2006-03-01
671

Amazon Simple Storage Service Developer Guide
AWS Signature Version 2 Turned
Off (Deprecated) for Amazon S3

The Signature Version 2 or Signature Version 4 signing process is used to authenticate your Amazon S3
API requests. Signing requests enables Amazon S3 to identify who is sending the request and protects
your requests from bad actors.

For more information about signing AWS requests, see Signing AWS API Requests in the AWS General
Reference.

What Update Are You Making?

We currently support Amazon S3 API requests that are signed using Signature Version 2 and Signature
Version 4 processes. After that, Amazon S3 will only accept requests that are signed using Signature
Version 4.

For more information about signing AWS requests, see Changes in Signature Version 4 in the AWS
General Reference.

Why Are You Making the Update?

Signature Version 4 provides improved security by using a signing key instead of your secret access
key. Signature Version 4 is currently supported in all AWS Regions, whereas Signature Version 2 is only
supported in Regions that were launched before January 2014. This update allows us to provide a more
consistent experience across all Regions.

How Do I Ensure That I'm Using Signature Version 4, and What Updates Do I Need?

The signature version that is used to sign your requests is usually set by the tool or the SDK on the client
side. By default, the latest versions of our AWS SDKs use Signature Version 4. For third-party software,
contact the appropriate support team for your software to confirm what version you need. If you are
sending direct REST calls to Amazon S3, you must modify your application to use the Signature Version 4
signing process.

For information about which version of the AWS SDKs to use when moving to Signature Version 4, see
Moving from Signature Version 2 to Signature Version 4 (p. 673).

For information about using Signature Version 4 with the Amazon S3 REST API, see Authenticating
Requests (AWS Signature Version 4) in the Amazon Simple Storage Service API Reference.

What Happens if I Don't Make Updates?

Requests signed with Signature Version 2 that are made after that will fail to authenticate with Amazon
S3. Requesters will see errors stating that the request must be signed with Signature Version 4.

Should I Make Changes Even if I’m Using a Presigned URL That Requires Me to Sign for More than 7
Days?

If you are using a presigned URL that requires you to sign for more than 7 days, no action is currently
needed. You can continue to use AWS Signature Version 2 to sign and authenticate the presigned URL.
We will follow up and provide more details on how to migrate to Signature Version 4 for a presigned URL
scenario.

More Info
• For more information about using Signature Version 4, see Signing AWS API Requests.

• View the list of changes between Signature Version 2 and Signature Version 4 in Changes in Signature
Version 4.

• View the post AWS Signature Version 4 to replace AWS Signature Version 2 for signing Amazon S3 API
requests in the AWS forums.

API Version 2006-03-01
672

https://docs.aws.amazon.com//general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com//general/latest/gr/sigv4_changes.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
https://docs.aws.amazon.com//general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com//general/latest/gr/sigv4_changes.html
https://docs.aws.amazon.com//general/latest/gr/sigv4_changes.html
https://forums.aws.amazon.com//ann.jspa?annID=5816
https://forums.aws.amazon.com//ann.jspa?annID=5816

Amazon Simple Storage Service Developer Guide
Moving from Signature Version 2 to Signature Version 4

• If you have any questions or concerns, contact AWS Support.

Moving from Signature Version 2 to Signature
Version 4
If you currently use Signature Version 2 for Amazon S3 API request authentication, you should move
to using Signature Version 4. Support is ending for Signature Version 2, as described in AWS Signature
Version 2 Turned Off (Deprecated) for Amazon S3 (p. 671).

For information about using Signature Version 4 with the Amazon S3 REST API, see Authenticating
Requests (AWS Signature Version 4) in the Amazon Simple Storage Service API Reference.

The following table lists the SDKs with the necessary minimum version to use Signature Version 4
(SigV4).
If you are using presigned URLs with the AWS Java, JavaScript (Node.js), or Python (Boto/CLI) SDKs, you
must set the correct AWS Region and set Signature Version 4 in the client configuration. For information
about setting SigV4 in the client configuration, see Specifying the Signature Version in Request
Authentication (p. 670).

If you use this
SDK/Product

Upgrade
to this SDK
version

Code change
needed to the
client to use
Sigv4?

Link to SDK documentation

AWS SDK for
Java v1

Upgrade to
Java 1.11.x or
v2 in Q4 2018.

Yes Specifying the Signature Version in Request
Authentication (p. 670)

AWS SDK
for Java v2
(preview)

No SDK
upgrade is
needed.

No AWS SDK for Java

AWS SDK
for .NET v1

Upgrade to
3.1.10 or later.

Yes AWS SDK for .NET

AWS SDK
for .NET v2

Upgrade to
3.1.10 or later.

No AWS SDK for .NET v2

AWS SDK
for .NET v3

No SDK
upgrade is
needed.

Yes AWS SDK for .NET v3

AWS SDK for
JavaScript v1

Upgrade to
2.68.0 or later.

Yes AWS SDK for JavaScript

AWS SDK for
JavaScript v2

Upgrade to
2.68.0 or later.

Yes AWS SDK for JavaScript

AWS SDK for
JavaScript v3

No action
is currently
needed.
Upgrade to
major version
V3 in Q3 2019.

No AWS SDK for JavaScript

API Version 2006-03-01
673

https://docs.aws.amazon.com//awssupport/latest/user/getting-started.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html
https://aws.amazon.com/sdk-for-java/
https://github.com/aws/aws-sdk-net/tree/aws-sdk-net-v1/
https://github.com/aws/aws-sdk-net/tree/aws-sdk-net-v2/
https://github.com/aws/aws-sdk-net
https://github.com/aws/aws-sdk-js
https://github.com/aws/aws-sdk-js
https://github.com/aws/aws-sdk-js

Amazon Simple Storage Service Developer Guide
Moving from Signature Version 2 to Signature Version 4

If you use this
SDK/Product

Upgrade
to this SDK
version

Code change
needed to the
client to use
Sigv4?

Link to SDK documentation

AWS SDK for
PHP v1

Recommend to
upgrade to the
most recent
version of PHP
or, at least to
v2.7.4 with
the signature
parameter
set to v4 in
the S3 client's
configuration.

Yes AWS SDK for PHP

AWS SDK for
PHP v2

Recommend to
upgrade to the
most recent
version of PHP
or, at least to
v2.7.4 with
the signature
parameter
set to v4 in
the S3 client's
configuration.

No AWS SDK for PHP

AWS SDK for
PHP v3

No SDK
upgrade is
needed.

No AWS SDK for PHP

Boto2 Upgrade to
Boto2 v2.49.0.

Yes Boto 2 Upgrade

Boto3 Upgrade
to 1.5.71
(Botocore),
1.4.6 (Boto3).

Yes Boto 3 - AWS SDK for Python

AWS CLI Upgrade to
1.11.108.

Yes AWS Command Line Interface

AWS CLI v2
(preview)

No SDK
upgrade is
needed.

No AWS Command Line Interface version 2

AWS SDK for
Ruby v1

Upgrade to
Ruby V3.

Yes Ruby V3 for AWS

AWS SDK for
Ruby v2

Upgrade to
Ruby V3.

Yes Ruby V3 for AWS

AWS SDK for
Ruby v3

No SDK
upgrade is
needed.

No Ruby V3 for AWS

API Version 2006-03-01
674

https://aws.amazon.com/sdk-for-php/
https://aws.amazon.com/sdk-for-php/
https://aws.amazon.com/sdk-for-php/
https://github.com/boto/boto/commit/16729da27b95d6dbbd81bcebb43bcf099ce23fd3
https://github.com/boto/boto3
https://aws.amazon.com/cli/
https://github.com/aws/aws-cli/tree/v2
https://rubygems.org/gems/aws-sdk/versions
https://rubygems.org/gems/aws-sdk/versions
https://rubygems.org/gems/aws-sdk/versions

Amazon Simple Storage Service Developer Guide
Setting Up the AWS CLI

If you use this
SDK/Product

Upgrade
to this SDK
version

Code change
needed to the
client to use
Sigv4?

Link to SDK documentation

Go No SDK
upgrade is
needed.

No AWS SDK for Go

C++ No SDK
upgrade is
needed.

No AWS SDK for C++

AWS Tools for Windows PowerShell or AWS Tools for PowerShell Core

If you are using module versions earlier than 3.3.99, you must upgrade to 3.3.99.

To get the version information, use the Get-Module cmdlet:

 Get-Module –Name AWSPowershell
 Get-Module –Name AWSPowershell.NetCore

To update the 3.3.99 version, use the Update-Module cmdlet:

 Update-Module –Name AWSPowershell
 Update-Module –Name AWSPowershell.NetCore

You can use presigned URLs that are valid for more than 7 days that you will send Signature Version 2
traffic on.

Setting Up the AWS CLI
Follow the steps to download and configure AWS Command Line Interface (AWS CLI).

Note
Services in AWS, such as Amazon S3, require that you provide credentials when you access
them. The service can then determine whether you have permissions to access the resources
that it owns. The console requires your password. You can create access keys for your AWS
account to access the AWS CLI or API. However, we don't recommend that you access AWS using
the credentials for your AWS account. Instead, we recommend that you use AWS Identity and
Access Management (IAM). Create an IAM user, add the user to an IAM group with administrative
permissions, and then grant administrative permissions to the IAM user that you created. You
can then access AWS using a special URL and that IAM user's credentials. For instructions, go to
Creating Your First IAM User and Administrators Group in the IAM User Guide.

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide:

• Getting Set Up with the AWS Command Line Interface

API Version 2006-03-01
675

https://aws.amazon.com/sdk-for-go/
https://aws.amazon.com/sdk-for-cpp/
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-set-up.html

Amazon Simple Storage Service Developer Guide
Using the AWS SDK for Java

• Configuring the AWS Command Line Interface
2. Add a named profile for the administrator user in the AWS CLI config file. You use this profile when

executing the AWS CLI commands.

[adminuser]
aws_access_key_id = adminuser access key ID
aws_secret_access_key = adminuser secret access key
region = aws-region

For a list of available AWS Regions, see Regions and Endpoints in the AWS General Reference.
3. Verify the setup by typing the following commands at the command prompt.

• Try the help command to verify that the AWS CLI is installed on your computer:

aws help

• Try an S3 command to verify that the user can reach Amazon S3. This command lists buckets in
your account. The AWS CLI uses the adminuser credentials to authenticate the request.

 aws s3 ls --profile adminuser

Using the AWS SDK for Java
The AWS SDK for Java provides an API for the Amazon S3 bucket and object operations. For object
operations, in addition to providing the API to upload objects in a single operation, the SDK provides
an API to upload large objects in parts. For more information, see Uploading Objects Using Multipart
Upload API (p. 175).

Topics
• The Java API Organization (p. 677)
• Testing the Amazon S3 Java Code Examples (p. 677)

The AWS SDK for Java gives you the option of using a high-level or low-level API.

Low-Level API

The low-level APIs correspond to the underlying Amazon S3 REST operations, such as create, update, and
delete operations that apply to buckets and objects. When you upload large objects using the low-level
multipart upload API, it provides greater control. For example, it lets you pause and resume multipart
uploads, vary part sizes during the upload, or begin uploads when you don't know the size of the data in
advance. If you don't have these requirements, use the high-level API to upload objects.

High-Level API

For uploading objects, the SDK provides a higher level of abstraction by providing the
TransferManager class. The high-level API is a simpler API, where in just a few lines of code you can
upload files and streams to Amazon S3. You should use this API to upload data unless you need to
control the upload as described in the preceding Low-Level API section.

For smaller data size, the TransferManager API uploads data in a single operation. However, the
TransferManager switches to using the multipart upload API when the data size reaches a certain
threshold. When possible, the TransferManager uses multiple threads to concurrently upload the
parts. If a part upload fails, the API retries the failed part upload up to three times. However, these are
configurable options using the TransferManagerConfiguration class.

API Version 2006-03-01
676

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon Simple Storage Service Developer Guide
The Java API Organization

Note
When you're using a stream for the source of data, the TransferManager class does not do
concurrent uploads.

The Java API Organization
The following packages in the AWS SDK for Java provide the API:

• com.amazonaws.services.s3—Provides the APIs for creating Amazon S3 clients and working with
buckets and objects. For example, it enables you to create buckets, upload objects, get objects, delete
objects, and list keys.

• com.amazonaws.services.s3.transfer—Provides the high-level API data operations.

This high-level API is designed to simplify transferring objects to and from Amazon S3. It includes
the TransferManager class, which provides asynchronous methods for working with, querying, and
manipulating transfers. It also includes the TransferManagerConfiguration class, which you can
use to configure the minimum part size for uploading parts and the threshold in bytes of when to use
multipart uploads.

• com.amazonaws.services.s3.model—Provides the low-level API classes to create requests and
process responses. For example, it includes the GetObjectRequest class to describe your get
object request, the ListObjectsRequest class to describe your list keys requests, and the
InitiateMultipartUploadRequest class to create multipart uploads.

For more information about the AWS SDK for Java API, see AWS SDK for Java API Reference.

Testing the Amazon S3 Java Code Examples
The Java examples in this guide are compatible with the AWS SDK for Java version 1.11.321. For
instructions on setting up and running code samples, see Getting Started with the AWS SDK for Java in
the AWS SDK for Java Developer Guide.

Using the AWS SDK for .NET
The AWS SDK for .NET provides the API for the Amazon S3 bucket and object operations. For object
operations, in addition to providing the API to upload objects in a single operation, the SDK provides the
API to upload large objects in parts (see Uploading Objects Using Multipart Upload API (p. 175)).

Topics
• The .NET API Organization (p. 678)
• Running the Amazon S3 .NET Code Examples (p. 678)

The AWS SDK for .NET gives you the option of using a high-level or low-level API.

Low-Level API

The low-level APIs correspond to the underlying Amazon S3 REST operations, including the create,
update, and delete operations that apply to buckets and objects. When you upload large objects using
the low-level multipart upload API (see Uploading Objects Using Multipart Upload API (p. 175)), it
provides greater control. For example, it lets you pause and resume multipart uploads, vary part sizes
during the upload, or begin uploads when you don't know the size of the data in advance. If you do not
have these requirements, use the high-level API for uploading objects.

High-Level API

API Version 2006-03-01
677

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/
https://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-setup.html

Amazon Simple Storage Service Developer Guide
The .NET API Organization

For uploading objects, the SDK provides a higher level of abstraction by providing the
TransferUtility class. The high-level API is a simpler API, where in just a few lines of code, you
can upload files and streams to Amazon S3. You should use this API to upload data unless you need to
control the upload as described in the preceding Low-Level API section.

For smaller data size, the TransferUtility API uploads data in a single operation. However, the
TransferUtility switches to using the multipart upload API when the data size reaches a certain
threshold. By default, it uses multiple threads to concurrently upload the parts. If a part upload fails, the
API retries the failed part upload up to three times. However, these are configurable options.

Note
When you're using a stream for the source of data, the TransferUtility class does not do
concurrent uploads.

The .NET API Organization
When writing Amazon S3 applications using the AWS SDK for .NET, you use the AWSSDK.dll. The
following namespaces in this assembly provide the multipart upload API:

• Amazon.S3.Transfer—Provides the high-level API to upload your data in parts.

It includes the TransferUtility class that enables you to specify a file, directory, or
stream for uploading your data. It also includes the TransferUtilityUploadRequest and
TransferUtilityUploadDirectoryRequest classes to configure advanced settings, such
as the number of concurrent threads, part size, object metadata, the storage class (STANDARD,
REDUCED_REDUNDANCY), and object access control list (ACL).

• Amazon.S3—Provides the implementation for the low-level APIs.

It provides methods that correspond to the Amazon S3 REST multipart upload API (see Using the REST
API for Multipart Upload (p. 206)).

• Amazon.S3.Model—Provides the low-level API classes to create requests and process
responses. For example, it provides the InitiateMultipartUploadRequest and
InitiateMultipartUploadResponse classes you can use when initiating a multipart upload, and
the UploadPartRequest and UploadPartResponse classes when uploading parts.

• Amazon.S3.Encryption— Provides AmazonS3EncryptionClient.
• Amazon.S3.Util— Provides various utility classes such as AmazonS3Util and
BucketRegionDetector.

For more information about the AWS SDK for .NET API, see AWS SDK for .NET Version 3 API Reference.

Running the Amazon S3 .NET Code Examples
The .NET code examples in this guide are compatible with the AWS SDK for .NET version 3.0. For
information about setting up and running the code examples, see Getting Started with the AWS SDK
for .NET in the AWS SDK for .NET Developer Guide.

Using the AWS SDK for PHP and Running PHP
Examples

The AWS SDK for PHP provides access to the API for Amazon S3 bucket and object operations. The SDK
gives you the option of using the service's low-level API or using higher-level abstractions.

The SDK is available at AWS SDK for PHP, which also has instructions for installing and getting started
with the SDK.

API Version 2006-03-01
678

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/Index.html
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/net-dg-setup.html
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/net-dg-setup.html
https://aws.amazon.com/sdk-for-php/

Amazon Simple Storage Service Developer Guide
AWS SDK for PHP Levels

The setup for using the AWS SDK for PHP depends on your environment and how you want to run your
application. To set up your environment to run the examples in this documentation, see the AWS SDK for
PHP Getting Started Guide.

Topics
• AWS SDK for PHP Levels (p. 679)
• Running PHP Examples (p. 679)
• Related Resources (p. 679)

AWS SDK for PHP Levels
The AWS SDK for PHP gives you the option of using a high-level or low-level API.

Low-Level API
The low-level APIs correspond to the underlying Amazon S3 REST operations, including the create,
update, and delete operations on buckets and objects. The low-level APIs provide greater control over
these operations. For example, you can batch your requests and execute them in parallel. Or, when using
the multipart upload API, you can manage the object parts individually. Note that these low-level API
calls return a result that includes all of the Amazon S3 response details. For more information about the
multipart upload API, see Uploading Objects Using Multipart Upload API (p. 175).

High-Level Abstractions
The high-level abstractions are intended to simplify common use cases. For example, for uploading
large objects using the low-level API, you call Aws\S3\S3Client::createMultipartUpload(),
call the Aws\S3\S3Client::uploadPart() method to upload the object parts, then call the Aws
\S3\S3Client::completeMultipartUpload() method to complete the upload. You can use the
higher-level Aws\S3\\MultipartUploader object that simplifies creating a multipart upload instead.

As another example, when enumerating objects in a bucket, you can use the iterators feature of the
AWS SDK for PHP to return all of the object keys, regardless of how many objects you have stored in the
bucket. If you use the low-level API, the response returns a maximum of 1,000 keys. If a bucket contains
more than 1,000 objects, the result is truncated and you have to manage the response and check for
truncation.

Running PHP Examples
To set up and use the Amazon S3 samples for version 3 of the AWS SDK for PHP, see Installation in the
AWS SDK for PHP Developer Guide.

Related Resources
• AWS SDK for PHP for Amazon S3
• AWS SDK for PHP Documentation
• AWS SDK for PHP API for Amazon S3

Using the AWS SDK for Ruby - Version 3
The AWS SDK for Ruby provides an API for Amazon S3 bucket and object operations. For object
operations, you can use the API to upload objects in a single operation or upload large objects in parts

API Version 2006-03-01
679

https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/welcome.html#getting-started
https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/welcome.html#getting-started
https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/getting-started_installation.html
https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/s3-examples.html
https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/welcome.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-s3-2006-03-01.html

Amazon Simple Storage Service Developer Guide
The Ruby API Organization

(see Using the AWS SDK for Ruby for Multipart Upload (p. 205)). However, the API for a single operation
upload can also accept large objects and behind the scenes manage the upload in parts for you, thereby
reducing the amount of script you need to write.

The Ruby API Organization
When creating Amazon S3 applications using the AWS SDK for Ruby, you must install the SDK for Ruby
gem. For more information, see the AWS SDK for Ruby - Version 3. Once installed, you can access the
API, including the following key classes:

• Aws::S3::Resource—Represents the interface to Amazon S3 for the Ruby SDK and provides methods
for creating and enumerating buckets.

The S3 class provides the #buckets instance method for accessing existing buckets or creating new
ones.

• Aws::S3::Bucket—Represents an Amazon S3 bucket.

The Bucket class provides the #object(key) and #objects methods for accessing the objects in a
bucket, as well as methods to delete a bucket and return information about a bucket, like the bucket
policy.

• Aws::S3::Object—Represents an Amazon S3 object identified by its key.

The Object class provides methods for getting and setting properties of an object, specifying the
storage class for storing objects, and setting object permissions using access control lists. The Object
class also has methods for deleting, uploading and copying objects. When uploading objects in parts,
this class provides options for you to specify the order of parts uploaded and the part size.

For more information about the AWS SDK for Ruby API, go to AWS SDK for Ruby - Version 2.

Testing the Ruby Script Examples
The easiest way to get started with the Ruby script examples is to install the latest AWS SDK for Ruby
gem. For information about installing or updating to the latest gem, go to AWS SDK for Ruby - Version
3. The following tasks guide you through the creation and testing of the Ruby script examples assuming
that you have installed the AWS SDK for Ruby.

General Process of Creating and Testing Ruby Script Examples

1 To access AWS, you must provide a set of credentials for your SDK for Ruby application. For
more information, see Configuring the AWS SDK for Ruby.

2 Create a new SDK for Ruby script and add the following lines to the top of the script.

#!/usr/bin/env ruby

require 'rubygems'
require 'aws-sdk-s3'

The first line is the interpreter directive and the two require statements import two
required gems into your script.

3 Copy the code from the section you are reading to your script.

4 Update the code by providing any required data. For example, if uploading a file, provide
the file path and the bucket name.

API Version 2006-03-01
680

https://docs.aws.amazon.com/sdkforruby/api/index.html
https://docs.aws.amazon.com/sdkforruby/api/index.html
https://docs.aws.amazon.com/sdkforruby/api/index.html
https://docs.aws.amazon.com/sdkforruby/api/index.html
https://docs.aws.amazon.com//sdk-for-ruby/v3/developer-guide/setup-config.html

Amazon Simple Storage Service Developer Guide
Using the AWS SDK for Python (Boto)

5 Run the script. Verify changes to buckets and objects by using the AWS Management
Console. For more information about the AWS Management Console, go to https://
aws.amazon.com/console/.

Ruby Samples

The following links contain samples to help get you started with the SDK for Ruby - Version 3:

• Using the AWS SDK for Ruby Version 3 (p. 62)
• Upload an Object Using the AWS SDK for Ruby (p. 173)

Using the AWS SDK for Python (Boto)
Boto is a Python package that provides interfaces to AWS including Amazon S3. For more information
about Boto, go to the AWS SDK for Python (Boto). The getting started link on this page provides step-by-
step instructions to get started.

Using the AWS Mobile SDKs for iOS and Android
You can use the AWS Mobile SDKs for Android and iOS, together with AWS Mobile Hub, to quickly
and easily integrate robust cloud backends into your existing mobile apps. You can configure and use
features like user sign-in, databases, push notifications, and more, without being an AWS expert.

The AWS Mobile SDKs provide easy access to Amazon S3 and many other AWS services. To get started
using the AWS Mobile SDKs, see Getting Started with the AWS Mobile SDKs.

More Info
Using the AWS Amplify JavaScript Library (p. 681)

Using the AWS Amplify JavaScript Library
AWS Amplify is an open source JavaScript library for web and mobile developers who build cloud-
enabled applications. AWS Amplify provides customizable UI components and a declarative interface to
work with an S3 bucket, along with other high-level categories for AWS services.

To get started using the AWS Amplify JavaScript library, choose one of the following links:

• Getting Started with the AWS Amplify Library for the Web
• Getting Started with the AWS Amplify Library for React Native

For more information about AWS Amplify, see AWS Amplify on GitHub.

More Info
Using the AWS Mobile SDKs for iOS and Android (p. 681)

API Version 2006-03-01
681

https://aws.amazon.com/console/
https://aws.amazon.com/console/
https://aws.amazon.com/sdk-for-python/
https://console.aws.amazon.com/mobilehub/home#/
https://docs.aws.amazon.com//aws-mobile/latest/developerguide/getting-started.html
https://docs.aws.amazon.com//aws-mobile/latest/developerguide/web-getting-started.html
https://docs.aws.amazon.com//aws-mobile/latest/developerguide/react-native-getting-started.html
https://github.com/aws/aws-amplify
https://github.com/about

Amazon Simple Storage Service Developer Guide
Appendix A: Using the SOAP API

Appendices
This Amazon Simple Storage Service Developer Guide appendix include the following sections.

Topics
• Appendix A: Using the SOAP API (p. 682)
• Appendix B: Authenticating Requests (AWS Signature Version 2) (p. 684)

Appendix A: Using the SOAP API
Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or the
AWS SDKs.

This section contains information specific to the Amazon S3 SOAP API.

Note
SOAP requests, both authenticated and anonymous, must be sent to Amazon S3 using SSL.
Amazon S3 returns an error when you send a SOAP request over HTTP.

Common SOAP API Elements
Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or the
AWS SDKs.

You can interact with Amazon S3 using SOAP 1.1 over HTTP. The Amazon S3 WSDL, which describes the
Amazon S3 API in a machine-readable way, is available at: http://doc.s3.amazonaws.com/2006-03-01/
AmazonS3.wsdl. The Amazon S3 schema is available at http://doc.s3.amazonaws.com/2006-03-01/
AmazonS3.xsd.

Most users will interact with Amazon S3 using a SOAP toolkit tailored for their language and
development environment. Different toolkits will expose the Amazon S3 API in different ways. Please
refer to your specific toolkit documentation to understand how to use it. This section illustrates the
Amazon S3 SOAP operations in a toolkit-independent way by exhibiting the XML requests and responses
as they appear "on the wire."

Common Elements
You can include the following authorization-related elements with any SOAP request:

• AWSAccessKeyId: The AWS Access Key ID of the requester
• Timestamp: The current time on your system
• Signature: The signature for the request

Authenticating SOAP Requests
Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or the
AWS SDKs.

API Version 2006-03-01
682

http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.wsdl
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.xsd
http://doc.s3.amazonaws.com/2006-03-01/AmazonS3.xsd

Amazon Simple Storage Service Developer Guide
Setting Access Policy with SOAP

Every non-anonymous request must contain authentication information to establish the identity of the
principal making the request. In SOAP, the authentication information is put into the following elements
of the SOAP request:

• Your AWS Access Key ID

Note
When making authenticated SOAP requests, temporary security credentials are not
supported. For more information about types of credentials, see Making Requests (p. 10).

• Timestamp: This must be a dateTime (go to http://www.w3.org/TR/xmlschema-2/
#dateTime) in the Coordinated Universal Time (Greenwich Mean Time) time zone, such as
2009-01-01T12:00:00.000Z. Authorization will fail if this timestamp is more than 15 minutes away
from the clock on Amazon S3 servers.

• Signature: The RFC 2104 HMAC-SHA1 digest (go to http://www.ietf.org/rfc/rfc2104.txt) of the
concatenation of "AmazonS3" + OPERATION + Timestamp, using your AWS Secret Access Key as the
key. For example, in the following CreateBucket sample request, the signature element would contain
the HMAC-SHA1 digest of the value "AmazonS3CreateBucket2009-01-01T12:00:00.000Z":

For example, in the following CreateBucket sample request, the signature element would contain the
HMAC-SHA1 digest of the value "AmazonS3CreateBucket2009-01-01T12:00:00.000Z":

Example

<CreateBucket xmlns="http://doc.s3.amazonaws.com/2006-03-01">
 <Bucket>quotes</Bucket>
 <Acl>private</Acl>
 <AWSAccessKeyId>AKIAIOSFODNN7EXAMPLE</AWSAccessKeyId>
 <Timestamp>2009-01-01T12:00:00.000Z</Timestamp>
 <Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>
</CreateBucket>

Note
SOAP requests, both authenticated and anonymous, must be sent to Amazon S3 using SSL.
Amazon S3 returns an error when you send a SOAP request over HTTP.

Important
Due to different interpretations regarding how extra time precision should be dropped, .NET
users should take care not to send Amazon S3 overly specific time stamps. This can be
accomplished by manually constructing DateTime objects with only millisecond precision.

Setting Access Policy with SOAP
Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or the
AWS SDKs.

Access control can be set at the time a bucket or object is written by including the "AccessControlList"
element with the request to CreateBucket, PutObjectInline, or PutObject. The AccessControlList
element is described in Identity and Access Management in Amazon S3 (p. 301). If no access control
list is specified with these operations, the resource is created with a default access policy that gives the
requester FULL_CONTROL access (this is the case even if the request is a PutObjectInline or PutObject
request for an object that already exists).

Following is a request that writes data to an object, makes the object readable by anonymous principals,
and gives the specified user FULL_CONTROL rights to the bucket (Most developers will want to give
themselves FULL_CONTROL access to their own bucket).

API Version 2006-03-01
683

http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.ietf.org/rfc/rfc2104.txt

Amazon Simple Storage Service Developer Guide
Appendix B: Authenticating

Requests (AWS Signature Version 2)

Example

Following is a request that writes data to an object and makes the object readable by anonymous
principals.

Sample Request

<PutObjectInline xmlns="http://doc.s3.amazonaws.com/2006-03-01">
 <Bucket>quotes</Bucket>
 <Key>Nelson</Key>
 <Metadata>
 <Name>Content-Type</Name>
 <Value>text/plain</Value>
 </Metadata>
 <Data>aGEtaGE=</Data>
 <ContentLength>5</ContentLength>
 <AccessControlList>
 <Grant>
 <Grantee xsi:type="CanonicalUser">
 <ID>75cc57f09aa0c8caeab4f8c24e99d10f8e7faeebf76c078efc7c6caea54ba06a</ID>
 <DisplayName>chriscustomer</DisplayName>
 </Grantee>
 <Permission>FULL_CONTROL</Permission>
 </Grant>
 <Grant>
 <Grantee xsi:type="Group">
 <URI>http://acs.amazonaws.com/groups/global/AllUsers<URI>
 </Grantee>
 <Permission>READ</Permission>
 </Grant>
 </AccessControlList>
 <AWSAccessKeyId>AKIAIOSFODNN7EXAMPLE</AWSAccessKeyId>
 <Timestamp>2009-03-01T12:00:00.183Z</Timestamp>
 <Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>
</PutObjectInline>

Sample Response

<PutObjectInlineResponse xmlns="http://s3.amazonaws.com/doc/2006-03-01">
 <PutObjectInlineResponse>
 <ETag>"828ef3fdfa96f00ad9f27c383fc9ac7f"</ETag>
 <LastModified>2009-01-01T12:00:00.000Z</LastModified>
 </PutObjectInlineResponse>
</PutObjectInlineResponse>

The access control policy can be read or set for an existing bucket or object using
the GetBucketAccessControlPolicy, GetObjectAccessControlPolicy,
SetBucketAccessControlPolicy, and SetObjectAccessControlPolicy methods. For more
information, see the detailed explanation of these methods.

Appendix B: Authenticating Requests (AWS
Signature Version 2)

Important
This section describes how to authenticate requests using AWS Signature Version 2. Signature
Version 2 is being turned off (deprecated), Amazon S3 will only accept API requests that are
signed using Signature Version 4. For more information, see AWS Signature Version 2 Turned Off
(Deprecated) for Amazon S3 (p. 671)

API Version 2006-03-01
684

Amazon Simple Storage Service Developer Guide
Appendix B: Authenticating

Requests (AWS Signature Version 2)

Signature Version 4 is supported in all AWS Regions, and it is the only version that is supported
for new Regions. For more information, see Authenticating Requests (AWS Signature Version 4)
in the Amazon Simple Storage Service API Reference.
Amazon S3 offers you the ability to identify what API signature version was used to sign a
request. It is important to identify if any of your workflows are utilizing Signature Version 2
signing and upgrading them to use Signature Version 4 to prevent impact to your business.

• If you are using CloudTrail event logs(recommended option), please see Using AWS CloudTrail
to Identify Amazon S3 Signature Version 2 Requests (p. 631) on how to query and identify
such requests.

• If you are using the Amazon S3 Server Access logs, see Using Amazon S3 Access Logs to
Identify Signature Version 2 Requests (p. 666)

Topics
• Authenticating Requests Using the REST API (p. 686)
• Signing and Authenticating REST Requests (p. 688)
• Browser-Based Uploads Using POST (AWS Signature Version 2) (p. 697)

API Version 2006-03-01
685

https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html

Amazon Simple Storage Service Developer Guide
Authenticating Requests Using the REST API

Authenticating Requests Using the REST API
When accessing Amazon S3 using REST, you must provide the following items in your request so the
request can be authenticated:

Request Elements

• AWS Access Key Id – Each request must contain the access key ID of the identity you are using to send
your request.

• Signature – Each request must contain a valid request signature, or the request is rejected.

A request signature is calculated using your secret access key, which is a shared secret known only to
you and AWS.

• Time stamp – Each request must contain the date and time the request was created, represented as a
string in UTC.

• Date – Each request must contain the time stamp of the request.

Depending on the API action you're using, you can provide an expiration date and time for the request
instead of or in addition to the time stamp. See the authentication topic for the particular action to
determine what it requires.

Following are the general steps for authenticating requests to Amazon S3. It is assumed you have the
necessary security credentials, access key ID and secret access key.

API Version 2006-03-01
686

Amazon Simple Storage Service Developer Guide
Authenticating Requests Using the REST API

1 Construct a request to AWS.

2 Calculate the signature using your secret access key.

3 Send the request to Amazon S3. Include your access key ID and the signature in your
request. Amazon S3 performs the next three steps.

4 Amazon S3 uses the access key ID to look up your secret access key.

5 Amazon S3 calculates a signature from the request data and the secret access key using the
same algorithm that you used to calculate the signature you sent in the request.

6 If the signature generated by Amazon S3 matches the one you sent in the request, the
request is considered authentic. If the comparison fails, the request is discarded, and
Amazon S3 returns an error response.

Detailed Authentication Information

For detailed information about REST authentication, see Signing and Authenticating REST
Requests (p. 688).

API Version 2006-03-01
687

Amazon Simple Storage Service Developer Guide
Signing and Authenticating REST Requests

Signing and Authenticating REST Requests
Topics

• Using Temporary Security Credentials (p. 689)

• The Authentication Header (p. 689)

• Request Canonicalization for Signing (p. 690)

• Constructing the CanonicalizedResource Element (p. 690)

• Constructing the CanonicalizedAmzHeaders Element (p. 691)

• Positional versus Named HTTP Header StringToSign Elements (p. 691)

• Time Stamp Requirement (p. 691)

• Authentication Examples (p. 692)

• REST Request Signing Problems (p. 695)

• Query String Request Authentication Alternative (p. 695)

Note
This topic explains authenticating requests using Signature Version 2. Amazon S3 now supports
the latest Signature Version 4. This latest signature version is supported in all regions and any
new regions after January 30, 2014 will support only Signature Version 4. For more information,
go to Authenticating Requests (AWS Signature Version 4) in the Amazon Simple Storage Service
API Reference.

Authentication is the process of proving your identity to the system. Identity is an important factor in
Amazon S3 access control decisions. Requests are allowed or denied in part based on the identity of the
requester. For example, the right to create buckets is reserved for registered developers and (by default)
the right to create objects in a bucket is reserved for the owner of the bucket in question. As a developer,
you'll be making requests that invoke these privileges, so you'll need to prove your identity to the system
by authenticating your requests. This section shows you how.

Note
The content in this section does not apply to HTTP POST. For more information, see Browser-
Based Uploads Using POST (AWS Signature Version 2) (p. 697).

The Amazon S3 REST API uses a custom HTTP scheme based on a keyed-HMAC (Hash Message
Authentication Code) for authentication. To authenticate a request, you first concatenate selected
elements of the request to form a string. You then use your AWS secret access key to calculate the HMAC
of that string. Informally, we call this process "signing the request," and we call the output of the HMAC
algorithm the signature, because it simulates the security properties of a real signature. Finally, you add
this signature as a parameter of the request by using the syntax described in this section.

When the system receives an authenticated request, it fetches the AWS secret access key that you claim
to have and uses it in the same way to compute a signature for the message it received. It then compares
the signature it calculated against the signature presented by the requester. If the two signatures match,
the system concludes that the requester must have access to the AWS secret access key and therefore
acts with the authority of the principal to whom the key was issued. If the two signatures do not match,
the request is dropped and the system responds with an error message.

Example Authenticated Amazon S3 REST Request

GET /photos/puppy.jpg HTTP/1.1
Host: johnsmith.s3.amazonaws.com
Date: Mon, 26 Mar 2007 19:37:58 +0000

API Version 2006-03-01
688

https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html

Amazon Simple Storage Service Developer Guide
Signing and Authenticating REST Requests

Authorization: AWS AKIAIOSFODNN7EXAMPLE:frJIUN8DYpKDtOLCwo//yllqDzg=

Using Temporary Security Credentials

If you are signing your request using temporary security credentials (see Making Requests (p. 10)), you
must include the corresponding security token in your request by adding the x-amz-security-token
header.

When you obtain temporary security credentials using the AWS Security Token Service API, the response
includes temporary security credentials and a session token. You provide the session token value in the
x-amz-security-token header when you send requests to Amazon S3. For information about the
AWS Security Token Service API provided by IAM, go to Action in the AWS Security Token Service API
Reference Guide .

The Authentication Header

The Amazon S3 REST API uses the standard HTTP Authorization header to pass authentication
information. (The name of the standard header is unfortunate because it carries authentication
information, not authorization.) Under the Amazon S3 authentication scheme, the Authorization header
has the following form:

Authorization: AWS AWSAccessKeyId:Signature

Developers are issued an AWS access key ID and AWS secret access key when they register. For request
authentication, the AWSAccessKeyId element identifies the access key ID that was used to compute the
signature and, indirectly, the developer making the request.

The Signature element is the RFC 2104 HMAC-SHA1 of selected elements from the request, and so the
Signature part of the Authorization header will vary from request to request. If the request signature
calculated by the system matches the Signature included with the request, the requester will have
demonstrated possession of the AWS secret access key. The request will then be processed under the
identity, and with the authority, of the developer to whom the key was issued.

Following is pseudogrammar that illustrates the construction of the Authorization request header. (In
the example, \n means the Unicode code point U+000A, commonly called newline).

Authorization = "AWS" + " " + AWSAccessKeyId + ":" + Signature;

Signature = Base64(HMAC-SHA1(YourSecretAccessKey, UTF-8-Encoding-Of(StringToSign)));

StringToSign = HTTP-Verb + "\n" +
 Content-MD5 + "\n" +
 Content-Type + "\n" +
 Date + "\n" +
 CanonicalizedAmzHeaders +
 CanonicalizedResource;

CanonicalizedResource = ["/" + Bucket] +
 <HTTP-Request-URI, from the protocol name up to the query string> +
 [subresource, if present. For example "?acl", "?location", "?logging", or "?torrent"];

CanonicalizedAmzHeaders = <described below>

HMAC-SHA1 is an algorithm defined by RFC 2104 - Keyed-Hashing for Message Authentication . The
algorithm takes as input two byte-strings, a key and a message. For Amazon S3 request authentication,

API Version 2006-03-01
689

https://docs.aws.amazon.com/STS/latest/APIReference/API_Operations.html
http://www.ietf.org/rfc/rfc2104.txt

Amazon Simple Storage Service Developer Guide
Signing and Authenticating REST Requests

use your AWS secret access key (YourSecretAccessKey) as the key, and the UTF-8 encoding of the
StringToSign as the message. The output of HMAC-SHA1 is also a byte string, called the digest. The
Signature request parameter is constructed by Base64 encoding this digest.

Request Canonicalization for Signing

Recall that when the system receives an authenticated request, it compares the computed request
signature with the signature provided in the request in StringToSign. For that reason, you must
compute the signature by using the same method used by Amazon S3. We call the process of putting a
request in an agreed-upon form for signing canonicalization.

Constructing the CanonicalizedResource Element

CanonicalizedResource represents the Amazon S3 resource targeted by the request. Construct it for
a REST request as follows:

Launch Process

1 Start with an empty string ("").

2 If the request specifies a bucket using the HTTP Host header (virtual hosted-style), append the
bucket name preceded by a "/" (e.g., "/bucketname"). For path-style requests and requests that
don't address a bucket, do nothing. For more information about virtual hosted-style requests, see
Virtual Hosting of Buckets (p. 45).

For a virtual hosted-style request "https://johnsmith.s3.amazonaws.com/photos/puppy.jpg", the
CanonicalizedResource is "/johnsmith".

For the path-style request, "https://s3.amazonaws.com/johnsmith/photos/puppy.jpg", the
CanonicalizedResource is "".

3 Append the path part of the un-decoded HTTP Request-URI, up-to but not including the query
string.

For a virtual hosted-style request "https://johnsmith.s3.amazonaws.com/photos/puppy.jpg", the
CanonicalizedResource is "/johnsmith/photos/puppy.jpg".

For a path-style request, "https://s3.amazonaws.com/johnsmith/photos/puppy.jpg",
the CanonicalizedResource is "/johnsmith/photos/puppy.jpg". At this point, the
CanonicalizedResource is the same for both the virtual hosted-style and path-style request.

For a request that does not address a bucket, such as GET Service, append "/".

4 If the request addresses a subresource, such as ?versioning, ?location, ?acl, ?torrent, ?
lifecycle, or ?versionid, append the subresource, its value if it has one, and the question
mark. Note that in case of multiple subresources, subresources must be lexicographically sorted
by subresource name and separated by '&', e.g., ?acl&versionId=value.

The subresources that must be included when constructing the CanonicalizedResource Element
are acl, lifecycle, location, logging, notification, partNumber, policy, requestPayment, torrent,
uploadId, uploads, versionId, versioning, versions, and website.

If the request specifies query string parameters overriding the response header values (see Get
Object), append the query string parameters and their values. When signing, you do not encode
these values; however, when making the request, you must encode these parameter values.
The query string parameters in a GET request include response-content-type, response-
content-language, response-expires, response-cache-control, response-content-
disposition, and response-content-encoding.

API Version 2006-03-01
690

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html

Amazon Simple Storage Service Developer Guide
Signing and Authenticating REST Requests

The delete query string parameter must be included when you create the CanonicalizedResource
for a multi-object Delete request.

Elements of the CanonicalizedResource that come from the HTTP Request-URI should be signed literally
as they appear in the HTTP request, including URL-Encoding meta characters.

The CanonicalizedResource might be different than the HTTP Request-URI. In particular, if your
request uses the HTTP Host header to specify a bucket, the bucket does not appear in the HTTP
Request-URI. However, the CanonicalizedResource continues to include the bucket. Query string
parameters might also appear in the Request-URI but are not included in CanonicalizedResource.
For more information, see Virtual Hosting of Buckets (p. 45).

Constructing the CanonicalizedAmzHeaders Element
To construct the CanonicalizedAmzHeaders part of StringToSign, select all HTTP request headers that
start with 'x-amz-' (using a case-insensitive comparison), and use the following process.

CanonicalizedAmzHeaders Process

1 Convert each HTTP header name to lowercase. For example, 'X-Amz-Date' becomes 'x-amz-
date'.

2 Sort the collection of headers lexicographically by header name.

3 Combine header fields with the same name into one "header-name:comma-separated-value-
list" pair as prescribed by RFC 2616, section 4.2, without any whitespace between values. For
example, the two metadata headers 'x-amz-meta-username: fred' and 'x-amz-meta-
username: barney' would be combined into the single header 'x-amz-meta-username:
fred,barney'.

4 "Unfold" long headers that span multiple lines (as allowed by RFC 2616, section 4.2) by
replacing the folding whitespace (including new-line) by a single space.

5 Trim any whitespace around the colon in the header. For example, the header 'x-amz-meta-
username: fred,barney' would become 'x-amz-meta-username:fred,barney'

6 Finally, append a newline character (U+000A) to each canonicalized header in the resulting list.
Construct the CanonicalizedResource element by concatenating all headers in this list into a
single string.

Positional versus Named HTTP Header StringToSign Elements
The first few header elements of StringToSign (Content-Type, Date, and Content-MD5) are positional
in nature. StringToSign does not include the names of these headers, only their values from the
request. In contrast, the 'x-amz-' elements are named. Both the header names and the header values
appear in StringToSign.

If a positional header called for in the definition of StringToSign is not present in your request (for
example, Content-Type or Content-MD5 are optional for PUT requests and meaningless for GET
requests), substitute the empty string ("") for that position.

Time Stamp Requirement
A valid time stamp (using either the HTTP Date header or an x-amz-date alternative) is mandatory for
authenticated requests. Furthermore, the client timestamp included with an authenticated request must
be within 15 minutes of the Amazon S3 system time when the request is received. If not, the request
will fail with the RequestTimeTooSkewed error code. The intention of these restrictions is to limit the

API Version 2006-03-01
691

Amazon Simple Storage Service Developer Guide
Signing and Authenticating REST Requests

possibility that intercepted requests could be replayed by an adversary. For stronger protection against
eavesdropping, use the HTTPS transport for authenticated requests.

Note
The validation constraint on request date applies only to authenticated requests that do not
use query string authentication. For more information, see Query String Request Authentication
Alternative (p. 695).

Some HTTP client libraries do not expose the ability to set the Date header for a request. If you have
trouble including the value of the 'Date' header in the canonicalized headers, you can set the timestamp
for the request by using an 'x-amz-date' header instead. The value of the x-amz-date header must
be in one of the RFC 2616 formats (http://www.ietf.org/rfc/rfc2616.txt). When an x-amz-date header
is present in a request, the system will ignore any Date header when computing the request signature.
Therefore, if you include the x-amz-date header, use the empty string for the Date when constructing
the StringToSign. See the next section for an example.

Authentication Examples
The examples in this section use the (non-working) credentials in the following table.

Parameter Value

AWSAccessKeyId AKIAIOSFODNN7EXAMPLE

AWSSecretAccessKey wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

In the example StringToSigns, formatting is not significant, and \n means the Unicode code point U
+000A, commonly called newline. Also, the examples use "+0000" to designate the time zone. You can
use "GMT" to designate timezone instead, but the signatures shown in the examples will be different.

Object GET

This example gets an object from the johnsmith bucket.

Request StringToSign

GET /photos/puppy.jpg HTTP/1.1
Host: johnsmith.s3.amazonaws.com
Date: Tue, 27 Mar 2007 19:36:42 +0000

Authorization: AWS
 AKIAIOSFODNN7EXAMPLE:
bWq2s1WEIj+Ydj0vQ697zp+IXMU=

GET\n
\n
\n
Tue, 27 Mar 2007 19:36:42 +0000\n
/johnsmith/photos/puppy.jpg

Note that the CanonicalizedResource includes the bucket name, but the HTTP Request-URI does not.
(The bucket is specified by the Host header.)

Object PUT

This example puts an object into the johnsmith bucket.

Request StringToSign

PUT /photos/puppy.jpg HTTP/1.1 PUT\n

API Version 2006-03-01
692

http://www.ietf.org/rfc/rfc2616.txt

Amazon Simple Storage Service Developer Guide
Signing and Authenticating REST Requests

Request StringToSign
Content-Type: image/jpeg
Content-Length: 94328
Host: johnsmith.s3.amazonaws.com
Date: Tue, 27 Mar 2007 21:15:45 +0000

Authorization: AWS AKIAIOSFODNN7EXAMPLE:
MyyxeRY7whkBe+bq8fHCL/2kKUg=

\n
image/jpeg\n
Tue, 27 Mar 2007 21:15:45 +0000\n
/johnsmith/photos/puppy.jpg

Note the Content-Type header in the request and in the StringToSign. Also note that the Content-MD5 is
left blank in the StringToSign, because it is not present in the request.

List

This example lists the content of the johnsmith bucket.

Request StringToSign

GET /?prefix=photos&max-keys=50&marker=puppy HTTP/1.1
User-Agent: Mozilla/5.0
Host: johnsmith.s3.amazonaws.com
Date: Tue, 27 Mar 2007 19:42:41 +0000

Authorization: AWS AKIAIOSFODNN7EXAMPLE:
htDYFYduRNen8P9ZfE/s9SuKy0U=

GET\n
\n
\n
Tue, 27 Mar 2007 19:42:41
 +0000\n
/johnsmith/

Note the trailing slash on the CanonicalizedResource and the absence of query string parameters.

Fetch

This example fetches the access control policy subresource for the 'johnsmith' bucket.

Request StringToSign

GET /?acl HTTP/1.1
Host: johnsmith.s3.amazonaws.com
Date: Tue, 27 Mar 2007 19:44:46 +0000

Authorization: AWS AKIAIOSFODNN7EXAMPLE:
c2WLPFtWHVgbEmeEG93a4cG37dM=

GET\n
\n
\n
Tue, 27 Mar 2007 19:44:46
 +0000\n
/johnsmith/?acl

Notice how the subresource query string parameter is included in the CanonicalizedResource.

Delete

This example deletes an object from the 'johnsmith' bucket using the path-style and Date alternative.

Request StringToSign

DELETE /johnsmith/photos/puppy.jpg HTTP/1.1
User-Agent: dotnet

DELETE\n
\n

API Version 2006-03-01
693

Amazon Simple Storage Service Developer Guide
Signing and Authenticating REST Requests

Request StringToSign
Host: s3.amazonaws.com
Date: Tue, 27 Mar 2007 21:20:27 +0000

x-amz-date: Tue, 27 Mar 2007 21:20:26 +0000
Authorization: AWS
 AKIAIOSFODNN7EXAMPLE:lx3byBScXR6KzyMaifNkardMwNk=

\n
Tue, 27 Mar 2007 21:20:26 +0000\n
/johnsmith/photos/puppy.jpg

Note how we used the alternate 'x-amz-date' method of specifying the date (because our client library
prevented us from setting the date, say). In this case, the x-amz-date takes precedence over the Date
header. Therefore, date entry in the signature must contain the value of the x-amz-date header.

Upload

This example uploads an object to a CNAME style virtual hosted bucket with metadata.

Request StringToSign

PUT /db-backup.dat.gz HTTP/1.1
User-Agent: curl/7.15.5
Host: static.johnsmith.net:8080
Date: Tue, 27 Mar 2007 21:06:08 +0000

x-amz-acl: public-read
content-type: application/x-download
Content-MD5: 4gJE4saaMU4BqNR0kLY+lw==
X-Amz-Meta-ReviewedBy: joe@johnsmith.net
X-Amz-Meta-ReviewedBy: jane@johnsmith.net
X-Amz-Meta-FileChecksum: 0x02661779
X-Amz-Meta-ChecksumAlgorithm: crc32
Content-Disposition: attachment;
 filename=database.dat
Content-Encoding: gzip
Content-Length: 5913339

Authorization: AWS AKIAIOSFODNN7EXAMPLE:
ilyl83RwaSoYIEdixDQcA4OnAnc=

PUT\n
4gJE4saaMU4BqNR0kLY+lw==\n
application/x-download\n
Tue, 27 Mar 2007 21:06:08 +0000\n

x-amz-acl:public-read\n
x-amz-meta-checksumalgorithm:crc32\n
x-amz-meta-filechecksum:0x02661779\n
x-amz-meta-reviewedby:
joe@johnsmith.net,jane@johnsmith.net\n
/static.johnsmith.net/db-backup.dat.gz

Notice how the 'x-amz-' headers are sorted, trimmed of whitespace, and converted to lowercase. Note
also that multiple headers with the same name have been joined using commas to separate values.

Note how only the Content-Type and Content-MD5 HTTP entity headers appear in the
StringToSign. The other Content-* entity headers do not.

Again, note that the CanonicalizedResource includes the bucket name, but the HTTP Request-URI
does not. (The bucket is specified by the Host header.)

List All My Buckets

Request StringToSign

GET / HTTP/1.1
Host: s3.amazonaws.com
Date: Wed, 28 Mar 2007 01:29:59 +0000

GET\n
\n
\n

API Version 2006-03-01
694

Amazon Simple Storage Service Developer Guide
Signing and Authenticating REST Requests

Request StringToSign
Authorization: AWS
 AKIAIOSFODNN7EXAMPLE:qGdzdERIC03wnaRNKh6OqZehG9s=

Wed, 28 Mar 2007 01:29:59
 +0000\n
/

Unicode Keys

Request StringToSign

GET /dictionary/fran%C3%A7ais/pr%c3%a9f
%c3%a8re HTTP/1.1
Host: s3.amazonaws.com
Date: Wed, 28 Mar 2007 01:49:49 +0000
Authorization: AWS
 AKIAIOSFODNN7EXAMPLE:DNEZGsoieTZ92F3bUfSPQcbGmlM=

GET\n
\n
\n
Wed, 28 Mar 2007 01:49:49 +0000\n
/dictionary/fran%C3%A7ais/pr%c3%a9f
%c3%a8re

Note
The elements in StringToSign that were derived from the Request-URI are taken literally,
including URL-Encoding and capitalization.

REST Request Signing Problems

When REST request authentication fails, the system responds to the request with an XML error
document. The information contained in this error document is meant to help developers diagnose the
problem. In particular, the StringToSign element of the SignatureDoesNotMatch error document
tells you exactly what request canonicalization the system is using.

Some toolkits silently insert headers that you do not know about beforehand, such as adding the header
Content-Type during a PUT. In most of these cases, the value of the inserted header remains constant,
allowing you to discover the missing headers by using tools such as Ethereal or tcpmon.

Query String Request Authentication Alternative

You can authenticate certain types of requests by passing the required information as query-string
parameters instead of using the Authorization HTTP header. This is useful for enabling direct
third-party browser access to your private Amazon S3 data without proxying the request. The idea
is to construct a "presigned" request and encode it as a URL that an end-user's browser can retrieve.
Additionally, you can limit a presigned request by specifying an expiration time.

Note
For examples of using the AWS SDKs to generating presigned URLs, see Share an Object with
Others (p. 167).

Creating a Signature

Following is an example query string authenticated Amazon S3 REST request.

GET /photos/puppy.jpg
?AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE&Expires=1141889120&Signature=vjbyPxybdZaNmGa
%2ByT272YEAiv4%3D HTTP/1.1
Host: johnsmith.s3.amazonaws.com

API Version 2006-03-01
695

Amazon Simple Storage Service Developer Guide
Signing and Authenticating REST Requests

Date: Mon, 26 Mar 2007 19:37:58 +0000

The query string request authentication method doesn't require any special HTTP headers. Instead, the
required authentication elements are specified as query string parameters:

Query String
Parameter Name

Example Value Description

AWSAccessKeyId AKIAIOSFODNN7EXAMPLE Your AWS access key ID. Specifies the
AWS secret access key used to sign the
request and, indirectly, the identity of
the developer making the request.

Expires 1141889120 The time when the signature expires,
specified as the number of seconds
since the epoch (00:00:00 UTC on
January 1, 1970). A request received
after this time (according to the server)
will be rejected.

Signature vjbyPxybdZaNmGa
%2ByT272YEAiv4%3D

The URL encoding of the Base64
encoding of the HMAC-SHA1 of
StringToSign.

The query string request authentication method differs slightly from the ordinary method but only in
the format of the Signature request parameter and the StringToSign element. Following is pseudo-
grammar that illustrates the query string request authentication method.

Signature = URL-Encode(Base64(HMAC-SHA1(YourSecretAccessKey, UTF-8-Encoding-
Of(StringToSign))));

StringToSign = HTTP-VERB + "\n" +
 Content-MD5 + "\n" +
 Content-Type + "\n" +
 Expires + "\n" +
 CanonicalizedAmzHeaders +
 CanonicalizedResource;

YourSecretAccessKey is the AWS secret access key ID that Amazon assigns to you when you sign up
to be an Amazon Web Service developer. Notice how the Signature is URL-Encoded to make it suitable
for placement in the query string. Note also that in StringToSign, the HTTP Date positional element
has been replaced with Expires. The CanonicalizedAmzHeaders and CanonicalizedResource are
the same.

Note
In the query string authentication method, you do not use the Date or the x-amz-date
request header when calculating the string to sign.

Query String Request Authentication

Request StringToSign

GET /photos/puppy.jpg?
AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE&

GET\n
\n
\n

API Version 2006-03-01
696

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

Request StringToSign
 Signature=NpgCjnDzrM
%2BWFzoENXmpNDUsSn8%3D&
 Expires=1175139620 HTTP/1.1

Host: johnsmith.s3.amazonaws.com

1175139620\n

/johnsmith/photos/puppy.jpg

We assume that when a browser makes the GET request, it won't provide a Content-MD5 or a Content-
Type header, nor will it set any x-amz- headers, so those parts of the StringToSign are left blank.

Using Base64 Encoding

HMAC request signatures must be Base64 encoded. Base64 encoding converts the signature into a
simple ASCII string that can be attached to the request. Characters that could appear in the signature
string like plus (+), forward slash (/), and equals (=) must be encoded if used in a URI. For example, if the
authentication code includes a plus (+) sign, encode it as %2B in the request. Encode a forward slash as
%2F and equals as %3D.

For examples of Base64 encoding, refer to the Amazon S3 Authentication Examples (p. 692).

Browser-Based Uploads Using POST (AWS Signature
Version 2)
Amazon S3 supports POST, which allows your users to upload content directly to Amazon S3. POST is
designed to simplify uploads, reduce upload latency, and save you money on applications where users
upload data to store in Amazon S3.

Note
The request authentication discussed in this section is based on AWS Signature Version 2, a
protocol for authenticating inbound API requests to AWS services.
Amazon S3 now supports Signature Version 4, a protocol for authenticating inbound API
requests to AWS services, in all AWS regions. At this time, AWS regions created before January
30, 2014 will continue to support the previous protocol, Signature Version 2. Any new regions
after January 30, 2014 will support only Signature Version 4 and therefore all requests to those
regions must be made with Signature Version 4. For more information, see Authenticating
Requests in Browser-Based Uploads Using POST (AWS Signature Version 4) in the Amazon
Simple Storage Service API Reference.

The following figure shows an upload using Amazon S3 POST.

API Version 2006-03-01
697

https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-authentication-HTTPPOST.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-authentication-HTTPPOST.html

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

Uploading Using POST

1 The user opens a web browser and accesses your web page.

2 Your web page contains an HTTP form that contains all the information necessary for the
user to upload content to Amazon S3.

3 The user uploads content directly to Amazon S3.

Note
Query string authentication is not supported for POST.

HTML Forms (AWS Signature Version 2)
Topics

• HTML Form Encoding (p. 699)

• HTML Form Declaration (p. 699)

• HTML Form Fields (p. 700)

• Policy Construction (p. 702)

• Constructing a Signature (p. 705)

• Redirection (p. 705)

When you communicate with Amazon S3, you normally use the REST or SOAP API to perform put,
get, delete, and other operations. With POST, users upload data directly to Amazon S3 through their
browsers, which cannot process the SOAP API or create a REST PUT request.

API Version 2006-03-01
698

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

Note
SOAP support over HTTP is deprecated, but it is still available over HTTPS. New Amazon S3
features will not be supported for SOAP. We recommend that you use either the REST API or the
AWS SDKs.

To allow users to upload content to Amazon S3 by using their browsers, you use HTML forms. HTML
forms consist of a form declaration and form fields. The form declaration contains high-level information
about the request. The form fields contain detailed information about the request, as well as the policy
that is used to authenticate it and ensure that it meets the conditions that you specify.

Note
The form data and boundaries (excluding the contents of the file) cannot exceed 20 KB.

This section explains how to use HTML forms.

HTML Form Encoding

The form and policy must be UTF-8 encoded. You can apply UTF-8 encoding to the form by specifying it
in the HTML heading or as a request header.

Note
The HTML form declaration does not accept query string authentication parameters.

The following is an example of UTF-8 encoding in the HTML heading:

<html>
 <head>
 ...
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 ...
 </head>
 <body>

The following is an example of UTF-8 encoding in a request header:

Content-Type: text/html; charset=UTF-8

HTML Form Declaration

The form declaration has three components: the action, the method, and the enclosure type. If any of
these values is improperly set, the request fails.

The action specifies the URL that processes the request, which must be set to the URL of the bucket. For
example, if the name of your bucket is "johnsmith", the URL is "http://johnsmith.s3.amazonaws.com/".

Note
The key name is specified in a form field.

The method must be POST.

The enclosure type (enctype) must be specified and must be set to multipart/form-data for both file
uploads and text area uploads. For more information, go to RFC 1867.

Example

The following example is a form declaration for the bucket "johnsmith".

<form action="http://johnsmith.s3.amazonaws.com/" method="post"

API Version 2006-03-01
699

http://www.ietf.org/rfc/rfc1867.txt

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

enctype="multipart/form-data">

HTML Form Fields

The following table describes fields that can be used within an HTML form.

Note
The variable ${filename} is automatically replaced with the name of the file provided by the
user and is recognized by all form fields. If the browser or client provides a full or partial path
to the file, only the text following the last slash (/) or backslash (\) will be used. For example,
"C:\Program Files\directory1\file.txt" will be interpreted as "file.txt". If no file or file name is
provided, the variable is replaced with an empty string.

Field Name Description Required

AWSAccessKeyId The AWS Access Key ID of the owner of the
bucket who grants an anonymous user access
for a request that satisfies the set of constraints
in the policy. This field is required if the request
includes a policy document.

Conditional

acl An Amazon S3 access control list (ACL). If an
invalid access control list is specified, an error is
generated. For more information on ACLs, see
Access Control Lists (p. 7).

Type: String

Default: private

Valid Values: private | public-read |
public-read-write | aws-exec-read |
authenticated-read | bucket-owner-
read | bucket-owner-full-control

No

Cache-Control, Content-
Type, Content-
Disposition, Content-
Encoding, Expires

REST-specific headers. For more information, see
PUT Object.

No

key The name of the uploaded key.

To use the filename provided by the user, use the
${filename} variable. For example, if user Betty
uploads the file lolcatz.jpg and you specify /user/
betty/${filename}, the file is stored as /user/
betty/lolcatz.jpg.

For more information, see Object Key and
Metadata (p. 99).

Yes

policy Security policy describing what is permitted in
the request. Requests without a security policy
are considered anonymous and will succeed only
on publicly writable buckets.

No

success_action_redirect,
redirect

The URL to which the client is redirected upon
successful upload. Amazon S3 appends the

No

API Version 2006-03-01
700

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

Field Name Description Required

bucket, key, and etag values as query string
parameters to the URL.

If success_action_redirect is not specified,
Amazon S3 returns the empty document type
specified in the success_action_status field.

If Amazon S3 cannot interpret the URL, it ignores
the field.

If the upload fails, Amazon S3 displays an error
and does not redirect the user to a URL.

For more information, see Redirection (p. 705).

Note
The redirect field name is deprecated
and support for the redirect field name
will be removed in the future.

success_action_status The status code returned to the client upon
successful upload if success_action_redirect is
not specified.

Valid values are 200, 201, or 204 (default).

If the value is set to 200 or 204, Amazon S3
returns an empty document with a 200 or 204
status code.

If the value is set to 201, Amazon S3 returns
an XML document with a 201 status code. For
information about the content of the XML
document, see POST Object.

If the value is not set or if it is set to an invalid
value, Amazon S3 returns an empty document
with a 204 status code.

Note
Some versions of the Adobe Flash player
do not properly handle HTTP responses
with an empty body. To support uploads
through Adobe Flash, we recommend
setting success_action_status to
201.

No

signature The HMAC signature constructed by using
the secret access key that corresponds to the
provided AWSAccessKeyId. This field is required if
a policy document is included with the request.

For more information, see Using Auth Access .

Conditional

API Version 2006-03-01
701

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

Field Name Description Required

x-amz-security-token A security token used by session credentials

If the request is using Amazon DevPay then it
requires two x-amz-security-token form
fields: one for the product token and one for the
user token.

If the request is using session credentials, then
it requires one x-amz-security-token form.
For more information, see Temporary Security
Credentials in the IAM User Guide.

No

Other field names prefixed with
x-amz-meta-

User-specified metadata.

Amazon S3 does not validate or use this data.

For more information, see PUT Object.

No

file File or text content.

The file or content must be the last field in the
form. Any fields below it are ignored.

You cannot upload more than one file at a time.

Yes

Policy Construction

Topics
• Expiration (p. 703)
• Conditions (p. 703)
• Condition Matching (p. 704)
• Character Escaping (p. 704)

The policy is a UTF-8 and Base64-encoded JSON document that specifies conditions that the request
must meet and is used to authenticate the content. Depending on how you design your policy
documents, you can use them per upload, per user, for all uploads, or according to other designs that
meet your needs.

Note
Although the policy document is optional, we highly recommend it over making a bucket
publicly writable.

The following is an example of a policy document:

{ "expiration": "2007-12-01T12:00:00.000Z",

 "conditions": [

 {"acl": "public-read" },

 {"bucket": "johnsmith" },

 ["starts-with", "$key", "user/eric/"],

]

API Version 2006-03-01
702

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

}

The policy document contains the expiration and conditions.

Expiration

The expiration element specifies the expiration date of the policy in ISO 8601 UTC date format. For
example, "2007-12-01T12:00:00.000Z" specifies that the policy is not valid after midnight UTC on
2007-12-01. Expiration is required in a policy.

Conditions

The conditions in the policy document validate the contents of the uploaded object. Each form field that
you specify in the form (except AWSAccessKeyId, signature, file, policy, and field names that have an x-
ignore- prefix) must be included in the list of conditions.

Note
If you have multiple fields with the same name, the values must be separated by commas. For
example, if you have two fields named "x-amz-meta-tag" and the first one has a value of "Ninja"
and second has a value of "Stallman", you would set the policy document to Ninja,Stallman.
All variables within the form are expanded before the policy is validated. Therefore, all condition
matching should be performed against the expanded fields. For example, if you set the key field
to user/betty/${filename}, your policy might be ["starts-with", "$key", "user/
betty/"]. Do not enter ["starts-with", "$key", "user/betty/${filename}"].
For more information, see Condition Matching (p. 704).

The following table describes policy document conditions.

Element Name Description

acl Specifies conditions that the ACL must meet.

Supports exact matching and starts-with.

content-length-range Specifies the minimum and maximum allowable size for the
uploaded content.

Supports range matching.

Cache-Control, Content-Type,
Content-Disposition, Content-
Encoding, Expires

REST-specific headers.

Supports exact matching and starts-with.

key The name of the uploaded key.

Supports exact matching and starts-with.

success_action_redirect, redirect The URL to which the client is redirected upon successful upload.

Supports exact matching and starts-with.

success_action_status The status code returned to the client upon successful upload if
success_action_redirect is not specified.

Supports exact matching.

x-amz-security-token Amazon DevPay security token.

Each request that uses Amazon DevPay requires two x-amz-
security-token form fields: one for the product token

API Version 2006-03-01
703

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

Element Name Description

and one for the user token. As a result, the values must
be separated by commas. For example, if the user token is
eW91dHViZQ== and the product token is b0hnNVNKWVJIQTA=,
you set the policy entry to: { "x-amz-security-token":
"eW91dHViZQ==,b0hnNVNKWVJIQTA=" }.

Other field names prefixed with x-
amz-meta-

User-specified metadata.

Supports exact matching and starts-with.

Note
If your toolkit adds additional fields (e.g., Flash adds filename), you must add them to the policy
document. If you can control this functionality, prefix x-ignore- to the field so Amazon S3
ignores the feature and it won't affect future versions of this feature.

Condition Matching

The following table describes condition matching types. Although you must specify one condition
for each form field that you specify in the form, you can create more complex matching criteria by
specifying multiple conditions for a form field.

Condition Description

Exact Matches Exact matches verify that fields match specific values. This example indicates that
the ACL must be set to public-read:

{"acl": "public-read" }

This example is an alternate way to indicate that the ACL must be set to public-read:

["eq", "$acl", "public-read"]

Starts With If the value must start with a certain value, use starts-with. This example indicates
that the key must start with user/betty:

["starts-with", "$key", "user/betty/"]

Matching Any
Content

To configure the policy to allow any content within a field, use starts-with with an
empty value. This example allows any success_action_redirect:

["starts-with", "$success_action_redirect", ""]

Specifying
Ranges

For fields that accept ranges, separate the upper and lower ranges with a comma.
This example allows a file size from 1 to 10 megabytes:

["content-length-range", 1048579, 10485760]

Character Escaping

The following table describes characters that must be escaped within a policy document.

API Version 2006-03-01
704

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

Escape
Sequence

Description

\\ Backslash

\$ Dollar sign

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\uxxxx All Unicode characters

Constructing a Signature

Step Description

1 Encode the policy by using UTF-8.

2 Encode those UTF-8 bytes by using Base64.

3 Sign the policy with your secret access key by using HMAC SHA-1.

4 Encode the SHA-1 signature by using Base64.

For general information about authentication, see Using Auth Access .

Redirection

This section describes how to handle redirects.

General Redirection

On completion of the POST request, the user is redirected to the location that you specified in
the success_action_redirect field. If Amazon S3 cannot interpret the URL, it ignores the
success_action_redirect field.

If success_action_redirect is not specified, Amazon S3 returns the empty document type specified
in the success_action_status field.

If the POST request fails, Amazon S3 displays an error and does not provide a redirect.

Pre-Upload Redirection

If your bucket was created using <CreateBucketConfiguration>, your end users might require a redirect. If
this occurs, some browsers might handle the redirect incorrectly. This is relatively rare but is most likely
to occur right after a bucket is created.

API Version 2006-03-01
705

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

Upload Examples (AWS Signature Version 2)
Topics

• File Upload (p. 706)
• Text Area Upload (p. 708)

Note
The request authentication discussed in this section is based on AWS Signature Version 2, a
protocol for authenticating inbound API requests to AWS services.
Amazon S3 now supports Signature Version 4, a protocol for authenticating inbound API
requests to AWS services, in all AWS regions. At this time, AWS regions created before January
30, 2014 will continue to support the previous protocol, Signature Version 2. Any new regions
after January 30, 2014 will support only Signature Version 4 and therefore all requests to those
regions must be made with Signature Version 4. For more information, see Examples: Browser-
Based Upload using HTTP POST (Using AWS Signature Version 4) in the Amazon Simple Storage
Service API Reference.

File Upload

This example shows the complete process for constructing a policy and form that can be used to upload
a file attachment.

Policy and Form Construction

The following policy supports uploads to Amazon S3 for the johnsmith bucket.

{ "expiration": "2007-12-01T12:00:00.000Z",
 "conditions": [
 {"bucket": "johnsmith"},
 ["starts-with", "$key", "user/eric/"],
 {"acl": "public-read"},
 {"success_action_redirect": "http://johnsmith.s3.amazonaws.com/
successful_upload.html"},
 ["starts-with", "$Content-Type", "image/"],
 {"x-amz-meta-uuid": "14365123651274"},
 ["starts-with", "$x-amz-meta-tag", ""]
]
}

This policy requires the following:

• The upload must occur before 12:00 UTC on December 1, 2007.
• The content must be uploaded to the johnsmith bucket.
• The key must start with "user/eric/".
• The ACL is set to public-read.
• The success_action_redirect is set to http://johnsmith.s3.amazonaws.com/successful_upload.html.
• The object is an image file.
• The x-amz-meta-uuid tag must be set to 14365123651274.
• The x-amz-meta-tag can contain any value.

The following is a Base64-encoded version of this policy.

eyAiZXhwaXJhdGlvbiI6ICIyMDA3LTEyLTAxVDEyOjAwOjAwLjAwMFoiLAogICJjb25kaXRpb25zIjogWwogICAgeyJidWNrZXQiOiAiam9obnNtaXRoIn0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiRrZXkiLCAidXNlci9lcmljLyJdLAogICAgeyJhY2wiOiAicHVibGljLXJlYWQifSwKICAgIHsic3VjY2Vzc19hY3Rpb25fcmVkaXJlY3QiOiAiaHR0cDovL2pvaG5zbWl0aC5zMy5hbWF6b25hd3MuY29tL3N1Y2Nlc3NmdWxfdXBsb2FkLmh0bWwifSwKICAgIFsic3RhcnRzLXdpdGgiLCAiJENvbnRlbnQtVHlwZSIsICJpbWFnZS8iXSwKICAgIHsieC1hbXotbWV0YS11dWlkIjogIjE0MzY1MTIzNjUxMjc0In0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiR4LWFtei1tZXRhLXRhZyIsICIiXQogIF0KfQo=

API Version 2006-03-01
706

https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-post-example.html
https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-post-example.html

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

Using your credentials create a signature, for example 0RavWzkygo6QX9caELEqKi9kDbU= is the
signature for the preceding policy document.

The following form supports a POST request to the johnsmith.net bucket that uses this policy.

<html>
 <head>
 ...
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 ...
 </head>
 <body>
 ...
 <form action="http://johnsmith.s3.amazonaws.com/" method="post" enctype="multipart/form-
data">
 Key to upload: <input type="input" name="key" value="user/eric/" />

 <input type="hidden" name="acl" value="public-read" />
 <input type="hidden" name="success_action_redirect" value="http://
johnsmith.s3.amazonaws.com/successful_upload.html" />
 Content-Type: <input type="input" name="Content-Type" value="image/jpeg" />

 <input type="hidden" name="x-amz-meta-uuid" value="14365123651274" />
 Tags for File: <input type="input" name="x-amz-meta-tag" value="" />

 <input type="hidden" name="AWSAccessKeyId" value="AKIAIOSFODNN7EXAMPLE" />
 <input type="hidden" name="Policy" value="POLICY" />
 <input type="hidden" name="Signature" value="SIGNATURE" />
 File: <input type="file" name="file" />

 <!-- The elements after this will be ignored -->
 <input type="submit" name="submit" value="Upload to Amazon S3" />
 </form>
 ...
</html>

Sample Request

This request assumes that the image uploaded is 117,108 bytes; the image data is not included.

POST / HTTP/1.1
Host: johnsmith.s3.amazonaws.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.10) Gecko/20071115
 Firefox/2.0.0.10
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/
plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Content-Type: multipart/form-data; boundary=9431149156168
Content-Length: 118698

--9431149156168
Content-Disposition: form-data; name="key"

user/eric/MyPicture.jpg
--9431149156168
Content-Disposition: form-data; name="acl"

public-read
--9431149156168
Content-Disposition: form-data; name="success_action_redirect"

http://johnsmith.s3.amazonaws.com/successful_upload.html
--9431149156168

API Version 2006-03-01
707

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

Content-Disposition: form-data; name="Content-Type"

image/jpeg
--9431149156168
Content-Disposition: form-data; name="x-amz-meta-uuid"

14365123651274
--9431149156168
Content-Disposition: form-data; name="x-amz-meta-tag"

Some,Tag,For,Picture
--9431149156168
Content-Disposition: form-data; name="AWSAccessKeyId"

AKIAIOSFODNN7EXAMPLE
--9431149156168
Content-Disposition: form-data; name="Policy"

eyAiZXhwaXJhdGlvbiI6ICIyMDA3LTEyLTAxVDEyOjAwOjAwLjAwMFoiLAogICJjb25kaXRpb25zIjogWwogICAgeyJidWNrZXQiOiAiam9obnNtaXRoIn0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiRrZXkiLCAidXNlci9lcmljLyJdLAogICAgeyJhY2wiOiAicHVibGljLXJlYWQifSwKICAgIHsic3VjY2Vzc19hY3Rpb25fcmVkaXJlY3QiOiAiaHR0cDovL2pvaG5zbWl0aC5zMy5hbWF6b25hd3MuY29tL3N1Y2Nlc3NmdWxfdXBsb2FkLmh0bWwifSwKICAgIFsic3RhcnRzLXdpdGgiLCAiJENvbnRlbnQtVHlwZSIsICJpbWFnZS8iXSwKICAgIHsieC1hbXotbWV0YS11dWlkIjogIjE0MzY1MTIzNjUxMjc0In0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiR4LWFtei1tZXRhLXRhZyIsICIiXQogIF0KfQo=
--9431149156168
Content-Disposition: form-data; name="Signature"

0RavWzkygo6QX9caELEqKi9kDbU=
--9431149156168
Content-Disposition: form-data; name="file"; filename="MyFilename.jpg"
Content-Type: image/jpeg

...file content...
--9431149156168
Content-Disposition: form-data; name="submit"

Upload to Amazon S3
--9431149156168--

Sample Response

HTTP/1.1 303 Redirect
x-amz-request-id: 1AEE782442F35865
x-amz-id-2: cxzFLJRatFHy+NGtaDFRR8YvI9BHmgLxjvJzNiGGICARZ/mVXHj7T+qQKhdpzHFh
Content-Type: application/xml
Date: Wed, 14 Nov 2007 21:21:33 GMT
Connection: close
Location: http://johnsmith.s3.amazonaws.com/successful_upload.html?
bucket=johnsmith&key=user/eric/
MyPicture.jpg&etag="39d459dfbc0faabbb5e179358dfb94c3"
Server: AmazonS3

Text Area Upload

Topics
• Policy and Form Construction (p. 708)
• Sample Request (p. 710)
• Sample Response (p. 711)

The following example shows the complete process for constructing a policy and form to upload a text
area. Uploading a text area is useful for submitting user-created content, such as blog postings.

Policy and Form Construction

The following policy supports text area uploads to Amazon S3 for the johnsmith bucket.

API Version 2006-03-01
708

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

{ "expiration": "2007-12-01T12:00:00.000Z",
 "conditions": [
 {"bucket": "johnsmith"},
 ["starts-with", "$key", "user/eric/"],
 {"acl": "public-read"},
 {"success_action_redirect": "http://johnsmith.s3.amazonaws.com/new_post.html"},
 ["eq", "$Content-Type", "text/html"],
 {"x-amz-meta-uuid": "14365123651274"},
 ["starts-with", "$x-amz-meta-tag", ""]
]
}

This policy requires the following:

• The upload must occur before 12:00 GMT on 2007-12-01.
• The content must be uploaded to the johnsmith bucket.
• The key must start with "user/eric/".
• The ACL is set to public-read.
• The success_action_redirect is set to http://johnsmith.s3.amazonaws.com/new_post.html.
• The object is HTML text.
• The x-amz-meta-uuid tag must be set to 14365123651274.
• The x-amz-meta-tag can contain any value.

Following is a Base64-encoded version of this policy.

eyAiZXhwaXJhdGlvbiI6ICIyMDA3LTEyLTAxVDEyOjAwOjAwLjAwMFoiLAogICJjb25kaXR
pb25zIjogWwogICAgeyJidWNrZXQiOiAiam9obnNtaXRoIn0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiRrZXkiLCAidXNlci9lcmljLyJd
LAogICAgeyJhY2wiOiAicHVibGljLXJlYWQifSwKICAgIHsic3VjY2Vzc19hY3Rpb25fcmVkaXJlY3QiOiAiaHR0cDovL2pvaG5zbWl0a
C5zMy5hbWF6b25hd3MuY29tL25ld19wb3N0Lmh0bWwifSwKICAgIFsiZXEiLCAiJENvbnRlbnQtVHlwZSIsICJ0ZXh0L2h0bWwiXSwKI
CAgIHsieC1hbXotbWV0YS11dWlkIjogIjE0MzY1MTIzNjUxMjc0In0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiR4LWFtei1tZXRhLXRhZy
IsICIiXQogIF0KfQo=

Using your credentials, create a signature. For example, qA7FWXKq6VvU68lI9KdveT1cWgF= is the
signature for the preceding policy document.

The following form supports a POST request to the johnsmith.net bucket that uses this policy.

<html>
 <head>
 ...
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 ...
 </head>
 <body>
 ...
 <form action="http://johnsmith.s3.amazonaws.com/" method="post" enctype="multipart/form-
data">
 Key to upload: <input type="input" name="key" value="user/eric/" />

 <input type="hidden" name="acl" value="public-read" />
 <input type="hidden" name="success_action_redirect" value="http://
johnsmith.s3.amazonaws.com/new_post.html" />
 <input type="hidden" name="Content-Type" value="text/html" />
 <input type="hidden" name="x-amz-meta-uuid" value="14365123651274" />
 Tags for File: <input type="input" name="x-amz-meta-tag" value="" />

 <input type="hidden" name="AWSAccessKeyId" value="AKIAIOSFODNN7EXAMPLE" />
 <input type="hidden" name="Policy" value="POLICY" />
 <input type="hidden" name="Signature" value="SIGNATURE" />
 Entry: <textarea name="file" cols="60" rows="10">

API Version 2006-03-01
709

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

Your blog post goes here.

 </textarea>

 <!-- The elements after this will be ignored -->
 <input type="submit" name="submit" value="Upload to Amazon S3" />
 </form>
 ...
</html>

Sample Request

This request assumes that the image uploaded is 117,108 bytes; the image data is not included.

POST / HTTP/1.1
Host: johnsmith.s3.amazonaws.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.10) Gecko/20071115
 Firefox/2.0.0.10
Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/
plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Content-Type: multipart/form-data; boundary=178521717625888
Content-Length: 118635

-178521717625888
Content-Disposition: form-data; name="key"

ser/eric/NewEntry.html
--178521717625888
Content-Disposition: form-data; name="acl"

public-read
--178521717625888
Content-Disposition: form-data; name="success_action_redirect"

http://johnsmith.s3.amazonaws.com/new_post.html
--178521717625888
Content-Disposition: form-data; name="Content-Type"

text/html
--178521717625888
Content-Disposition: form-data; name="x-amz-meta-uuid"

14365123651274
--178521717625888
Content-Disposition: form-data; name="x-amz-meta-tag"

Interesting Post
--178521717625888
Content-Disposition: form-data; name="AWSAccessKeyId"

AKIAIOSFODNN7EXAMPLE
--178521717625888
Content-Disposition: form-data; name="Policy"
eyAiZXhwaXJhdGlvbiI6ICIyMDA3LTEyLTAxVDEyOjAwOjAwLjAwMFoiLAogICJjb25kaXRpb25zIjogWwogICAgeyJidWNrZXQiOiAiam9obnNtaXRoIn0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiRrZXkiLCAidXNlci9lcmljLyJdLAogICAgeyJhY2wiOiAicHVibGljLXJlYWQifSwKICAgIHsic3VjY2Vzc19hY3Rpb25fcmVkaXJlY3QiOiAiaHR0cDovL2pvaG5zbWl0aC5zMy5hbWF6b25hd3MuY29tL25ld19wb3N0Lmh0bWwifSwKICAgIFsiZXEiLCAiJENvbnRlbnQtVHlwZSIsICJ0ZXh0L2h0bWwiXSwKICAgIHsieC1hbXotbWV0YS11dWlkIjogIjE0MzY1MTIzNjUxMjc0In0sCiAgICBbInN0YXJ0cy13aXRoIiwgIiR4LWFtei1tZXRhLXRhZyIsICIiXQogIF0KfQo=

--178521717625888
Content-Disposition: form-data; name="Signature"

qA7FWXKq6VvU68lI9KdveT1cWgF=

API Version 2006-03-01
710

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

--178521717625888
Content-Disposition: form-data; name="file"

...content goes here...
--178521717625888
Content-Disposition: form-data; name="submit"

Upload to Amazon S3
--178521717625888--

Sample Response

HTTP/1.1 303 Redirect
x-amz-request-id: 1AEE782442F35865
x-amz-id-2: cxzFLJRatFHy+NGtaDFRR8YvI9BHmgLxjvJzNiGGICARZ/mVXHj7T+qQKhdpzHFh
Content-Type: application/xml
Date: Wed, 14 Nov 2007 21:21:33 GMT
Connection: close
Location: http://johnsmith.s3.amazonaws.com/new_post.html?bucket=johnsmith&key=user/eric/
NewEntry.html&etag=40c3271af26b7f1672e41b8a274d28d4
Server: AmazonS3

POST with Adobe Flash
This section describes how to use POST with Adobe Flash.

Adobe Flash Player Security

By default, the Adobe Flash Player security model prohibits Adobe Flash Players from making network
connections to servers outside the domain that serves the SWF file.

To override the default, you must upload a publicly readable crossdomain.xml file to the bucket that will
accept POST uploads. The following is a sample crossdomain.xml file.

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy SYSTEM
"http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
<allow-access-from domain="*" secure="false" />
</cross-domain-policy>

Note
For more information about the Adobe Flash security model, go to the Adobe website.
Adding the crossdomain.xml file to your bucket allows any Adobe Flash Player to connect to the
crossdomain.xml file within your bucket; however, it does not grant access to the actual Amazon
S3 bucket.

Adobe Flash Considerations

The FileReference API in Adobe Flash adds the Filename form field to the POST request. When you
build Adobe Flash applications that upload to Amazon S3 by using the FileReference API action, include
the following condition in your policy:

['starts-with', '$Filename', '']

Some versions of the Adobe Flash Player do not properly handle HTTP responses that have an
empty body. To configure POST to return a response that does not have an empty body, set
success_action_status to 201. Amazon S3 will then return an XML document with a 201 status

API Version 2006-03-01
711

Amazon Simple Storage Service Developer Guide
Browser-Based Uploads Using POST

code. For information about the content of the XML document, see POST Object. For information about
form fields, see HTML Form Fields (p. 700).

API Version 2006-03-01
712

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOST.html

Amazon Simple Storage Service Developer Guide

Amazon S3 Resources
Following is a table that lists related resources that you'll find useful as you work with this service.

Resource Description

Amazon Simple Storage Service Getting
Started Guide

The Getting Started Guide provides a quick tutorial of the
service based on a simple use case.

Amazon Simple Storage Service API
Reference

The API Reference describes Amazon S3 operations in detail.

Amazon S3Technical FAQ The FAQ covers the top questions developers have asked
about this product.

AWS Developer Resource Center A central starting point to find documentation, code
samples, release notes, and other information to help you
build innovative applications with AWS.

AWS Management Console The console allows you to perform most of the functions of
Amazon S3without programming.

https://forums.aws.amazon.com/ A community-based forum for developers to discuss
technical questions related to AWS.

AWS Support Center The home page for AWS Technical Support, including access
to our Developer Forums, Technical FAQs, Service Status
page, and Premium Support.

AWS Premium Support The primary web page for information about AWS Premium
Support, a one-on-one, fast-response support channel to
help you build and run applications on AWS Infrastructure
Services.

Amazon S3 product information The primary web page for information about Amazon S3.

Contact Us A central contact point for inquiries concerning AWS billing,
account, events, abuse, etc.

Conditions of Use Detailed information about the copyright and trademark
usage at Amazon.com and other topics.

API Version 2006-03-01
713

https://docs.aws.amazon.com/AmazonS3/latest/gsg/
https://docs.aws.amazon.com/AmazonS3/latest/gsg/
https://docs.aws.amazon.com/AmazonS3/latest/API/
https://docs.aws.amazon.com/AmazonS3/latest/API/
https://aws.amazon.com/s3/faqs/
https://aws.amazon.com/resources/
https://aws.amazon.com/console/
https://forums.aws.amazon.com/
https://aws.amazon.com/support
https://aws.amazon.com/premiumsupport/
https://aws.amazon.com/s3/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/legal

Amazon Simple Storage Service Developer Guide
SELECT Command

SQL Reference for Amazon S3 Select
and Glacier Select

This reference contains a description of the structured query language (SQL) elements that are
supported by Amazon S3 Select and Glacier Select.

Topics
• SELECT Command (p. 714)
• Data Types (p. 721)
• Operators (p. 721)
• Reserved Keywords (p. 723)
• SQL Functions (p. 727)

SELECT Command
Amazon S3 Select and Glacier Select support only the SELECT SQL command. The following ANSI
standard clauses are supported for SELECT:

• SELECT list
• FROM clause
• WHERE clause
• LIMIT clause (Amazon S3 Select only)

Note
Amazon S3 Select and Glacier Select queries currently do not support subqueries or joins.

SELECT List
The SELECT list names the columns, functions, and expressions that you want the query to return. The
list represents the output of the query.

SELECT *
SELECT projection [AS column_alias | column_alias] [, ...]

The first form with * (asterisk) returns every row that passed the WHERE clause, as-is. The second form
creates a row with user-defined output scalar expressions projection for each column.

FROM Clause
Amazon S3 Select and Glacier Select support the following forms of the FROM clause:

FROM table_name
FROM table_name alias
FROM table_name AS alias

API Version 2006-03-01
714

Amazon Simple Storage Service Developer Guide
FROM Clause

Where table_name is one of S3Object (for Amazon S3 Select) or ARCHIVE or OBJECT (for Glacier
Select) referring to the archive being queried over. Users coming from traditional relational databases
can think of this as a database schema that contains multiple views over a table.

Following standard SQL, the FROM clause creates rows that are filtered in the WHERE clause and projected
in the SELECT list.

For JSON objects that are stored in Amazon S3 Select, you can also use the following forms of the FROM
clause:

FROM S3Object[*].path
FROM S3Object[*].path alias
FROM S3Object[*].path AS alias

Using this form of the FROM clause, you can select from arrays or objects within a JSON object. You can
specify path using one of the following forms:

• By name (in an object): .name or ['name']
• By index (in an array): [index]
• By wildcard (in an object): .*
• By wildcard (in an array): [*]

Note

• This form of the FROM clause works only with JSON objects.
• Wildcards always emit at least one record. If no record matches, then Amazon S3 Select emits

the value MISSING. During output serialization (after the query is complete), Amazon S3
Select replaces MISSING values with empty records.

• Aggregate functions (AVG, COUNT, MAX, MIN, and SUM) skip MISSING values.
• If you don't provide an alias when using a wildcard, you can refer to the row using the last

element in the path. For example, you could select all prices from a list of books using
the query SELECT price FROM S3Object[*].books[*].price. If the path ends in a
wildcard rather than a name, then you can use the value _1 to refer to the row. For example,
instead of SELECT price FROM S3Object[*].books[*].price, you could use the query
SELECT _1.price FROM S3Object[*].books[*].

• Amazon S3 Select always treats a JSON document as an array of root-level values. Thus, even
if the JSON object that you are querying has only one root element, the FROM clause must
begin with S3Object[*]. However, for compatibility reasons, Amazon S3 Select allows you
to omit the wildcard if you don't include a path. Thus, the complete clause FROM S3Object
is equivalent to FROM S3Object[*] as S3Object. If you include a path, you must also use
the wildcard. So FROM S3Object and FROM S3Object[*].path are both valid clauses, but
FROM S3Object.path is not.

Example

Examples:

Example #1

This example shows results using the following dataset and query:

{
 "Rules": [
 {"id": "id-1", "condition": "x < 20"},
 {"condition": "y > x"},
 {"id": "id-2", "condition": "z = DEBUG"}

API Version 2006-03-01
715

Amazon Simple Storage Service Developer Guide
FROM Clause

]
},
{
 "created": "June 27",
 "modified": "July 6"
}

SELECT id FROM S3Object[*].Rules[*].id

{"id":"id-1"},
{},
{"id":"id-2"},
{}

Amazon S3 Select produces each result for the following reasons:

• {"id":"id-1"} — S3Object[0].Rules[0].id produced a match.
• {} — S3Object[0].Rules[1].id did not match a record, so Amazon S3 Select emitted MISSING, which

was then changed to an empty record during output serialization and returned.
• {"id":"id-2"} — S3Object[0].Rules[2].id produced a match.
• {} — S3Object[1] did not match on Rules, so Amazon S3 Select emitted MISSING, which was then

changed to an empty record during output serialization and returned.

If you don't want Amazon S3 Select to return empty records when it doesn't find a match, you can test
for the value MISSING. The following query returns the same results as the previous query, but with the
empty values omitted:

SELECT id FROM S3Object[*].Rules[*].id WHERE id IS NOT MISSING

{"id":"id-1"},
{"id":"id-2"}

Example #2

This example shows results using the following dataset and queries:

{
 "created": "936864000",
 "dir_name": "important_docs",
 "files": [
 {
 "name": "."
 },
 {
 "name": ".."
 },
 {
 "name": ".aws"
 },
 {
 "name": "downloads"
 }
],
 "owner": "AWS S3"
},
{
 "created": "936864000",

API Version 2006-03-01
716

Amazon Simple Storage Service Developer Guide
FROM Clause

 "dir_name": "other_docs",
 "files": [
 {
 "name": "."
 },
 {
 "name": ".."
 },
 {
 "name": "my stuff"
 },
 {
 "name": "backup"
 }
],
 "owner": "User"
}

SELECT d.dir_name, d.files FROM S3Object[*] d

{
 "dir_name": "important_docs",
 "files": [
 {
 "name": "."
 },
 {
 "name": ".."
 },
 {
 "name": ".aws"
 },
 {
 "name": "downloads"
 }
]
},
{
 "dir_name": "other_docs",
 "files": [
 {
 "name": "."
 },
 {
 "name": ".."
 },
 {
 "name": "my stuff"
 },
 {
 "name": "backup"
 }
]
}

SELECT _1.dir_name, _1.owner FROM S3Object[*]

{
 "dir_name": "important_docs",
 "owner": "AWS S3"
},

API Version 2006-03-01
717

Amazon Simple Storage Service Developer Guide
WHERE Clause

{
 "dir_name": "other_docs",
 "owner": "User"
}

WHERE Clause
The WHERE clause follows this syntax:

WHERE condition

The WHERE clause filters rows based on the condition. A condition is an expression that has a Boolean
result. Only rows for which the condition evaluates to TRUE are returned in the result.

LIMIT Clause (Amazon S3 Select only)
The LIMIT clause follows this syntax:

LIMIT number

The LIMIT clause limits the number of records that you want the query to return based on number.

Note
Glacier Select does not support the LIMIT clause.

Attribute Access
The SELECT and WHERE clauses can refer to record data using one of the methods in the following
sections, depending on whether the file that is being queried is in CSV or JSON format.

CSV
• Column Numbers – You can refer to the Nth column of a row with the column name _N, where N is

the column position. The position count starts at 1. For example, the first column is named _1 and the
second column is named _2.

You can refer to a column as _N or alias._N. For example, _2 and myAlias._2 are both valid ways
to refer to a column in the SELECT list and WHERE clause.

• Column Headers – For objects in CSV format that have a header row, the headers are available to the
SELECT list and WHERE clause. In particular, as in traditional SQL, within SELECT and WHERE clause
expressions, you can refer to the columns by alias.column_name or column_name.

JSON (Amazon S3 Select only)
• Document – You can access JSON document fields as alias.name. Nested fields can also be accessed;

for example, alias.name1.name2.name3.
• List – You can access elements in a JSON list using zero-based indexes with the [] operator. For

example, you can access the second element of a list as alias[1]. Accessing list elements can be
combined with fields as alias.name1.name2[1].name3.

• Examples: Consider this JSON object as a sample dataset:

{"name": "Susan Smith",
"org": "engineering",
"projects":

API Version 2006-03-01
718

Amazon Simple Storage Service Developer Guide
Case Sensitivity of Header/Attribute Names

 [
 {"project_name":"project1", "completed":false},
 {"project_name":"project2", "completed":true}
]
}

Example #1

The following query returns these results:

Select s.name from S3Object s

{"name":"Susan Smith"}

Example #2

The following query returns these results:

Select s.projects[0].project_name from S3Object s

{"project_name":"project1"}

Case Sensitivity of Header/Attribute Names
With Amazon S3 Select and Glacier Select, you can use double quotation marks to indicate that column
headers (for CSV objects) and attributes (for JSON objects) are case sensitive. Without double quotation
marks, object headers/attributes are case insensitive. An error is thrown in cases of ambiguity.

The following examples are either 1) Amazon S3 or Glacier objects in CSV format with the specified
column header(s), and with FileHeaderInfo set to "Use" for the query request; or 2) Amazon S3
objects in JSON format with the specified attributes.

Example #1: The object being queried has header/attribute "NAME".

• The following expression successfully returns values from the object (no quotation marks: case
insensitive):

SELECT s.name from S3Object s

• The following expression results in a 400 error MissingHeaderName (quotation marks: case sensitive):

SELECT s."name" from S3Object s

Example #2: The Amazon S3 object being queried has one header/attribute with "NAME" and another
header/attribute with "name".

• The following expression results in a 400 error AmbiguousFieldName (no quotation marks: case
insensitive, but there are two matches):

SELECT s.name from S3Object s

• The following expression successfully returns values from the object (quotation marks: case sensitive,
so it resolves the ambiguity).

API Version 2006-03-01
719

Amazon Simple Storage Service Developer Guide
Using Reserved Keywords as User-Defined Terms

SELECT s."NAME" from S3Object s

Using Reserved Keywords as User-Defined Terms
Amazon S3 Select and Glacier Select have a set of reserved keywords that are needed to execute the
SQL expressions used to query object content. Reserved keywords include function names, data types,
operators, and so on. In some cases, user-defined terms like the column headers (for CSV files) or
attributes (for JSON object) may clash with a reserved keyword. When this happens, you must use double
quotation marks to indicate that you are intentionally using a user-defined term that clashes with a
reserved keyword. Otherwise a 400 parse error will result.

For the full list of reserved keywords see Reserved Keywords (p. 723).

The following example is either 1) an Amazon S3 or Glacier object in CSV format with the specified
column headers, with FileHeaderInfo set to "Use" for the query request, or 2) an Amazon S3 object in
JSON format with the specified attributes.

Example: The object being queried has header/attribute named "CAST", which is a reserved keyword.

• The following expression successfully returns values from the object (quotation marks: use user-
defined header/attribute):

SELECT s."CAST" from S3Object s

• The following expression results in a 400 parse error (no quotation marks: clash with reserved
keyword):

SELECT s.CAST from S3Object s

Scalar Expressions
Within the WHERE clause and the SELECT list, you can have SQL scalar expressions, which are expressions
that return scalar values. They have the following form:

• literal

An SQL literal.

• column_reference

A reference to a column in the form column_name or alias.column_name.

• unary_op expression

Where unary_op unary is an SQL unary operator.

• expression binary_op expression

Where binary_op is an SQL binary operator.

• func_name

Where func_name is the name of a scalar function to invoke.

• expression [NOT] BETWEEN expression AND expression

• expression LIKE expression [ESCAPE expression]

API Version 2006-03-01
720

Amazon Simple Storage Service Developer Guide
Data Types

Data Types
Amazon S3 Select and Glacier Select support several primitive data types.

Data Type Conversions
The general rule is to follow the CAST function if defined. If CAST is not defined, then all input data is
treated as a string. It must be cast into the relevant data types when necessary.

For more information about the CAST function, see CAST (p. 729).

Supported Data Types
Amazon S3 Select and Glacier Select support the following set of primitive data types.

Name Description Examples

bool TRUE or FALSE FALSE

int, integer 8-byte signed integer in the range -9,223,372,036,854,775,808
to 9,223,372,036,854,775,807.

100000

string UTF8-encoded variable-length string. The default limit is one
character. The maximum character limit is 2,147,483,647.

'xyz'

float 8-byte floating point number. CAST(0.456
AS FLOAT)

decimal, numeric Base-10 number, with maximum precision of 38 (that is, the
maximum number of significant digits), and with scale within
the range of -231 to 231-1 (that is, the base-10 exponent).

123.456

timestamp Time stamps represent a specific moment in time, always
include a local offset, and are capable of arbitrary precision.

In the text format, time stamps follow the W3C note on date
and time formats, but they must end with the literal "T" if not
at least whole-day precision. Fractional seconds are allowed,
with at least one digit of precision, and an unlimited maximum.
Local-time offsets can be represented as either hour:minute
offsets from UTC, or as the literal "Z" to denote a local time of
UTC. They are required on time stamps with time and are not
allowed on date values.

CAST('2007-04-05T14:30Z'
AS
TIMESTAMP)

Operators
Amazon S3 Select and Glacier Select support the following operators.

Logical Operators
• AND

• NOT

• OR

API Version 2006-03-01
721

https://www.w3.org/TR/NOTE-datetime
https://www.w3.org/TR/NOTE-datetime

Amazon Simple Storage Service Developer Guide
Comparison Operators

Comparison Operators
• <

• >

• <=

• >=

• =

• <>

• !=

• BETWEEN

• IN – For example: IN ('a', 'b', 'c')

Pattern Matching Operators
• LIKE

Math Operators
Addition, subtraction, multiplication, division, and modulo are supported.

• +
• -
• *
• %

Operator Precedence
The following table shows the operators' precedence in decreasing order.

Operator/
Element

Associativity Required

- right unary minus

*, /, % left multiplication,
division, modulo

+, - left addition,
subtraction

IN set membership

BETWEEN range
containment

LIKE string pattern
matching

<> less than,
greater than

API Version 2006-03-01
722

Amazon Simple Storage Service Developer Guide
Reserved Keywords

Operator/
Element

Associativity Required

= right equality,
assignment

NOT right logical negation

AND left logical
conjunction

OR left logical
disjunction

Reserved Keywords
Below is the list of reserved keywords for Amazon S3 Select and Glacier Select. These include function
names, data types, operators, etc., that needed to execute the SQL expressions used to query object
content.

absolute
action
add
all
allocate
alter
and
any
are
as
asc
assertion
at
authorization
avg
bag
begin
between
bit
bit_length
blob
bool
boolean
both
by
cascade
cascaded
case
cast
catalog
char
char_length
character
character_length
check
clob
close
coalesce
collate
collation

API Version 2006-03-01
723

Amazon Simple Storage Service Developer Guide
Reserved Keywords

column
commit
connect
connection
constraint
constraints
continue
convert
corresponding
count
create
cross
current
current_date
current_time
current_timestamp
current_user
cursor
date
day
deallocate
dec
decimal
declare
default
deferrable
deferred
delete
desc
describe
descriptor
diagnostics
disconnect
distinct
domain
double
drop
else
end
end-exec
escape
except
exception
exec
execute
exists
external
extract
false
fetch
first
float
for
foreign
found
from
full
get
global
go
goto
grant
group
having
hour
identity

API Version 2006-03-01
724

Amazon Simple Storage Service Developer Guide
Reserved Keywords

immediate
in
indicator
initially
inner
input
insensitive
insert
int
integer
intersect
interval
into
is
isolation
join
key
language
last
leading
left
level
like
limit
list
local
lower
match
max
min
minute
missing
module
month
names
national
natural
nchar
next
no
not
null
nullif
numeric
octet_length
of
on
only
open
option
or
order
outer
output
overlaps
pad
partial
pivot
position
precision
prepare
preserve
primary
prior
privileges
procedure

API Version 2006-03-01
725

Amazon Simple Storage Service Developer Guide
Reserved Keywords

public
read
real
references
relative
restrict
revoke
right
rollback
rows
schema
scroll
second
section
select
session
session_user
set
sexp
size
smallint
some
space
sql
sqlcode
sqlerror
sqlstate
string
struct
substring
sum
symbol
system_user
table
temporary
then
time
timestamp
timezone_hour
timezone_minute
to
trailing
transaction
translate
translation
trim
true
tuple
union
unique
unknown
unpivot
update
upper
usage
user
using
value
values
varchar
varying
view
when
whenever
where
with

API Version 2006-03-01
726

Amazon Simple Storage Service Developer Guide
SQL Functions

work
write
year
zone

SQL Functions
Amazon S3 Select and Glacier Select support several SQL functions.

Topics

• Aggregate Functions (Amazon S3 Select only) (p. 727)

• Conditional Functions (p. 728)

• Conversion Functions (p. 729)

• Date Functions (p. 729)

• String Functions (p. 735)

Aggregate Functions (Amazon S3 Select only)
Amazon S3 Select supports the following aggregate functions.

Note
Glacier Select does not support aggregate functions.

Function Argument Type Return Type

AVG(expression)INT, FLOAT, DECIMAL DECIMAL for an
INT argument,
FLOAT for a
floating-point
argument;
otherwise the
same as the
argument data
type.

COUNT - INT

MAX(expression)INT, DECIMAL Same as the
argument type.

MIN(expression)INT, DECIMAL Same as the
argument type.

SUM(expression)INT, FLOAT, DOUBLE, DECIMAL INT for INT
argument,
FLOAT for a
floating-point
argument;
otherwise, the
same as the
argument data
type.

API Version 2006-03-01
727

Amazon Simple Storage Service Developer Guide
Conditional Functions

Conditional Functions
Amazon S3 Select and Glacier Select support the following conditional functions.

Topics
• COALESCE (p. 728)
• NULLIF (p. 728)

COALESCE
Evaluates the arguments in order and returns the first non-unknown, that is, the first non-null or non-
missing. This function does not propagate null and missing.

Syntax

COALESCE (expression, expression, ...)

Parameters

expression

The target expression that the function operates on.

Examples

COALESCE(1) -- 1
COALESCE(null) -- null
COALESCE(null, null) -- null
COALESCE(missing) -- null
COALESCE(missing, missing) -- null
COALESCE(1, null) -- 1
COALESCE(null, null, 1) -- 1
COALESCE(null, 'string') -- 'string'
COALESCE(missing, 1) -- 1

NULLIF
Given two expressions, returns NULL if the two expressions evaluate to the same value; otherwise,
returns the result of evaluating the first expression.

Syntax

NULLIF (expression1, expression2)

Parameters

expression1, expression2

The target expressions that the function operates on.

Examples

NULLIF(1, 1) -- null

API Version 2006-03-01
728

Amazon Simple Storage Service Developer Guide
Conversion Functions

NULLIF(1, 2) -- 1
NULLIF(1.0, 1) -- null
NULLIF(1, '1') -- 1
NULLIF([1], [1]) -- null
NULLIF(1, NULL) -- 1
NULLIF(NULL, 1) -- null
NULLIF(null, null) -- null
NULLIF(missing, null) -- null
NULLIF(missing, missing) -- null

Conversion Functions
Amazon S3 Select and Glacier Select support the following conversion functions.

Topics
• CAST (p. 729)

CAST
The CAST function converts an entity, such as an expression that evaluates to a single value, from one
type to another.

Syntax

CAST (expression AS data_type)

Parameters

expression

A combination of one or more values, operators, and SQL functions that evaluate to a value.

data_type

The target data type, such as INT, to cast the expression to. For a list of supported data types, see
Data Types (p. 721).

Examples

CAST('2007-04-05T14:30Z' AS TIMESTAMP)
CAST(0.456 AS FLOAT)

Date Functions
Amazon S3 Select and Glacier Select support the following date functions.

Topics
• DATE_ADD (p. 730)

• DATE_DIFF (p. 730)

• EXTRACT (p. 731)

• TO_STRING (p. 732)

• TO_TIMESTAMP (p. 734)

API Version 2006-03-01
729

Amazon Simple Storage Service Developer Guide
Date Functions

• UTCNOW (p. 735)

DATE_ADD
Given a date part, a quantity, and a time stamp, returns an updated time stamp by altering the date part
by the quantity.

Syntax

DATE_ADD(date_part, quantity, timestamp)

Parameters

date_part

Specifies which part of the date to modify. This can be one of the following:
• year
• month
• day
• hour
• minute
• second

quantity

The value to apply to the updated time stamp. Positive values for quantity add to the time stamp's
date_part, and negative values subtract.

timestamp

The target time stamp that the function operates on.

Examples

DATE_ADD(year, 5, `2010-01-01T`) -- 2015-01-01 (equivalent to 2015-01-01T)
DATE_ADD(month, 1, `2010T`) -- 2010-02T (result will add precision as
 necessary)
DATE_ADD(month, 13, `2010T`) -- 2011-02T
DATE_ADD(day, -1, `2017-01-10T`) -- 2017-01-09 (equivalent to 2017-01-09T)
DATE_ADD(hour, 1, `2017T`) -- 2017-01-01T01:00-00:00
DATE_ADD(hour, 1, `2017-01-02T03:04Z`) -- 2017-01-02T04:04Z
DATE_ADD(minute, 1, `2017-01-02T03:04:05.006Z`) -- 2017-01-02T03:05:05.006Z
DATE_ADD(second, 1, `2017-01-02T03:04:05.006Z`) -- 2017-01-02T03:04:06.006Z

DATE_DIFF
Given a date part and two valid time stamps, returns the difference in date parts. The return value is a
negative integer when the date_part value of timestamp1 is greater than the date_part value of
timestamp2. The return value is a positive integer when the date_part value of timestamp1 is less
than the date_part value of timestamp2.

Syntax

DATE_DIFF(date_part, timestamp1, timestamp2)

API Version 2006-03-01
730

Amazon Simple Storage Service Developer Guide
Date Functions

Parameters

date_part

Specifies which part of the time stamps to compare. For the definition of date_part, see
DATE_ADD (p. 730).

timestamp1

The first time stamp to compare.
timestamp2

The second time stamp to compare.

Examples

DATE_DIFF(year, `2010-01-01T`, `2011-01-01T`) -- 1
DATE_DIFF(year, `2010T`, `2010-05T`) -- 4 (2010T is equivalent to
 2010-01-01T00:00:00.000Z)
DATE_DIFF(month, `2010T`, `2011T`) -- 12
DATE_DIFF(month, `2011T`, `2010T`) -- -12
DATE_DIFF(day, `2010-01-01T23:00T`, `2010-01-02T01:00T`) -- 0 (need to be at least 24h
 apart to be 1 day apart)

EXTRACT
Given a date part and a time stamp, returns the time stamp's date part value.

Syntax

EXTRACT(date_part FROM timestamp)

Parameters

date_part

Specifies which part of the time stamps to extract. This can be one of the following:
• year
• month
• day
• hour
• minute
• second
• timezone_hour
• timezone_minute

timestamp

The target time stamp that the function operates on.

Examples

EXTRACT(YEAR FROM `2010-01-01T`) -- 2010
EXTRACT(MONTH FROM `2010T`) -- 1 (equivalent to
 2010-01-01T00:00:00.000Z)

API Version 2006-03-01
731

Amazon Simple Storage Service Developer Guide
Date Functions

EXTRACT(MONTH FROM `2010-10T`) -- 10
EXTRACT(HOUR FROM `2017-01-02T03:04:05+07:08`) -- 3
EXTRACT(MINUTE FROM `2017-01-02T03:04:05+07:08`) -- 4
EXTRACT(TIMEZONE_HOUR FROM `2017-01-02T03:04:05+07:08`) -- 7
EXTRACT(TIMEZONE_MINUTE FROM `2017-01-02T03:04:05+07:08`) -- 8

TO_STRING
Given a time stamp and a format pattern, returns a string representation of the time stamp in the given
format.

Syntax

TO_STRING (timestamp time_format_pattern)

Parameters

timestamp

The target time stamp that the function operates on.
time_format_pattern

A string that has the following special character interpretations.

Format Example Description

yy 69 2-digit year

y 1969 4-digit year

yyyy 1969 Zero-padded 4-
digit year

M 1 Month of year

MM 01 Zero-padded
month of year

MMM Jan Abbreviated
month year
name

MMMM January Full month of
year name

MMMMM J Month of year
first letter
(NOTE: not valid
for use with
to_timestamp
function)

d 2 Day of month
(1-31)

dd 02 Zero-padded
day of month
(01-31)

API Version 2006-03-01
732

Amazon Simple Storage Service Developer Guide
Date Functions

Format Example Description

a AM AM or PM of
day

h 3 Hour of day
(1-12)

hh 03 Zero-padded
hour of day
(01-12)

H 3 Hour of day
(0-23)

HH 03 Zero-padded
hour of day
(00-23)

m 4 Minute of hour
(0-59)

mm 04 Zero-padded
minute of hour
(00-59)

s 5 Second of
minute (0-59)

ss 05 Zero-padded
second of
minute (00-59)

S 0 Fraction
of second
(precision: 0.1,
range: 0.0-0.9)

SS 6 Fraction
of second
(precision: 0.01,
range: 0.0-0.99)

SSS 60 Fraction
of second
(precision:
0.001, range:
0.0-0.999)

… … …

SSSSSSSSS 60000000 Fraction
of second
(maximum
precision: 1
nanosecond,
range:
0.0-0.999999999)

n 60000000 Nano of second

API Version 2006-03-01
733

Amazon Simple Storage Service Developer Guide
Date Functions

Format Example Description

X +07 or Z Offset in hours
or "Z" if the
offset is 0

XX or XXXX +0700 or Z Offset in hours
and minutes or
"Z" if the offset
is 0

XXX or XXXXX +07:00 or Z Offset in hours
and minutes or
"Z" if the offset
is 0

x 7 Offset in hours

xx or xxxx 700 Offset in hours
and minutes

xxx or xxxxx +07:00 Offset in hours
and minutes

Examples

TO_STRING(`1969-07-20T20:18Z`, 'MMMM d, y') -- "July 20, 1969"
TO_STRING(`1969-07-20T20:18Z`, 'MMM d, yyyy') -- "Jul 20, 1969"
TO_STRING(`1969-07-20T20:18Z`, 'M-d-yy') -- "7-20-69"
TO_STRING(`1969-07-20T20:18Z`, 'MM-d-y') -- "07-20-1969"
TO_STRING(`1969-07-20T20:18Z`, 'MMMM d, y h:m a') -- "July 20, 1969 8:18 PM"
TO_STRING(`1969-07-20T20:18Z`, 'y-MM-dd''T''H:m:ssX') -- "1969-07-20T20:18:00Z"
TO_STRING(`1969-07-20T20:18+08:00Z`, 'y-MM-dd''T''H:m:ssX') -- "1969-07-20T20:18:00Z"
TO_STRING(`1969-07-20T20:18+08:00`, 'y-MM-dd''T''H:m:ssXXXX') --
 "1969-07-20T20:18:00+0800"
TO_STRING(`1969-07-20T20:18+08:00`, 'y-MM-dd''T''H:m:ssXXXXX') --
 "1969-07-20T20:18:00+08:00"

TO_TIMESTAMP
Given a string, converts it to a time stamp. This is the inverse operation of TO_STRING.

Syntax

TO_TIMESTAMP (string)

Parameters

string

The target string that the function operates on.

Examples

TO_TIMESTAMP('2007T') -- `2007T`

API Version 2006-03-01
734

Amazon Simple Storage Service Developer Guide
String Functions

TO_TIMESTAMP('2007-02-23T12:14:33.079-08:00') -- `2007-02-23T12:14:33.079-08:00`

UTCNOW
Returns the current time in UTC as a time stamp.

Syntax

UTCNOW()

Parameters

none

Examples

UTCNOW() -- 2017-10-13T16:02:11.123Z

String Functions
Amazon S3 Select and Glacier Select support the following string functions.

Topics

• CHAR_LENGTH, CHARACTER_LENGTH (p. 735)

• LOWER (p. 736)

• SUBSTRING (p. 736)

• TRIM (p. 737)

• UPPER (p. 737)

CHAR_LENGTH, CHARACTER_LENGTH
Counts the number of characters in the specified string.

Note
CHAR_LENGTH and CHARACTER_LENGTH are synonyms.

Syntax

CHAR_LENGTH (string)

Parameters

string

The target string that the function operates on.

Examples

CHAR_LENGTH('') -- 0

API Version 2006-03-01
735

Amazon Simple Storage Service Developer Guide
String Functions

CHAR_LENGTH('abcdefg') -- 7

LOWER
Given a string, converts all uppercase characters to lowercase characters. Any non-uppercased characters
remain unchanged.

Syntax

LOWER (string)

Parameters

string

The target string that the function operates on.

Examples

LOWER('AbCdEfG!@#$') -- 'abcdefg!@#$'

SUBSTRING
Given a string, a start index, and optionally a length, returns the substring from the start index up to the
end of the string, or up to the length provided.

Note
The first character of the input string has index 1. If start is < 1, it is set to 1.

Syntax

SUBSTRING(string FROM start [FOR length])

Parameters

string

The target string that the function operates on.
start

The start position of the string.
length

The length of the substring to return. If not present, proceed to the end of the string.

Examples

SUBSTRING("123456789", 0) -- "123456789"
SUBSTRING("123456789", 1) -- "123456789"
SUBSTRING("123456789", 2) -- "23456789"
SUBSTRING("123456789", -4) -- "123456789"
SUBSTRING("123456789", 0, 999) -- "123456789"
SUBSTRING("123456789", 1, 5) -- "12345"

API Version 2006-03-01
736

Amazon Simple Storage Service Developer Guide
String Functions

TRIM
Trims leading or trailing characters from a string. The default character to remove is ' '.

Syntax

TRIM ([[LEADING | TRAILING | BOTH remove_chars] FROM] string)

Parameters

string

The target string that the function operates on.
LEADING | TRAILING | BOTH

Whether to trim leading or trailing characters, or both leading and trailing characters.
remove_chars

The set of characters to remove. Note that remove_chars can be a string with length > 1. This
function returns the string with any character from remove_chars found at the beginning or end of
the string that was removed.

Examples

TRIM(' foobar ') -- 'foobar'
TRIM(' \tfoobar\t ') -- '\tfoobar\t'
TRIM(LEADING FROM ' foobar ') -- 'foobar '
TRIM(TRAILING FROM ' foobar ') -- ' foobar'
TRIM(BOTH FROM ' foobar ') -- 'foobar'
TRIM(BOTH '12' FROM '1112211foobar22211122') -- 'foobar'

UPPER
Given a string, converts all lowercase characters to uppercase characters. Any non-lowercased characters
remain unchanged.

Syntax

UPPER (string)

Parameters

string

The target string that the function operates on.

Examples

UPPER('AbCdEfG!@#$') -- 'ABCDEFG!@#$'

API Version 2006-03-01
737

Amazon Simple Storage Service Developer Guide

Document History
• Latest documentation update: September 18, 2019
• Current API version: 2006-03-01

The following table describes the important changes in each release of the Amazon Simple Storage
Service Developer Guide from June 19, 2018, onward. For notification about updates to this
documentation, you can subscribe to an RSS feed.

update-history-change update-history-description update-history-date

Same-Region
replication (p. 738)

Same-Region replication (SRR)
is used to copy objects across
Amazon S3 buckets in the same
AWS Region. For information
about both cross-Region and
same-Region replication, see
Replication.

September 18, 2019

Cross-Region replication support
for object lock (p. 738)

Cross-Region replication now
supports Amazon S3 object lock.
For more information, see Cross-
Region Replication and What
Does Amazon S3 Replicate?.

May 28, 2019

Amazon S3 batch operations
 (p. 738)

Using Amazon S3 batch
operations you can perform
large-scale batch operations on
Amazon S3 objects. Amazon S3
batch operations can execute
a single operation on lists of
objects that you specify. A single
job can perform the specified
operation on billions of objects
containing exabytes of data.
For more information, see
Performing Batch Operations.

April 30, 2019

Asia Pacific (Hong Kong)
Region (p. 738)

Amazon S3 is now available in
the Asia Pacific (Hong Kong)
Region. For more information
about Amazon S3 Regions and
endpoints, see Regions and
Endpoints in the AWS General
Reference.

April 24, 2019

Added a new field to the server
access logs (p. 738)

Amazon S3 added the following
new field to the server access
logs: Transport Layer Security
(TLS) version. For more
information, see Amazon S3
Server Access Log Format.

March 28, 2019

API Version 2006-03-01
738

https://docs.aws.amazon.com/AmazonS3/latest/dev/replication.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/replication.html#replication-requirements
https://docs.aws.amazon.com/AmazonS3/latest/dev/replication.html#replication-requirements
https://docs.aws.amazon.com/AmazonS3/latest/dev/replication-what-is-isnot-replicated.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/replication-what-is-isnot-replicated.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/batch-ops.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
https://docs.aws.amazon.com/AmazonS3/latest/dev/LogFormat.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/LogFormat.html

Amazon Simple Storage Service Developer Guide

New archive storage class
 (p. 738)

Amazon S3 now offers a
new archive storage class,
DEEP_ARCHIVE, for storing
rarely accessed objects. For more
information, see Storage Classes.

March 27, 2019

Added new fields to the server
access logs (p. 738)

Amazon S3 added the following
new fields to the server access
logs: Host Id, Signature Version,
Cipher Suite, Authentication
Type, and Host Header. For more
information, see Amazon S3
Server Access Log Format.

March 5, 2019

Support for Parquet-formatted
Amazon S3 inventory
files (p. 738)

Amazon S3 now supports the
Apache Parquet (Parquet)
format in addition to the
Apache optimized row columnar
(ORC) and comma-separated
values (CSV) file formats for
inventory output files. For more
information, see Amazon S3
Inventory.

December 4, 2018

Restore speed upgrade (p. 738) Using Amazon S3 restore speed
upgrade you can change the
speed of a restoration from the
GLACIER storage class to a faster
speed while the restoration is in
progress. For more information,
see Restoring Archived Objects.

November 26, 2018

Restore event
notifications (p. 738)

Amazon S3 event notifications
now supports initiation and
completion events when
restoring objects from the
GLACIER storage class. For
more information, see Event
Notifications.

November 26, 2018

API Version 2006-03-01
739

https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-class-intro.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/LogFormat.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/LogFormat.html
https://parquet.apache.org/
https://orc.apache.org/
https://orc.apache.org/
https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-inventory.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-inventory.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/restoring-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html

Amazon Simple Storage Service Developer Guide

PUT directly to the GLACIER
storage class (p. 738)

The Amazon S3 PUT operation
now supports specifying
GLACIER as the storage
class when creating objects.
Previously, you had to transition
objects to the GLACIER storage
class from another Amazon S3
storage class. Also, when using
cross-Region replication (CRR),
you can now specify GLACIER as
the storage class for replicated
objects. For more information
about the GLACIER storage
class, see Storage Classes.
For more information about
specifying the storage class for
replicated objects, Replication
Configuration Overview. For
more information about the
direct PUT to GLACIER REST API
changes, see Document History:
PUT directly to GLACIER.

November 26, 2018

New storage class (p. 738) Amazon S3 now offers a
new storage class named
INTELLIGENT_TIERING that is
designed for long-lived data
with changing or unknown
access patterns. For more
information, see Storage Classes.

November 26, 2018

Amazon S3 Object
Lock (p. 738)

Amazon S3 now offers Object
Lock functionality that
provides Write Once Read Many
protections for Amazon S3
objects. For more information,
see Locking Objects.

November 26, 2018

Amazon S3 Block Public
Access (p. 738)

Amazon S3 now includes the
ability to block public access to
buckets and objects on a per-
bucket or account-wide basis.
For more information, see Using
Amazon S3 Block Public Access.

November 15, 2018

Filtering enhancements in cross-
Region replication (CRR) rules
 (p. 738)

In a CRR rule configuration, you
can specify an object filter to
choose a subset of objects to
apply the rule to. Previously, you
could filter only on an object
key prefix. In this release, you
can filter on an object key prefix,
one or more object tags, or both.
For more information, see CRR
Setup: Replication Configuration
Overview.

September 19, 2018

API Version 2006-03-01
740

https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-class-info.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/replication-add-config.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/replication-add-config.html
https://docs.aws.amazon.com/AmazonS3/latest/API/WhatsNew.html
https://docs.aws.amazon.com/AmazonS3/latest/API/WhatsNew.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-class-intro.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lock.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/access-control-block-public-access.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/access-control-block-public-access.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/replication-add-config.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/replication-add-config.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/replication-add-config.html

Amazon Simple Storage Service Developer Guide
Earlier Updates

New Amazon S3 Select
features (p. 738)

Amazon S3 Select now
supports Apache Parquet
input, queries on nested JSON
objects, and two new Amazon
CloudWatch monitoring metrics
(SelectScannedBytes and
SelectReturnedBytes).

September 5, 2018

Updates now available over
RSS (p. 738)

You can now subscribe to an
RSS feed to receive notifications
about updates to the Amazon
Simple Storage Service
Developer Guide.

June 19, 2018

Earlier Updates
The following table describes the important changes in each release of the Amazon Simple Storage
Service Developer Guide before June 19, 2018.

Change Description Date

Code examples update Code examples updated:

• C#—Updated all of the examples to use the task-based
asynchronous pattern. For more information, see Amazon
Web Services Asynchronous APIs for .NET in the AWS SDK
for .NET Developer Guide. Code examples are now compliant
with version 3 of the AWS SDK for .NET.

• Java—Updated all of the examples to use the client builder
model. For more information about the client builder
model, see Creating Service Clients.

• PHP—Updated all of the examples to use the AWS SDK for
PHP 3.0. For more information about the AWS SDK for PHP
3.0, see AWS SDK for PHP.

• Ruby—Updated example code so that the examples work
with the AWS SDK for Ruby version 3.

April 30,
2018

Amazon S3 now
reports GLACIER and
ONEZONE_IA storage
classes to Amazon
CloudWatch Logs
storage metrics

In addition to reporting actual bytes, these storage metrics
include per-object overhead bytes for applicable storage
classes (ONEZONE_IA, STANDARD_IA, and GLACIER):

• For ONEZONE_IA and STANDARD_IA storage class objects,
Amazon S3 reports objects smaller than 128 KB as
128 KB. For more information, see Amazon S3 Storage
Classes (p. 103).

• For GLACIER storage class objects, the storage metrics
report the following overheads:
• A 32 KB per-object overhead, charged at GLACIER storage

class pricing
• An 8 KB per-object overhead, charged at STANDARD

storage class pricing

For more information, see Transitioning Objects Using
Amazon S3 Lifecycle (p. 121).

April 30,
2018

API Version 2006-03-01
741

https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/sdk-net-async-api.html
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/sdk-net-async-api.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/creating-clients.html
https://docs.aws.amazon.com/aws-sdk-php/v3/guide/

Amazon Simple Storage Service Developer Guide
Earlier Updates

Change Description Date

For more information about storage metrics, see Monitoring
Metrics with Amazon CloudWatch (p. 611).

New storage class Amazon S3 now offers a new storage class, ONEZONE_IA
(IA, for infrequent access) for storing objects. For more
information, see Amazon S3 Storage Classes (p. 103).

April 4,
2018

Amazon S3 Select Amazon S3 now supports retrieving object content based
on an SQL expression. For more information, see Selecting
Content from Objects (p. 245).

April 4,
2018

Asia Pacific (Osaka-
Local) Region

Amazon S3 is now available in the Asia Pacific (Osaka-Local)
Region. For more information about Amazon S3 Regions and
endpoints, see Regions and Endpoints in the AWS General
Reference.

Important
You can use the Asia Pacific (Osaka-Local) Region
only in conjunction with the Asia Pacific (Tokyo)
Region. To request access to Asia Pacific (Osaka-Local)
Region, contact your sales representative.

February
12, 2018

Amazon S3 inventory
creation timestamp

Amazon S3 inventory now includes a timestamp of the date
and start time of the creation of the Amazon S3 inventory
report. You can use the timestamp to determine changes
in your Amazon S3 storage from the start time of when the
inventory report was generated.

January 16,
2018

EU (Paris) Region Amazon S3 is now available in the EU (Paris) Region. For more
information about Amazon S3 Regions and endpoints, see
Regions and Endpoints in the AWS General Reference.

December
18, 2017

China (Ningxia) Region Amazon S3 is now available in the China (Ningxia) Region. For
more information about Amazon S3 Regions and endpoints,
see Regions and Endpoints in the AWS General Reference.

December
11, 2017

Querying archives with
SQL

Amazon S3 now supports querying Glacier data archives
with SQL. For more information, see Querying Archived
Objects (p. 253).

November
29, 2017

Support for ORC-
formatted Amazon S3
inventory files

Amazon S3 now supports the Apache optimized row columnar
(ORC) format in addition to comma-separated values (CSV)
file format for inventory output files. Also, you can now query
Amazon S3 inventory using standard SQL by using Amazon
Athena, Amazon Redshift Spectrum, and other tools such as
Presto, Apache Hive, and Apache Spark. For more information,
see Amazon S3 Inventory (p. 422).

November
17, 2017

Default encryption for
S3 buckets

Amazon S3 default encryption provides a way to set the
default encryption behavior for an S3 bucket. You can
set default encryption on a bucket so that all objects are
encrypted when they are stored in the bucket. The objects are
encrypted using server-side encryption with either Amazon
S3-managed keys (SSE-S3) or AWS KMS-managed keys
(SSE-KMS). For more information, see Amazon S3 Default
Encryption for S3 Buckets (p. 66).

November
06, 2017

API Version 2006-03-01
742

https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
https://orc.apache.org/
https://orc.apache.org/
https://prestodb.io/
https://hive.apache.org/
https://databricks.com/spark/about/

Amazon Simple Storage Service Developer Guide
Earlier Updates

Change Description Date

Encryption status in
Amazon S3 inventory

Amazon S3 now supports including encryption status in
Amazon S3 inventory so you can see how your objects are
encrypted at rest for compliance auditing or other purposes.
You can also configure to encrypt S3 inventory with server-
side encryption (SSE) or SSE-KMS so that all inventory files are
encrypted accordingly. For more information, see Amazon S3
Inventory (p. 422).

November
06, 2017

Cross-Region replication
(CRR) enhancements

Cross-Region replication now supports the following:

• In a cross-account scenario, you can add a CRR configuration
to change replica ownership to the AWS account that
owns the destination bucket. For more information, see
Additional Replication Configuration: Changing the Replica
Owner (p. 568).

• By default, Amazon S3 does not replicate objects in
your source bucket that are created using server-side
encryption using keys stored in AWS KMS In your CRR
configuration, you can now direct Amazon S3 to replicate
these objects. For more information, see Additional
Replication Configuration: Replicating Objects Created with
Server-Side Encryption (SSE) Using Encryption Keys stored
in AWS KMS (p. 570).

November
06, 2017

EU (London) Region Amazon S3 is now available in the EU (London) Region. For
more information about Amazon S3 Regions and endpoints,
see Regions and Endpoints in the AWS General Reference.

December
13, 2016

Canada (Central) Region Amazon S3 is now available in the Canada (Central) Region.
For more information about Amazon S3 Regions and
endpoints, see Regions and Endpoints in the AWS General
Reference.

December
8, 2016

Object tagging Amazon S3 now supports object tagging. Object tagging
enables you to categorize storage. Object key name prefixes
also enable you to categorize storage, object tagging adds
another dimension to it.

There are added benefits tagging offers. These include:

• Object tags enable fine-grained access control of
permissions (for example, you could grant an IAM user
permissions to read-only objects with specific tags).

• Fine-grained control in specifying lifecycle configuration.
You can specify tags to select a subset of objects to which
lifecycle rule applies.

• If you have cross-Region replication (CRR) configured,
Amazon S3 can replicate the tags. You must grant necessary
permission to the IAM role created for Amazon S3 to
assume to replicate objects on your behalf.

• You can also customize CloudWatch metrics and CloudTrail
events to display information by specific tag filters.

For more information, see Object Tagging (p. 110).

November
29, 2016

API Version 2006-03-01
743

https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Amazon Simple Storage Service Developer Guide
Earlier Updates

Change Description Date

Amazon S3 lifecycle
now supports tag-based
filters

Amazon S3 now supports tag-based filtering in lifecycle
configuration. You can now specify lifecycle rules in which
you can specify a key prefix, one or more object tags, or a
combination of both to select a subset of objects to which
the lifecycle rule applies. For more information, see Object
Lifecycle Management (p. 119).

November
29, 2016

CloudWatch request
metrics for buckets

Amazon S3 now supports CloudWatch metrics for requests
made on buckets. When you enable these metrics for a
bucket, the metrics report at 1-minute intervals. You can also
configure which objects in a bucket will report these request
metrics. For more information, see Monitoring Metrics with
Amazon CloudWatch (p. 611).

November
29, 2016

Amazon S3 Inventory Amazon S3 now supports storage inventory. Amazon S3
inventory provides a flat-file output of your objects and their
corresponding metadata on a daily or weekly basis for an S3
bucket or a shared prefix (that is, objects that have names that
begin with a common string).

For more information, see Amazon S3 Inventory (p. 422).

November
29, 2016

Amazon S3 Analytics –
Storage Class Analysis

The new Amazon S3 analytics – storage class analysis feature
observes data access patterns to help you determine when
to transition less frequently accessed STANDARD storage to
the STANDARD_IA (IA, for infrequent access) storage class.
After storage class analysis observes the infrequent access
patterns of a filtered set of data over a period of time, you
can use the analysis results to help you improve your lifecycle
policies. This feature also includes a detailed daily analysis of
your storage usage at the specified bucket, prefix, or tag level
that you can export to an S3 bucket.

For more information, see Amazon S3 Analytics – Storage
Class Analysis (p. 257) in the Amazon Simple Storage Service
Developer Guide.

November
29, 2016

New Expedited and
Bulk data retrievals
when restoring archived
objects from Glacier

Amazon S3 now supports Expedited and Bulk data retrievals
in addition to Standard retrievals when restoring objects
archived to Glacier. For more information, see Restoring
Archived Objects (p. 248).

November
21, 2016

CloudTrail object
logging

CloudTrail supports logging Amazon S3 object level
API operations such as GetObject, PutObject, and
DeleteObject. You can configure your event selectors to log
object level API operations. For more information, see Logging
Amazon S3 API Calls by Using AWS CloudTrail (p. 621).

November
21, 2016

US East (Ohio) Region Amazon S3 is now available in the US East (Ohio) Region. For
more information about Amazon S3 Regions and endpoints,
see Regions and Endpoints in the AWS General Reference.

October
17, 2016

API Version 2006-03-01
744

https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Amazon Simple Storage Service Developer Guide
Earlier Updates

Change Description Date

IPv6 support for
Amazon S3 Transfer
Acceleration

Amazon S3 now supports Internet Protocol version 6 (IPv6)
for Amazon S3 Transfer Acceleration. You can connect to
Amazon S3 over IPv6 by using the new dual-stack for Transfer
Acceleration endpoint. For more information, see Getting
Started with Amazon S3 Transfer Acceleration (p. 74).

October 6,
2016

IPv6 support Amazon S3 now supports Internet Protocol version 6 (IPv6).
You can access Amazon S3 over IPv6 by using dual-stack
endpoints. For more information, see Making Requests to
Amazon S3 over IPv6 (p. 12).

August 11,
2016

Asia Pacific (Mumbai)
Region

Amazon S3 is now available in the Asia Pacific (Mumbai)
Region. For more information about Amazon S3 Regions and
endpoints, see Regions and Endpoints in the AWS General
Reference.

June 27,
2016

Amazon S3 Transfer
Acceleration

Amazon S3 Transfer Acceleration enables fast, easy, and
secure transfers of files over long distances between your
client and an S3 bucket. Transfer Acceleration takes advantage
of Amazon CloudFront’s globally distributed edge locations.

For more information, see Amazon S3 Transfer
Acceleration (p. 73).

April 19,
2016

Lifecycle support to
remove expired object
delete markers

Lifecycle configuration Expiration action now allows you
to direct Amazon S3 to remove expired object delete markers
in a versioned bucket. For more information, see Elements to
Describe Lifecycle Actions (p. 130).

March 16,
2016

API Version 2006-03-01
745

https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Amazon Simple Storage Service Developer Guide
Earlier Updates

Change Description Date

Bucket lifecycle
configuration now
supports action to abort
incomplete multipart
uploads

Bucket lifecycle configuration now supports the
AbortIncompleteMultipartUpload action that you can
use to direct Amazon S3 to abort multipart uploads that
don't complete within a specified number of days after being
initiated. When a multipart upload becomes eligible for an
abort operation, Amazon S3 deletes any uploaded parts and
aborts the multipart upload.

For conceptual information, see the following topics in the
Amazon Simple Storage Service Developer Guide:

• Aborting Incomplete Multipart Uploads Using a Bucket
Lifecycle Policy (p. 177)

• Elements to Describe Lifecycle Actions (p. 130)

The following API operations have been updated to support
the new action:

• PUT Bucket lifecycle – The XML configuration now allows
you to specify the AbortIncompleteMultipartUpload
action in a lifecycle configuration rule.

• List Parts and Initiate Multipart Upload – Both of these
API operations now return two additional response
headers (x-amz-abort-date, and x-amz-abort-rule-
id) if the bucket has a lifecycle rule that specifies the
AbortIncompleteMultipartUpload action. These
headers in the response indicate when the initiated
multipart upload will become eligible for abort operation
and which lifecycle rule is applicable.

March 16,
2016

Asia Pacific (Seoul)
Region

Amazon S3 is now available in the Asia Pacific (Seoul)
Region. For more information about Amazon S3 Regions and
endpoints, see Regions and Endpoints in the AWS General
Reference.

January 6,
2016

New condition key and
a Multipart Upload
change

IAM policies now support an Amazon S3 s3:x-amz-
storage-class condition key. For more information, see
Specifying Conditions in a Policy (p. 350).

You no longer need to be the initiator of a multipart upload to
upload parts and complete the upload. For more information,
see Multipart Upload API and Permissions (p. 179).

December
14, 2015

Renamed the US
Standard Region

Changed the Region name string from "US Standard" to "US
East (N. Virginia)." This is only a Region name update, there is
no change in the functionality.

December
11, 2015

API Version 2006-03-01
746

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUTlifecycle.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadListParts.html
https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadInitiate.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

Amazon Simple Storage Service Developer Guide
Earlier Updates

Change Description Date

New storage class Amazon S3 now offers a new storage class, STANDARD_IA (IA,
for infrequent access) for storing objects. This storage class is
optimized for long-lived and less frequently accessed data. For
more information, see Amazon S3 Storage Classes (p. 103).

Lifecycle configuration feature updates now allow you to
transition objects to the STANDARD_IA storage class. For more
information, see Object Lifecycle Management (p. 119).

Previously, the cross-Region replication feature used the
storage class of the source object for object replicas. Now,
when you configure cross-Region replication you can specify a
storage class for the object replica created in the destination
bucket. For more information, see Replication (p. 551).

September
16, 2015

AWS CloudTrail
integration

New AWS CloudTrail integration allows you to record
Amazon S3 API activity in your S3 bucket. You can use
CloudTrail to track S3 bucket creations or deletions, access
control modifications, or lifecycle policy changes. For more
information, see Logging Amazon S3 API Calls by Using AWS
CloudTrail (p. 621).

September
1, 2015

Bucket limit increase Amazon S3 now supports bucket limit increases. By default,
customers can create up to 100 buckets in their AWS account.
Customers who need additional buckets can increase that
limit by submitting a service limit increase. For information
about how to increase your bucket limit, go to AWS Service
Limits in the AWS General Reference. For more information,
see Creating a Bucket (p. 53) and Bucket Restrictions and
Limitations (p. 58).

August 4,
2015

Consistency model
update

Amazon S3 now supports read-after-write consistency for
new objects added to Amazon S3 in the US East (N. Virginia)
Region. Prior to this update, all Regions except US East (N.
Virginia) Region supported read-after-write consistency for
new objects uploaded to Amazon S3. With this enhancement,
Amazon S3 now supports read-after-write consistency in all
Regions for new objects added to Amazon S3. Read-after-
write consistency allows you to retrieve objects immediately
after creation in Amazon S3. For more information, see
Regions (p. 4).

August 4,
2015

Event notifications Amazon S3 event notifications have been updated to
add notifications when objects are deleted and to add
filtering on object names with prefix and suffix matching.
For more information, see Configuring Amazon S3 Event
Notifications (p. 530).

July 28,
2015

Amazon CloudWatch
integration

New Amazon CloudWatch integration allows you to monitor
and set alarms on your Amazon S3 usage through CloudWatch
metrics for Amazon S3. Supported metrics include total bytes
for standard storage, total bytes for reduced-redundancy
storage, and total number of objects for a given S3 bucket.
For more information, see Monitoring Metrics with Amazon
CloudWatch (p. 611).

July 28,
2015

API Version 2006-03-01
747

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon Simple Storage Service Developer Guide
Earlier Updates

Change Description Date

Support for deleting
and emptying non-
empty buckets

Amazon S3 now supports deleting and emptying non-empty
buckets. For more information, see Deleting or Emptying a
Bucket (p. 62).

July 16,
2015

Bucket policies for
Amazon VPC endpoints

Amazon S3 has added support for bucket policies for Amazon
Virtual Private Cloud (Amazon VPC) endpoints. You can use
S3 bucket policies to control access to buckets from specific
Amazon VPC endpoints, or specific VPCs. VPC endpoints are
easy to configure, are highly reliable, and provide a secure
connection to Amazon S3 without requiring a gateway or
a NAT instance. For more information, see Example Bucket
Policies for VPC Endpoints for Amazon S3 (p. 378).

April 29,
2015

Event notifications Amazon S3 event notifications have been updated to support
the switch to resource-based permissions for AWS Lambda
functions. For more information, see Configuring Amazon S3
Event Notifications (p. 530).

April 9,
2015

Cross-Region replication Amazon S3 now supports cross-Region replication. Cross-
Region replication is the automatic, asynchronous copying
of objects across buckets in different AWS Regions. For more
information, see Replication (p. 551).

March 24,
2015

Event notifications Amazon S3 now supports new event types and
destinations in a bucket notification configuration.
Prior to this release, Amazon S3 supported only the
s3:ReducedRedundancyLostObject event type and an Amazon
SNS topic as the destination. For more information about
the new event types, see Configuring Amazon S3 Event
Notifications (p. 530).

November
13, 2014

Server-side encryption
with customer-provided
encryption keys

Server-side encryption with AWS Key Management Service
(AWS KMS)

Amazon S3 now supports server-side encryption using AWS
Key Management Service. This feature allows you to manage
the envelope key through AWS KMS, and Amazon S3 calls
AWS KMS to access the envelope key within the permissions
you set.

For more information about server-side encryption with AWS
KMS, see Protecting Data Using Server-Side Encryption with
AWS Key Management Service.

November
12, 2014

EU (Frankfurt) Region Amazon S3 is now available in the EU (Frankfurt) Region. October
23, 2014

API Version 2006-03-01
748

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html

Amazon Simple Storage Service Developer Guide
Earlier Updates

Change Description Date

Server-side encryption
with customer-provided
encryption keys

Amazon S3 now supports server-side encryption using
customer-provided encryption keys (SSE-C). Server-side
encryption enables you to request Amazon S3 to encrypt your
data at rest. When using SSE-C, Amazon S3 encrypts your
objects with the custom encryption keys that you provide.
Since Amazon S3 performs the encryption for you, you get the
benefits of using your own encryption keys without the cost of
writing or executing your own encryption code.

For more information about SSE-C, see Server-Side Encryption
(Using Customer-Provided Encryption Keys).

June 12,
2014

Lifecycle support for
versioning

Prior to this release, lifecycle configuration was supported
only on nonversioned buckets. Now you can configure lifecycle
on both nonversioned and versioning-enabled buckets. For
more information, see Object Lifecycle Management (p. 119).

May 20,
2014

Access control topics
revised

Revised Amazon S3 access control documentation. For more
information, see Identity and Access Management in Amazon
S3 (p. 301).

April 15,
2014

Server access logging
topic revised

Revised server access logging documentation. For more
information, see Amazon S3 Server Access Logging (p. 647).

November
26, 2013

.NET SDK samples
updated to version 2.0

.NET SDK samples in this guide are now compliant to version
2.0.

November
26, 2013

SOAP Support Over
HTTP Deprecated

SOAP support over HTTP is deprecated, but it is still available
over HTTPS. New Amazon S3 features will not be supported
for SOAP. We recommend that you use either the REST API or
the AWS SDKs.

September
20, 2013

IAM policy variable
support

The IAM access policy language now supports variables. When
a policy is evaluated, any policy variables are replaced with
values that are supplied by context-based information from
the authenticated user’s session. You can use policy variables
to define general purpose policies without explicitly listing
all the components of the policy. For more information about
policy variables, see IAM Policy Variables Overview in the IAM
User Guide.

For examples of policy variables in Amazon S3, see User Policy
Examples (p. 380).

April 3,
2013

Console support for
Requester Pays

You can now configure your bucket for Requester Pays
by using the Amazon S3 console. For more information,
see Configure Requester Pays by Using the Amazon S3
Console (p. 81).

December
31, 2012

API Version 2006-03-01
749

https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html

Amazon Simple Storage Service Developer Guide
Earlier Updates

Change Description Date

Root domain support
for website hosting

Amazon S3 now supports hosting static websites at the root
domain. Visitors to your website can access your site from
their browser without specifying "www" in the web address
(e.g., "example.com"). Many customers already host static
websites on Amazon S3 that are accessible from a "www"
subdomain (e.g., "www.example.com"). Previously, to support
root domain access, you needed to run your own web server
to proxy root domain requests from browsers to your website
on Amazon S3. Running a web server to proxy requests
introduces additional costs, operational burden, and another
potential point of failure. Now, you can take advantage of the
high availability and durability of Amazon S3 for both "www"
and root domain addresses. For more information, see Hosting
a Static Website on Amazon S3 (p. 503).

December
27, 2012

Console revision Amazon S3 console has been updated. The documentation
topics that refer to the console have been revised accordingly.

December
14, 2012

Support for Archiving
Data to Glacier

Amazon S3 now supports a storage option that enables you
to utilize Glacier's low-cost storage service for data archival.
To archive objects, you define archival rules identifying objects
and a timeline when you want Amazon S3 to archive these
objects to Glacier. You can easily set the rules on a bucket
using the Amazon S3 console or programmatically using the
Amazon S3 API or AWS SDKs.

For more information, see Object Lifecycle
Management (p. 119).

November
13, 2012

Support for Website
Page Redirects

For a bucket that is configured as a website, Amazon
S3 now supports redirecting a request for an object to
another object in the same bucket or to an external URL. For
more information, see (Optional) Configuring a Webpage
Redirect (p. 510).

For information about hosting websites, see Hosting a Static
Website on Amazon S3 (p. 503).

October 4,
2012

Support for Cross-
Origin Resource Sharing
(CORS)

Amazon S3 now supports Cross-Origin Resource Sharing
(CORS). CORS defines a way in which client web applications
that are loaded in one domain can interact with or access
resources in a different domain. With CORS support in
Amazon S3, you can build rich client-side web applications
on top of Amazon S3 and selectively allow cross-domain
access to your Amazon S3 resources. For more information,
see Cross-Origin Resource Sharing (CORS) (p. 151).

August 31,
2012

Support for Cost
Allocation Tags

Amazon S3 now supports cost allocation tagging, which
allows you to label S3 buckets so you can more easily
track their cost against projects or other criteria. For more
information about using tagging for buckets, see Using Cost
Allocation S3 Bucket Tags (p. 95).

August 21,
2012

API Version 2006-03-01
750

Amazon Simple Storage Service Developer Guide
Earlier Updates

Change Description Date

Support for MFA-
protected API access in
bucket policies

Amazon S3 now supports MFA-protected API access, a feature
that can enforce AWS Multi-Factor Authentication for an extra
level of security when accessing your Amazon S3 resources.
It is a security feature that requires users to prove physical
possession of an MFA device by providing a valid MFA code.
For more information, go to AWS Multi-Factor Authentication.
You can now require MFA authentication for any requests to
access your Amazon S3 resources.

To enforce MFA authentication, Amazon S3 now supports the
aws:MultiFactorAuthAge key in a bucket policy. For an
example bucket policy, see Adding a Bucket Policy to Require
MFA (p. 375).

July 10,
2012

Object Expiration
support

You can use Object Expiration to schedule automatic removal
of data after a configured time period. You set object
expiration by adding lifecycle configuration to a bucket.

27
December
2011

New Region supported Amazon S3 now supports the South America (São Paulo)
Region. For more information, see Accessing a Bucket (p. 55).

December
14, 2011

Multi-Object Delete Amazon S3 now supports Multi-Object Delete API that
enables you to delete multiple objects in a single request.
With this feature, you can remove large numbers of objects
from Amazon S3 more quickly than using multiple individual
DELETE requests. For more information, see Deleting
Objects (p. 227).

December
7, 2011

New Region supported Amazon S3 now supports the US West (Oregon) Region. For
more information, see Buckets and Regions (p. 55).

November
8, 2011

Documentation Update Documentation bug fixes. November
8, 2011

Documentation Update In addition to documentation bug fixes, this release includes
the following enhancements:

• New server-side encryption sections using the AWS SDK
for PHP (see Specifying Server-Side Encryption Using the
AWS SDK for PHP (p. 275)) and the AWS SDK for Ruby (see
Specifying Server-Side Encryption Using the AWS SDK for
Ruby (p. 277)).

• New section on creating and testing Ruby samples (see
Using the AWS SDK for Ruby - Version 3 (p. 679)).

October
17, 2011

Server-side encryption
support

Amazon S3 now supports server-side encryption. It enables
you to request Amazon S3 to encrypt your data at rest, that is,
encrypt your object data when Amazon S3 writes your data to
disks in its data centers. In addition to REST API updates, the
AWS SDK for Java and .NET provide necessary functionality
to request server-side encryption. You can also request
server-side encryption when uploading objects using AWS
Management Console. To learn more about data encryption,
go to Using Data Encryption.

October 4,
2011

API Version 2006-03-01
751

https://aws.amazon.com/iam/details/mfa/
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html

Amazon Simple Storage Service Developer Guide
Earlier Updates

Change Description Date

Documentation Update In addition to documentation bug fixes, this release includes
the following enhancements:

• Added Ruby and PHP samples to the Making
Requests (p. 10) section.

• Added sections describing how to generate and use
presigned URLs. For more information, see Share an Object
with Others (p. 167) and Uploading Objects Using Presigned
URLs (p. 206).

• Updated an existing section to introduce AWS Explorers for
Eclipse and Visual Studio. For more information, see Using
the AWS SDKs, CLI, and Explorers (p. 669).

September
22, 2011

Support for sending
requests using
temporary security
credentials

In addition to using your AWS account and IAM user security
credentials to send authenticated requests to Amazon S3, you
can now send requests using temporary security credentials
you obtain from AWS Identity and Access Management
(IAM). You can use the AWS Security Token Service API or
the AWS SDK wrapper libraries to request these temporary
credentials from IAM. You can request these temporary
security credentials for your own use or hand them out to
federated users and applications. This feature enables you
to manage your users outside AWS and provide them with
temporary security credentials to access your AWS resources.

For more information, see Making Requests (p. 10).

For more information about IAM support for temporary
security credentials, see Temporary Security Credentials in the
IAM User Guide.

August 3,
2011

Multipart Upload API
extended to enable
copying objects up to 5
TB

Prior to this release, Amazon S3 API supported copying
objects of up to 5 GB in size. To enable copying objects larger
than 5 GB, Amazon S3 now extends the multipart upload API
with a new operation, Upload Part (Copy). You can use
this multipart upload operation to copy objects up to 5 TB in
size. For more information, see Copying Objects (p. 210).

For conceptual information about multipart upload API, see
Uploading Objects Using Multipart Upload API (p. 175).

June 21,
2011

SOAP API calls over
HTTP disabled

To increase security, SOAP API calls over HTTP are disabled.
Authenticated and anonymous SOAP requests must be sent to
Amazon S3 using SSL.

June 6,
2011

API Version 2006-03-01
752

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

Amazon Simple Storage Service Developer Guide
Earlier Updates

Change Description Date

IAM enables cross-
account delegation

Previously, to access an Amazon S3 resource, an IAM user
needed permissions from both the parent AWS account and
the Amazon S3 resource owner. With cross-account access, the
IAM user now only needs permission from the owner account.
That is, If a resource owner grants access to an AWS account,
the AWS account can now grant its IAM users access to these
resources.

For more information, see Creating a Role to Delegate
Permissions to an IAM User in the IAM User Guide.

For more information on specifying principals in a bucket
policy, see Specifying a Principal in a Policy (p. 343).

June 6,
2011

New link This service's endpoint information is now located in the AWS
General Reference. For more information, go to Regions and
Endpoints in AWS General Reference.

March 1,
2011

Support for hosting
static websites in
Amazon S3

Amazon S3 introduces enhanced support for hosting static
websites. This includes support for index documents and
custom error documents. When using these features,
requests to the root of your bucket or a subfolder (e.g.,
http://mywebsite.com/subfolder) returns your index
document instead of the list of objects in your bucket. If
an error is encountered, Amazon S3 returns your custom
error message instead of an Amazon S3 error message. For
more information, see Hosting a Static Website on Amazon
S3 (p. 503).

February
17, 2011

Response Header API
Support

The GET Object REST API now allows you to change the
response headers of the REST GET Object request for
each request. That is, you can alter object metadata in
the response, without altering the object itself. For more
information, see Getting Objects (p. 161).

January 14,
2011

Large object support Amazon S3 has increased the maximum size of an object you
can store in an S3 bucket from 5 GB to 5 TB. If you are using
the REST API you can upload objects of up to 5 GB size in a
single PUT operation. For larger objects, you must use the
Multipart Upload REST API to upload objects in parts. For
more information, see Uploading Objects Using Multipart
Upload API (p. 175).

December
9, 2010

Multipart upload Multipart upload enables faster, more flexible uploads into
Amazon S3. It allows you to upload a single object as a set
of parts. For more information, see Uploading Objects Using
Multipart Upload API (p. 175).

November
10, 2010

Canonical ID support in
bucket policies

You can now specify canonical IDs in bucket policies. For more
information, see Access Policy Language Overview (p. 341)

September
17, 2010

Amazon S3 works with
IAM

This service now integrates with AWS Identity and Access
Management (IAM). For more information, go to AWS Services
That Work with IAM in the IAM User Guide.

September
2, 2010

API Version 2006-03-01
753

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Simple Storage Service Developer Guide
Earlier Updates

Change Description Date

Notifications The Amazon S3 notifications feature enables you to configure
a bucket so that Amazon S3 publishes a message to an
Amazon Simple Notification Service (Amazon SNS) topic
when Amazon S3 detects a key event on a bucket. For
more information, see Setting Up Notification of Bucket
Events (p. 530).

July 14,
2010

Bucket policies Bucket policies is an access management system you use to
set access permissions across buckets, objects, and sets of
objects. This functionality supplements and in many cases
replaces access control lists. For more information, see Using
Bucket Policies and User Policies (p. 341).

July 6,
2010

Path-style syntax
available in all Regions

Amazon S3 now supports the path-style syntax for any bucket
in the US Classic Region, or if the bucket is in the same Region
as the endpoint of the request. For more information, see
Virtual Hosting (p. 45).

June 9,
2010

New endpoint for EU
(Ireland)

Amazon S3 now provides an endpoint for EU (Ireland):
http://s3-eu-west-1.amazonaws.com.

June 9,
2010

Console You can now use Amazon S3 through the AWS Management
Console. You can read about all of the Amazon S3
functionality in the console in the Amazon Simple Storage
Service Console User Guide.

June 9,
2010

Reduced Redundancy Amazon S3 now enables you to reduce your storage costs by
storing objects in Amazon S3 with reduced redundancy. For
more information, see Reduced Redundancy Storage (p. 6).

May 12,
2010

New Region supported Amazon S3 now supports the Asia Pacific (Singapore) Region.
For more information, see Buckets and Regions (p. 55).

April 28,
2010

Object Versioning This release introduces object versioning. All objects now
can have a key and a version. If you enable versioning for
a bucket, Amazon S3 gives all objects added to a bucket a
unique version ID. This feature enables you to recover from
unintended overwrites and deletions. For more information,
see Versioning (p. 7) and Using Versioning (p. 432).

February 8,
2010

New Region supported Amazon S3 now supports the US West (N. California) Region.
The new endpoint for requests to this Region is s3-us-
west-1.amazonaws.com. For more information, see Buckets
and Regions (p. 55).

December
2, 2009

AWS SDK for .NET AWS now provides libraries, sample code, tutorials, and
other resources for software developers who prefer to build
applications using .NET language-specific API operations
instead of REST or SOAP. These libraries provide basic
functions (not included in the REST or SOAP APIs), such as
request authentication, request retries, and error handling
so that it's easier to get started. For more information about
language-specific libraries and resources, see Using the AWS
SDKs, CLI, and Explorers (p. 669).

November
11, 2009

API Version 2006-03-01
754

Amazon Simple Storage Service Developer Guide

AWS Glossary
For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

API Version 2006-03-01
755

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Amazon Simple Storage Service
	Table of Contents
	What is Amazon S3?
	How Do I...?

	Introduction to Amazon S3
	Overview of Amazon S3 and This Guide
	Advantages of Using Amazon S3
	Amazon S3 Concepts
	Buckets
	Objects
	Keys
	Regions
	Amazon S3 Data Consistency Model
	Concurrent Applications

	Amazon S3 Features
	Storage Classes
	Bucket Policies
	AWS Identity and Access Management
	Access Control Lists
	Versioning
	Operations

	Amazon S3 Application Programming Interfaces (API)
	The REST Interface
	The SOAP Interface

	Paying for Amazon S3
	Related Services

	Making Requests
	About Access Keys
	AWS Account Access Keys
	IAM User Access Keys
	Temporary Security Credentials

	Request Endpoints
	Making Requests to Amazon S3 over IPv6
	Getting Started Making Requests over IPv6
	Making Requests over IPv6 by Using Dual-Stack Endpoints
	Features Not Available over IPv6

	Using IPv6 Addresses in IAM Policies
	Testing IP Address Compatibility
	Using Amazon S3 Dual-Stack Endpoints
	Amazon S3 Dual-Stack Endpoints
	Using Dual-Stack Endpoints from the AWS CLI
	Using Dual-Stack Endpoints from the AWS SDKs
	AWS SDK for Java Dual-Stack Endpoint Example
	AWS .NET SDK Dual-Stack Endpoint Example

	Using Dual-Stack Endpoints from the REST API

	Making Requests Using the AWS SDKs
	Making Requests Using AWS Account or IAM User Credentials
	Making Requests Using AWS Account or IAM User Credentials - AWS SDK for Java
	Related Resources

	Making Requests Using AWS Account or IAM User Credentials - AWS SDK for .NET
	Related Resources

	Making Requests Using AWS Account or IAM User Credentials - AWS SDK for PHP
	Related Resources

	Making Requests Using AWS Account or IAM User Credentials - AWS SDK for Ruby

	Making Requests Using IAM User Temporary Credentials
	Making Requests Using IAM User Temporary Credentials - AWS SDK for Java
	Related Resources

	Making Requests Using IAM User Temporary Credentials - AWS SDK for .NET
	Related Resources

	Making Requests Using AWS Account or IAM User Temporary Credentials - AWS SDK for PHP
	Related Resources

	Making Requests Using IAM User Temporary Credentials - AWS SDK for Ruby

	Making Requests Using Federated User Temporary Credentials
	Making Requests Using Federated User Temporary Credentials - AWS SDK for Java
	Related Resources

	Making Requests Using Federated User Temporary Credentials - AWS SDK for .NET
	Related Resources

	Making Requests Using Federated User Temporary Credentials - AWS SDK for PHP
	Related Resources

	Making Requests Using Federated User Temporary Credentials - AWS SDK for Ruby

	Making Requests Using the REST API
	Making Requests to Dual-Stack Endpoints by Using the REST API
	Virtual Hosting of Buckets
	HTTP Host Header Bucket Specification
	Examples
	Customizing Amazon S3 URLs with CNAMEs
	Limitations
	Backward Compatibility

	Request Redirection and the REST API
	Redirects and HTTP User-Agents
	Redirects and 100-Continue
	Redirect Example

	Working with Amazon S3 Buckets
	Creating a Bucket
	About Permissions

	Managing Public Access to Buckets
	Accessing a Bucket
	Bucket Configuration Options
	Bucket Restrictions and Limitations
	Rules for Bucket Naming
	Legacy Non–DNS-Compliant Bucket Names

	Examples of Creating a Bucket
	Using the Amazon S3 Console
	Using the AWS SDK for Java
	Using the AWS SDK for .NET
	Using the AWS SDK for Ruby Version 3
	Using Other AWS SDKs

	Deleting or Emptying a Bucket
	Delete a Bucket
	Delete a Bucket: Using the Amazon S3 Console
	Delete a Bucket: Using the AWS CLI
	Delete a Bucket: Using Lifecycle Configuration
	Delete a Bucket: Using the AWS SDKs
	Delete a Bucket Using the AWS SDK for Java

	Empty a Bucket
	Empty a Bucket: Using the Amazon S3 console
	Empty a Bucket: Using the AWS CLI
	Empty a Bucket: Using Lifecycle Configuration
	Empty a Bucket: Using the AWS SDKs

	Amazon S3 Default Encryption for S3 Buckets
	How Do I Set Up Amazon S3 Default Encryption for an S3 Bucket?
	Moving to Default Encryption from Using Bucket Policies for Encryption Enforcement
	Using Default Encryption with Replication
	Monitoring Default Encryption with CloudTrail and CloudWatch
	More Info

	Managing Bucket Website Configuration
	Managing Websites with the AWS Management Console
	Managing Websites with the AWS SDK for Java
	Managing Websites with the AWS SDK for .NET
	Managing Websites with the AWS SDK for PHP
	Related Resources

	Managing Websites with the REST API

	Amazon S3 Transfer Acceleration
	Why Use Amazon S3 Transfer Acceleration?
	Using the Amazon S3 Transfer Acceleration Speed Comparison Tool

	Getting Started with Amazon S3 Transfer Acceleration
	Requirements for Using Amazon S3 Transfer Acceleration
	More Info

	Amazon S3 Transfer Acceleration Examples
	Using the Amazon S3 Console
	Using Transfer Acceleration from the AWS Command Line Interface (AWS CLI)
	Enabling Transfer Acceleration on a Bucket Using the AWS CLI
	Using the Transfer Acceleration from the AWS CLI
	AWS CLI Examples of Uploading an Object to a Bucket Enabled for Transfer Acceleration

	Using Transfer Acceleration from the AWS SDK for Java
	

	Using Transfer Acceleration from the AWS SDK for .NET
	Using Transfer Acceleration from the AWS SDK for JavaScript
	Using Transfer Acceleration from the AWS SDK for Python (Boto)
	Using Other AWS SDKs

	Requester Pays Buckets
	Configure Requester Pays by Using the Amazon S3 Console
	Configure Requester Pays with the REST API
	Setting the requestPayment Bucket Configuration
	Retrieving the requestPayment Configuration
	Downloading Objects in Requester Pays Buckets

	Charge Details

	Buckets and Access Control
	Billing and Usage Reporting for S3 Buckets
	AWS Billing Reports for Amazon S3
	More Info

	AWS Usage Report for Amazon S3
	Downloading the AWS Usage Report
	More Info

	Understanding Your AWS Billing and Usage Reports for Amazon S3
	Tracking Operations in Your Usage Reports
	Converting Usage Byte-Hours to Billed GB-Months
	More Info

	Using Cost Allocation S3 Bucket Tags
	More Info

	Working with Amazon S3 Objects
	Object Key and Metadata
	Object Keys
	Object Key Naming Guidelines
	Safe Characters
	Characters That Might Require Special Handling
	Characters to Avoid

	Object Metadata
	System-Defined Object Metadata
	User-Defined Object Metadata

	Amazon S3 Storage Classes
	Storage Classes for Frequently Accessed Objects
	Storage Class That Automatically Optimizes Frequently and Infrequently Accessed Objects
	Storage Classes for Infrequently Accessed Objects
	Storage Classes for Archiving Objects
	Retrieving Archived Objects

	Comparing the Amazon S3 Storage Classes
	Setting the Storage Class of an Object

	Object Subresources
	Object Versioning
	Object Tagging
	API Operations Related to Object Tagging
	Object Tagging and Additional Information
	Object Tagging and Lifecycle Management
	Object Tagging and Replication
	Object Tagging and Access Control Policies

	Managing Object Tags
	Managing Object Tags Using the Console
	Managing Tags Using the AWS SDK for Java
	Managing Tags Using the AWS SDK for .NET

	Object Lifecycle Management
	When Should I Use Lifecycle Configuration?
	How Do I Configure a Lifecycle?
	Additional Considerations for Lifecycle Configuration
	Transitioning Objects Using Amazon S3 Lifecycle
	Supported Transitions and Related Constraints
	Transitioning to the GLACIER and DEEP ARCHIVE Storage Classes (Object Archival)
	General Considerations
	Cost Considerations
	Restoring Archived Objects

	Configuring Object Expiration
	Lifecycle and Other Bucket Configurations
	Lifecycle and Versioning
	Lifecycle Configuration on MFA-enabled Buckets
	Lifecycle and Logging
	More Info

	Lifecycle Configuration Elements
	ID Element
	Status Element
	Filter Element
	Elements to Describe Lifecycle Actions
	How Amazon S3 Calculates How Long an Object Has Been Noncurrent
	Lifecycle Rules: Based on an Object's Age
	Lifecycle Rules: Based on a Specific Date

	Examples of Lifecycle Configuration
	Example 1: Specifying a Filter
	Example 2: Disabling a Lifecycle Rule
	Example 3: Tiering Down Storage Class over an Object's Lifetime
	Example 4: Specifying Multiple Rules
	Example 5: Overlapping Filters, Conflicting Lifecycle Actions, and What Amazon S3 Does
	Example 6: Specifying a Lifecycle Rule for a Versioning-Enabled Bucket
	Example 7: Removing Expired Object Delete Markers
	Example 8: Lifecycle Configuration to Abort Multipart Uploads

	Setting Lifecycle Configuration on a Bucket
	Manage an Object's Lifecycle Using the Amazon S3 Console
	Set Lifecycle Configurations Using the AWS CLI
	Managing Object Lifecycles Using the AWS SDK for Java
	Manage an Object's Lifecycle Using the AWS SDK for .NET
	Manage an Object's Lifecycle Using the AWS SDK for Ruby
	Manage an Object's Lifecycle Using the REST API

	Cross-Origin Resource Sharing (CORS)
	Cross-Origin Resource Sharing: Use-case Scenarios
	How Do I Configure CORS on My Bucket?
	AllowedMethod Element
	AllowedOrigin Element
	AllowedHeader Element
	ExposeHeader Element
	MaxAgeSeconds Element

	How Does Amazon S3 Evaluate the CORS Configuration on a Bucket?
	Enabling Cross-Origin Resource Sharing (CORS)
	Enabling Cross-Origin Resource Sharing (CORS) Using the AWS Management Console
	Enabling Cross-Origin Resource Sharing (CORS) Using the AWS SDK for Java
	Enabling Cross-Origin Resource Sharing (CORS) Using the AWS SDK for .NET
	Enabling Cross-Origin Resource Sharing (CORS) Using the REST API

	Troubleshooting CORS Issues

	Operations on Objects
	Getting Objects
	Related Resources
	Get an Object Using the AWS SDK for Java
	Get an Object Using the AWS SDK for .NET
	Get an Object Using the AWS SDK for PHP
	Related Resources

	Get an Object Using the REST API
	Share an Object with Others
	Generate a Presigned Object URL using AWS Explorer for Visual Studio
	Generate a presigned Object URL Using the AWS SDK for Java
	Generate a Presigned Object URL Using AWS SDK for .NET

	Uploading Objects
	Uploading Objects in a Single Operation
	Upload an Object Using the AWS SDK for Java
	Upload an Object Using the AWS SDK for .NET
	Upload an Object Using the AWS SDK for PHP
	Related Resources

	Upload an Object Using the AWS SDK for Ruby
	Upload an Object Using the REST API

	Uploading Objects Using Multipart Upload API
	Multipart Upload Overview
	Concurrent Multipart Upload Operations
	Multipart Upload and Pricing
	Aborting Incomplete Multipart Uploads Using a Bucket Lifecycle Policy
	Amazon S3 Multipart Upload Limits
	API Support for Multipart Upload
	Multipart Upload API and Permissions

	Using the AWS Java SDK for Multipart Upload (High-Level API)
	Upload a File
	Abort Multipart Uploads
	Track Multipart Upload Progress

	Using the AWS Java SDK for a Multipart Upload (Low-Level API)
	Upload a File
	List Multipart Uploads
	Abort a Multipart Upload

	Using the AWS SDK for .NET for Multipart Upload (High-Level API)
	Upload a File to an S3 Bucket Using the AWS SDK for .NET (High-Level API)
	More Info

	Upload a Directory
	Abort Multipart Uploads to an S3 Bucket Using the AWS SDK for .NET (High-Level API)
	More Info

	Track the Progress of a Multipart Upload to an S3 Bucket Using the AWS SDK for .NET (High-level API)
	More Info

	Using the AWS SDK for .NET for Multipart Upload (Low-Level API)
	Upload a File to an S3 Bucket Using the AWS SDK for .NET (Low-Level API)
	More Info

	List Multipart Uploads to an S3 Bucket Using the AWS SDK for .NET (Low-level)
	More Info

	Track the Progress of a Multipart Upload to an S3 Bucket Using the AWS SDK for .NET (Low-Level)
	More Info

	Abort Multipart Uploads to an S3 Bucket Using the AWS SDK for .NET (Low-Level)
	More Info

	Using the AWS PHP SDK for Multipart Upload
	Upload a File Using the High-Level Multipart Upload
	Related Resources

	Using the AWS PHP SDK for Multipart Upload (Low-Level API)
	Upload a File in Multiple Parts Using the PHP SDK Low-Level API
	Related Resources

	List Multipart Uploads Using the Low-Level AWS SDK for PHP API
	Related Resources

	Abort a Multipart Upload
	Related Resources

	Using the AWS SDK for Ruby for Multipart Upload
	Using the REST API for Multipart Upload

	Uploading Objects Using Presigned URLs
	Upload an Object Using a Presigned URL (AWS SDK for Java)
	Upload an Object to an S3 Bucket Using a Presigned URL (AWS SDK for .NET)
	More Info

	Upload an Object Using a Presigned URL (AWS SDK for Ruby)

	Copying Objects
	Related Resources
	Copying Objects in a Single Operation
	Copy an Object Using the AWS SDK for Java
	Copy an Amazon S3 Object in a Single Operation Using the AWS SDK for .NET
	More Info

	Copy an Object Using the AWS SDK for PHP
	Related Resources

	Copy an Object Using the AWS SDK for Ruby
	Copy an Object Using the REST API

	Copying Objects Using the Multipart Upload API
	Copy an Object Using the AWS SDK for Java Multipart Upload API
	Copy an Amazon S3 Object Using the AWS SDK for .NET Multipart Upload API
	More Info

	Copy Object Using the REST Multipart Upload API

	Listing Object Keys
	Iterating Through Multi-Page Results
	Related Resources

	Listing Keys Hierarchically Using a Prefix and Delimiter
	Listing Keys Using the AWS SDK for Java
	Listing Keys Using the AWS SDK for .NET
	Listing Keys Using the AWS SDK for PHP
	Related Resources

	Listing Keys Using the REST API

	Deleting Objects
	Deleting Objects from a Version-Enabled Bucket
	Deleting Objects from an MFA-Enabled Bucket
	Related Resources
	Deleting One Object Per Request
	Deleting an Object Using the AWS SDK for Java
	Deleting an Object Using the AWS SDK for .NET
	Deleting an Object Using the AWS SDK for PHP
	Related Resources

	Deleting an Object Using the REST API

	Deleting Multiple Objects Per Request
	Deleting Multiple Objects Using the AWS SDK for Java
	Deleting Multiple Objects Using the AWS SDK for .NET
	Deleting Multiple Objects Using the AWS SDK for PHP
	Related Resources

	Deleting Multiple Objects Using the REST API

	Selecting Content from Objects
	Requirements and Limits
	Constructing a Request
	Errors
	Related Resources
	Selecting Content from Objects Using the SDK for Java
	Selecting Content from Objects Using the REST API
	Selecting Content from Objects Using Other SDKs

	Restoring Archived Objects
	Archive Retrieval Options
	Provisioned Capacity

	Upgrading the Speed of an In-Progress Restore
	Restore an Archived Object Using the Amazon S3 Console
	Restore an Archived Object Using the AWS SDK for Java
	Restore an Archived Object Using the AWS SDK for .NET
	Restore an Archived Object Using the REST API

	Querying Archived Objects
	Select Requirements and Limits
	How Do I Query Data Using Select?
	Select Output

	Error Handling
	Data Access Tiers
	Provisioned Capacity

	More Info

	Amazon S3 Analytics – Storage Class Analysis
	How Do I Set Up Storage Class Analysis?
	How Do I Use Storage Class Analysis?
	How Can I Export Storage Class Analysis Data?
	Exported File Layout

	Amazon S3 Analytics REST APIs

	Amazon S3 Security
	Data Protection in Amazon S3
	Internetwork Traffic Privacy
	Traffic Between Service and On-Premises Clients and Applications
	Traffic Between AWS Resources in the Same Region

	Protecting Data Using Encryption
	Protecting Data Using Server-Side Encryption
	Protecting Data Using Server-Side Encryption with keys stored in AWS KMS(SSE-KMS)
	Using AWS Key Management Service in the Amazon S3 Console
	API Support for AWS Key Management Service in Amazon S3
	Specifying the AWS Key Management Service in Amazon S3 Using the AWS SDKs
	AWS SDK for Java
	Put Operation
	Copy Operation
	Presigned URLs

	AWS SDK for .NET
	Put Operation
	Copy Operation
	Presigned URLs

	Specifying the AWS Key Management Service in Amazon S3 Using the REST API

	Protecting Data Using Server-Side Encryption with Amazon S3-Managed Encryption Keys (SSE-S3)
	API Support for Server-Side Encryption
	Specifying Server-Side Encryption Using the AWS SDK for Java
	Specifying Server-Side Encryption Using the AWS SDK for .NET
	

	Specifying Server-Side Encryption Using the AWS SDK for PHP
	Determining Encryption Algorithm Used
	Changing Server-Side Encryption of an Existing Object (Copy Operation)
	Related Resources

	Specifying Server-Side Encryption Using the AWS SDK for Ruby
	Determining the Encryption Algorithm Used
	Changing Server-Side Encryption of an Existing Object (Copy Operation)

	Specifying Server-Side Encryption Using the REST API
	Specifying Server-Side Encryption Using the AWS Management Console
	More Info

	Protecting Data Using Server-Side Encryption with Customer-Provided Encryption Keys (SSE-C)
	Using SSE-C
	Presigned URL and SSE-C
	Specifying Server-Side Encryption with Customer-Provided Encryption Keys Using the AWS SDK for Java
	Other Amazon S3 Operations with SSE-C Using the AWS SDK for Java

	Specifying Server-Side Encryption with Customer-Provided Encryption Keys Using the AWS SDK for .NET
	Other Amazon S3 Operations and SSE-C

	Specifying Server-Side Encryption with Customer-Provided Encryption Keys Using the REST API

	Protecting Data Using Client-Side Encryption
	Option 1: Using a Master Key stored in AWS KMS
	Option 2: Using a Master Key Stored Within Your Application

	Identity and Access Management in Amazon S3
	Introduction to Managing Access Permissions to Your Amazon S3 Resources
	Overview of Managing Access
	Amazon S3 Resources: Buckets and Objects
	Amazon S3 Bucket and Object Ownership
	Ownership and Request Authentication

	Resource Operations
	Managing Access to Resources (Access Policy Options)
	Which Access Control Method Should I Use?
	More Info

	How Amazon S3 Authorizes a Request
	Related Topics
	How Amazon S3 Authorizes a Request for a Bucket Operation
	Example 1: Bucket Operation Requested by Bucket Owner
	Example 2: Bucket Operation Requested by an AWS Account That Is Not the Bucket Owner
	Example 3: Bucket Operation Requested by an IAM Principal Whose Parent AWS Account Is Also the Bucket Owner
	Example 4: Bucket Operation Requested by an IAM Principal Whose Parent AWS Account Is Not the Bucket Owner

	How Amazon S3 Authorizes a Request for an Object Operation
	Example 1: Object Operation Request

	Guidelines for Using the Available Access Policy Options
	When to Use an ACL-based Access Policy (Bucket and Object ACLs)
	When to Use an Object ACL
	When to Use a Bucket ACL

	When to Use a Bucket Policy
	When to Use a User Policy
	Permission Delegation

	Related Topics

	Example Walkthroughs: Managing Access to Your Amazon S3 Resources
	Before You Try the Example Walkthroughs
	About Using an Administrator User to Create Resources and Grant Permissions

	Setting Up the Tools for the Example Walkthroughs
	Example 1: Bucket Owner Granting Its Users Bucket Permissions
	Step 0: Preparing for the Walkthrough
	Step 1: Create Resources (a Bucket and an IAM User) in Account A and Grant Permissions
	Step 2: Test Permissions

	Example 2: Bucket Owner Granting Cross-Account Bucket Permissions
	Step 0: Preparing for the Walkthrough
	Step 1: Do the Account A Tasks
	Step 1.1: Sign In to the AWS Management Console
	Step 1.2: Create a Bucket
	Step 1.3: Attach a Bucket Policy to Grant Cross-Account Permissions to Account B

	Step 2: Do the Account B Tasks
	Step 2.1: Sign In to the AWS Management Console
	Step 2.2: Create User Dave in Account B
	Step 2.3: Delegate Permissions to User Dave
	Step 2.4: Test Permissions

	Step 3: Extra Credit: Try Explicit Deny
	Step 4: Clean Up

	Example 3: Bucket Owner Granting Its Users Permissions to Objects It Does Not Own
	Step 0: Preparing for the Walkthrough
	Step 1: Do the Account A Tasks
	Step 1.1: Sign In to the AWS Management Console
	Step 1.2: Create a Bucket, a User, and Add a Bucket Policy Granting User Permissions

	Step 2: Do the Account B Tasks
	Step 3: Test Permissions
	Step 4: Clean Up

	Example 4: Bucket Owner Granting Cross-account Permission to Objects It Does Not Own
	Background: Cross-Account Permissions and Using IAM Roles
	Step 0: Preparing for the Walkthrough
	Step 1: Do the Account A Tasks
	Step 1.1: Sign In to the AWS Management Console
	Step 1.2: Create a Bucket and Attach a Bucket Policy
	Step 1.3: Create an IAM Role to Allow Account C Cross-Account Access in Account A

	Step 2: Do the Account B Tasks
	Step 3: Do the Account C Tasks
	Step 3.1: Create a User in Account C and Delegate Permission to Assume examplerole
	Step 3.2: Assume Role (examplerole) and Access Objects

	Step 4: Clean Up
	Related Resources

	Using Bucket Policies and User Policies
	Access Policy Language Overview
	Common Elements in an Access Policy
	Specifying Resources in a Policy
	Specifying a Principal in a Policy
	Specifying Permissions in a Policy
	Permissions for Object Operations
	Permissions Related to Bucket Operations
	Permissions Related to Bucket Subresource Operations
	Permissions Related to Account Operations

	Specifying Conditions in a Policy
	Available Condition Keys
	Amazon S3 Condition Keys for Object Operations
	Example 1: Granting s3:PutObject Permission with a Condition Requiring the Bucket Owner to Get Full Control
	Example 2: Granting s3:PutObject Permission Requiring Objects Stored Using Server-Side Encryption
	Example 3: Granting s3:PutObject Permission to Copy Objects with a Restriction on the Copy Source
	Example 4: Granting Access to a Specific Version of an Object
	Example 5: Restricting Object Uploads to Objects with a Specific Storage Class

	Amazon S3 Condition Keys for Bucket Operations
	Example 1: Allow a User to Create a Bucket but Only in a Specific Region
	Example 2: Allow a User to Get a List of Objects in a Bucket According to a Specific Prefix

	Bucket Policy Examples
	Granting Permissions to Multiple Accounts with Added Conditions
	Granting Read-Only Permission to an Anonymous User
	Restricting Access to Specific IP Addresses
	Allowing IPv4 and IPv6 Addresses

	Restricting Access to a Specific HTTP Referrer
	Granting Permission to an Amazon CloudFront Origin Identity
	Adding a Bucket Policy to Require MFA
	Granting Cross-Account Permissions to Upload Objects While Ensuring the Bucket Owner Has Full Control
	Granting Permissions for Amazon S3 Inventory and Amazon S3 Analytics
	Example Bucket Policies for VPC Endpoints for Amazon S3
	Restricting Access to a Specific VPC Endpoint
	Restricting Access to a Specific VPC
	Related Resources

	User Policy Examples
	Allowing an IAM User Access to One of Your Buckets
	Allowing Each IAM User Access to a Folder in a Bucket
	Allowing Non-IAM Users (Mobile App Users) Access to Folders in a Bucket

	Allowing a Group to Have a Shared Folder in Amazon S3
	Allowing All Your Users to Read Objects in a Portion of the Corporate Bucket
	Allowing a Partner to Drop Files into a Specific Portion of the Corporate Bucket
	Walkthrough: Controlling Access to a Bucket with User Policies
	The Basics of Buckets and Folders
	Walkthrough Summary
	Preparing for the Walkthrough
	To Provide a Sign-In Link for IAM Users

	Step 1: Create a Bucket
	Step 2: Create IAM Users and a Group
	Step 3: Verify That IAM Users Have No Permissions
	Step 4: Grant Group-Level Permissions
	Step 4.1: Grant Permission to List All Buckets
	Step 4.2: Enable Users to List Root-Level Content of a Bucket
	Step 4.3: Summary of the Group Policy

	Step 5: Grant IAM User Alice Specific Permissions
	Step 5.1: Grant IAM User Alice Permission to List the Development Folder Content
	Step 5.2: Grant IAM User Alice Permissions to Get and Put Objects in the Development Folder
	Step 5.3: Explicitly Deny IAM User Alice Permissions to Any Other Folders in the Bucket

	Step 6: Grant IAM User Bob Specific Permissions
	Step 7: Secure the Private Folder
	Step 8: Clean Up
	Related Resources

	Managing Access with ACLs
	Access Control List (ACL) Overview
	Who Is a Grantee?
	Finding an AWS Account Canonical User ID
	Amazon S3 Predefined Groups

	What Permissions Can I Grant?
	Mapping of ACL Permissions and Access Policy Permissions

	Sample ACL
	Canned ACL
	How to Specify an ACL

	Managing ACLs
	Managing ACLs in the AWS Management Console
	Managing ACLs Using the AWS SDK for Java
	Setting ACL Grants
	Configuring ACL Grants on an Existing Object

	Managing ACLs Using the AWS SDK for .NET
	Example 1: Creating a Bucket and Using a Canned ACL to Set Permissions
	Example 2: Configure ACL Grants on an Existing Object

	Managing ACLs Using the REST API

	Using Amazon S3 Block Public Access
	Enable Block Public Access on the Amazon S3 Console
	Block Public Access Settings
	The Meaning of "Public"
	Example

	Permissions
	Examples
	Using Block Public Access with the AWS CLI
	Using Block Public Access with the AWS SDK for Java
	Example 1
	Example 2

	Using Block Public Access with Other AWS SDKs
	Using Block Public Access with the REST APIs

	Logging and Monitoring in Amazon S3
	Compliance Validation for Amazon S3
	Amazon S3 Inventory
	How Do I Set Up Amazon S3 Inventory?
	Amazon S3 Inventory Source and Destination Buckets
	Setting Up Amazon S3 Inventory
	Grant Amazon S3 Permission to Encrypt Using Your AWS KMS Key

	What's Included in an Amazon S3 Inventory?
	Inventory Consistency

	Where Are Inventory Lists Located?
	What Is an Inventory Manifest?

	How Do I Know When an Inventory Is Complete?
	Querying Inventory with Amazon Athena
	Amazon S3 Inventory REST APIs

	Resilience in Amazon S3
	Encryption of Amazon S3 Backups
	Using Versioning
	How to Configure Versioning on a Bucket
	MFA Delete
	Related Topics
	Examples of Enabling Bucket Versioning
	Using the Amazon S3 Console
	Using the AWS SDK for Java
	Using the AWS SDK for .NET
	Using Other AWS SDKs

	Managing Objects in a Versioning-Enabled Bucket
	Adding Objects to Versioning-Enabled Buckets
	Using the Console
	Using the AWS SDKs
	Using the REST API

	Listing Objects in a Versioning-Enabled Bucket
	Using the Console
	Using the AWS SDKs
	Using the AWS SDK for Java
	Using the AWS SDK for .NET

	Using the REST API
	Retrieving a Subset of Objects in a Bucket
	Example 1: Retrieving All Versions of Only a Specific Object
	Example 2: Retrieving a Listing of Additional Objects if the Response Is Truncated

	Retrieving Object Versions
	Using the Console
	Using the AWS SDKs
	Using REST
	Related Topics
	Retrieving the Metadata of an Object Version

	Deleting Object Versions
	Using the Console
	Using the AWS SDKs
	Using REST
	Related Topics
	Using MFA Delete
	Working with Delete Markers
	Removing Delete Markers

	Transitioning Object Versions
	Restoring Previous Versions
	Versioned Object Permissions

	Managing Objects in a Versioning-Suspended Bucket
	Adding Objects to Versioning-Suspended Buckets
	Retrieving Objects from Versioning-Suspended Buckets
	Deleting Objects from Versioning-Suspended Buckets

	Locking Objects Using Amazon S3 Object Lock
	Amazon S3 Object Lock Overview
	Retention Modes
	
	

	Retention Periods
	Legal Holds
	Bucket Configuration
	Enabling object lock
	Default Retention Settings

	Required Permissions

	Managing Amazon S3 Object Locks
	Viewing the Lock Information for an Object
	Bypassing Governance Mode
	Configuring Events and Notifications
	Setting Retention Limits
	Managing Delete Markers and Object Lifecycles
	Using Object Lock with Replication

	Infrastructure Security in Amazon S3
	Configuration and Vulnerability Analysis in Amazon S3
	Security Best Practices for Amazon S3
	Amazon S3 Preventative Security Best Practices
	Amazon S3 Monitoring and Auditing Best Practices

	Performing Batch Operations
	Terminology
	The Basics: Amazon S3 Batch Operations Jobs
	How an Amazon S3 Batch Operations Job Works
	Specifying a Manifest

	Creating an Amazon S3 Batch Operations Job
	Creating a Job Request
	Creating a Job Response
	Granting Permissions for Amazon S3 Batch Operations
	Required Permissions for Creating an Amazon S3 Batch Operations Job
	Creating an Amazon S3 Batch Operations IAM Role
	Trust Policy
	Permissions Policies

	Related Resources

	Operations
	PUT Object Copy
	Restrictions and Limitations

	Initiate Restore Object
	Overlapping Restores
	Limitations

	Invoking a Lambda Function from Amazon S3 Batch Operations
	Using Lambda with Amazon S3 Batch Operations
	Response and Result Codes

	Creating a Lambda Function to Use with Amazon S3 Batch Operations
	Example IAM Permissions
	Example Request and Response
	Example Lambda Function for Amazon S3 Batch Operations

	Creating an Amazon S3 Batch Operations Job That Invokes a Lambda Function
	Providing Task-Level Information in Lambda Manifests

	Put Object ACL
	Restrictions and Limitations
	Related Resources

	Put Object Tagging
	Restrictions and Limitations
	Related Resources

	Managing Batch Operations Jobs
	Listing Jobs
	Viewing Job Details
	Assigning Job Priority
	Job Status
	Tracking Job Failure
	Notifications and Logging
	Completion Reports

	Amazon S3 Batch Operations Examples
	Amazon S3 Batch Operations Completion Report Examples
	Cross-Account Copy Examples for Amazon S3 Batch Operations
	Using an Inventory Report Delivered to the Destination AWS Account
	Using a CSV Manifest Stored in the Source AWS Account

	AWS CLI Examples for Amazon S3 Batch Operations
	Java Examples for Amazon S3 Batch Operations
	Creating an Amazon S3 batch operations Job Using the AWS SDK for Java
	Canceling an Amazon S3 batch operations Job Using the AWS SDK for Java
	Updating the Status of a Amazon S3 batch operations Job Using the AWS SDK for Java
	Updating the Priority of a Amazon S3 batch operations Job Using the AWS SDK for Java

	Hosting a Static Website on Amazon S3
	Website Endpoints
	Key Differences Between the Amazon Website and the REST API Endpoint

	Configuring a Bucket for Website Hosting
	Enabling Website Hosting
	Configuring Index Document Support
	Index Documents and Folders

	Permissions Required for Website Access
	(Optional) Configuring Web Traffic Logging
	(Optional) Custom Error Document Support
	(Optional) Configuring a Webpage Redirect
	Page Redirect Support in the Amazon S3 Console
	Setting a Page Redirect from the REST API
	Advanced Conditional Redirects
	Syntax for Specifying Routing Rules

	Example Walkthroughs - Hosting Websites on Amazon S3
	Example: Setting up a Static Website
	Step 1: Creating a Bucket and Configuring It as a Website
	Step 2: Adding a Bucket Policy That Makes Your Bucket Content Publicly Available
	Step 3: Uploading an Index Document
	Step 4: Testing Your Website

	Example: Setting up a Static Website Using a Custom Domain
	Before You Begin
	Step 1: Register a Domain
	Step 2: Create and Configure Buckets and Upload Data
	Step 2.1: Create Two Buckets
	Step 2.2: Configure Buckets for Website Hosting
	Step 2.3: Configure Your Website Redirect
	Step 2.4: Configure Logging for Website Traffic
	Step 2.5: Test Your Endpoint and Redirect

	Step 3: Add Alias Records for example.com and www.example.com
	Step 4: Testing

	Example: Speed Up Your Website with Amazon CloudFront
	Create a CloudFront Distribution
	Update the Record Sets for Your Domain and Subdomain
	(Optional) Check the Log Files

	Clean Up Your Example Resources
	Delete the Amazon CloudFront Distribution
	Delete the Route 53 Hosted Zone
	Delete the S3 Bucket

	Configuring Amazon S3 Event Notifications
	Overview
	How to Enable Event Notifications
	Event Notification Types and Destinations
	Supported Event Types
	Supported Destinations

	Configuring Notifications with Object Key Name Filtering
	Examples of Valid Notification Configurations with Object Key Name Filtering
	Examples of Notification Configurations with Invalid Prefix/Suffix Overlapping

	Granting Permissions to Publish Event Notification Messages to a Destination
	Granting Permissions to Invoke an AWS Lambda Function
	Granting Permissions to Publish Messages to an SNS Topic or an SQS Queue

	Example Walkthrough 1: Configure a Bucket for Notifications (Message Destination: SNS Topic and SQS Queue)
	Walkthrough Summary
	Step 1: Create an Amazon SNS Topic
	Step 2: Create an Amazon SQS Queue
	Step 3: Add a Notification Configuration to Your Bucket
	Step 3 (option a): Enable Notifications on a Bucket Using the Console
	Step 3 (option b): Enable Notifications on a Bucket Using the AWS SDK for .NET
	Step 3 (option c): Enable Notifications on a Bucket Using the AWS SDK for Java

	Step 4: Test the Setup

	Example Walkthrough 2: Configure a Bucket for Notifications (Message Destination: AWS Lambda)
	Event Message Structure

	Replication
	Types of Object Replication
	When to Use Replication
	When to Use CRR
	When to Use SRR
	Requirements for Replication
	What Does Amazon S3 Replicate?
	What Is Replicated?
	How Delete Operations Affect Replication

	What Isn't Replicated?
	Related Topics

	Overview of Setting Up Replication
	Replication Configuration Overview
	Basic Rule Configuration
	

	Optional: Specifying a Filter
	Additional Destination Configurations
	Example Replication Configurations
	Backward Compatibility

	Setting Up Permissions for Replication
	Creating an IAM Role
	Granting Permissions When Source and Destination Buckets Are Owned by Different AWS Accounts
	Changing Replica Ownership

	Additional Replication Configurations
	Additional Replication Configuration: Changing the Replica Owner
	Adding the Owner Override Option to the Replication Configuration
	Granting Amazon S3 Permission to Change Replica Ownership
	Adding Permission in the Destination Bucket Policy to Allow Changing Replica Ownership
	Additional Considerations

	Additional Replication Configuration: Replicating Objects Created with Server-Side Encryption (SSE) Using Encryption Keys stored in AWS KMS
	Specifying Additional Information in the Replication Configuration
	Granting Additional Permissions for the IAM Role
	Granting Additional Permissions for Cross-Account Scenarios
	AWS KMS Transaction Limit Considerations

	Replication Walkthroughs
	Example 1: Configuring Replication When the Source and Destination Buckets Are Owned by the Same Account
	Configure Replication When Buckets Are Owned by the Same Account (Console)
	Configure Replication When Buckets Are Owned by the Same Account (AWS CLI)
	Configure Replication When Buckets Are Owned by the Same Account (AWS SDK)

	Example 2: Configuring Replication When the Source and Destination Buckets Are Owned by Different Accounts
	Example 3: Changing the Replica Owner When the Source and Destination Buckets Are Owned by Different Accounts
	Change the Replica Owner When Buckets Are Owned by Different Accounts (Console)
	Change the Replica Owner When Buckets Are Owned by Different Accounts (AWS CLI)
	Change the Replica Owner When Buckets Are Owned by Different Accounts (AWS SDK)

	Example 4: Replicating Encrypted Objects
	Replicate Encrypted Objects (Console)
	Replicate Encrypted Objects (AWS CLI)
	Replicate Encrypted Objects (AWS SDK)

	Replication Status Information
	Related Topics

	Troubleshooting Replication
	Related Topics

	Replication Additional Considerations
	Lifecycle Configuration and Object Replicas
	Versioning Configuration and Replication Configuration
	Logging Configuration and Replication Configuration
	CRR and the Destination Region
	Pausing Replication
	Related Topics

	Request Routing
	Request Redirection and the REST API
	DNS Routing
	Temporary Request Redirection
	Permanent Request Redirection
	Request Redirection Examples
	REST API Temporary Redirect Response
	SOAP API Temporary Redirect Response

	DNS Considerations

	Best Practices Design Patterns: Optimizing Amazon S3 Performance
	Performance Guidelines for Amazon S3
	Measure Performance
	Scale Storage Connections Horizontally
	Use Byte-Range Fetches
	Retry Requests for Latency-Sensitive Applications
	Combine Amazon S3 (Storage) and Amazon EC2 (Compute) in the Same AWS Region
	Use Amazon S3 Transfer Acceleration to Minimize Latency Caused by Distance
	Use the Latest Version of the AWS SDKs

	Performance Design Patterns for Amazon S3
	Using Caching for Frequently Accessed Content
	Timeouts and Retries for Latency-Sensitive Applications
	Horizontal Scaling and Request Parallelization for High Throughput
	Using Amazon S3 Transfer Acceleration to Accelerate Geographically Disparate Data Transfers

	Monitoring Amazon S3
	Monitoring Tools
	Automated Monitoring Tools
	Manual Monitoring Tools

	Monitoring Metrics with Amazon CloudWatch
	Metrics and Dimensions
	Amazon S3 CloudWatch Daily Storage Metrics for Buckets
	Amazon S3 CloudWatch Request Metrics
	Amazon S3 CloudWatch Dimensions
	Accessing CloudWatch Metrics
	Related Resources

	Metrics Configurations for Buckets
	Best-Effort CloudWatch Metrics Delivery
	Filtering Metrics Configurations
	How to Add Metrics Configurations

	Logging with Amazon S3
	Logging Amazon S3 API Calls by Using AWS CloudTrail
	Amazon S3 Information in CloudTrail
	Amazon S3 Bucket-Level Actions Tracked by CloudTrail Logging
	Amazon S3 Object-Level Actions Tracked by CloudTrail Logging
	Object-Level Actions in Cross-Account Scenarios
	Example 1: CloudTrail Delivers Access Logs to the Bucket Owner
	Example 2: CloudTrail Does Not Proliferate Email Addresses Used in Setting Object ACLs

	CloudTrail Tracking with Amazon S3 SOAP API Calls

	Using CloudTrail Logs with Amazon S3 Server Access Logs and CloudWatch Logs
	Example: Amazon S3 Log File Entries
	Related Resources

	Using AWS CloudTrail to Identify Amazon S3 Requests
	How CloudTrail Captures Requests Made to Amazon S3
	Enabling CloudTrail Event Logging for S3 Buckets and Objects
	Identifying Requests Made to Amazon S3 in a CloudTrail Log
	Using Athena with CloudTrail Logs

	Using AWS CloudTrail to Identify Amazon S3 Signature Version 2 Requests
	Athena Query Examples for Identifying Amazon S3 Signature Version 2 Requests
	Partitioning Signature Version 2 Data

	Using AWS CloudTrail to Identify Access to Amazon S3 Objects
	Athena Query Example for Identifying Amazon S3 Object Access Requests

	Related Resources

	Using BitTorrent with Amazon S3
	How You are Charged for BitTorrent Delivery
	Using BitTorrent to Retrieve Objects Stored in Amazon S3
	Publishing Content Using Amazon S3 and BitTorrent

	Handling REST and SOAP Errors
	The REST Error Response
	Response Headers
	Error Response
	Error Code
	Error Message
	Further Details

	The SOAP Error Response
	Amazon S3 Error Best Practices
	Retry InternalErrors
	Tune Application for Repeated SlowDown errors
	Isolate Errors

	Troubleshooting Amazon S3
	Troubleshooting Amazon S3 by Symptom
	Significant Increases in HTTP 503 Responses to Amazon S3 Requests to Buckets with Versioning Enabled
	Unexpected Behavior When Accessing Buckets Set with CORS

	Getting Amazon S3 Request IDs for AWS Support
	Using HTTP to Obtain Request IDs
	Using a Web Browser to Obtain Request IDs
	Using AWS SDKs to Obtain Request IDs
	Using the SDK for PHP to Obtain Request IDs
	Using the SDK for Java to Obtain Request IDs
	Using the AWS SDK for .NET to Obtain Request IDs
	Using the SDK for Python to Obtain Request IDs
	Using the SDK for Ruby to Obtain Request IDs

	Using the AWS CLI to Obtain Request IDs

	Related Topics

	Amazon S3 Server Access Logging
	How to Enable Server Access Logging
	Log Object Key Format
	How Are Logs Delivered?
	Best Effort Server Log Delivery
	Bucket Logging Status Changes Take Effect Over Time
	Enabling Logging Using the Console
	Enabling Logging Programmatically
	Enabling Logging
	Granting the Log Delivery Group WRITE and READ_ACP Permissions
	Example: AWS SDK for .NET
	Related Resources

	Amazon S3 Server Access Log Format
	Additional Logging for Copy Operations
	Custom Access Log Information
	Programming Considerations for Extensible Server Access Log Format

	Deleting Amazon S3 Log Files
	Related Resources

	Using Amazon S3 Access Logs to Identify Requests
	Enabling Amazon S3 Access Logs for Requests
	Querying Amazon S3 Access Logs for Requests
	Using Amazon S3 Access Logs to Identify Signature Version 2 Requests
	Using Amazon S3 Access Logs to Identify Object Access Requests
	Related Resources

	Using the AWS SDKs, CLI, and Explorers
	Specifying the Signature Version in Request Authentication
	AWS Signature Version 2 Turned Off (Deprecated) for Amazon S3
	More Info

	Moving from Signature Version 2 to Signature Version 4

	Setting Up the AWS CLI
	Using the AWS SDK for Java
	The Java API Organization
	Testing the Amazon S3 Java Code Examples

	Using the AWS SDK for .NET
	The .NET API Organization
	Running the Amazon S3 .NET Code Examples

	Using the AWS SDK for PHP and Running PHP Examples
	AWS SDK for PHP Levels
	Low-Level API
	High-Level Abstractions

	Running PHP Examples
	Related Resources

	Using the AWS SDK for Ruby - Version 3
	The Ruby API Organization
	Testing the Ruby Script Examples

	Using the AWS SDK for Python (Boto)
	Using the AWS Mobile SDKs for iOS and Android
	More Info

	Using the AWS Amplify JavaScript Library
	More Info

	Appendices
	Appendix A: Using the SOAP API
	Common SOAP API Elements
	Common Elements

	Authenticating SOAP Requests
	Setting Access Policy with SOAP

	Appendix B: Authenticating Requests (AWS Signature Version 2)
	Authenticating Requests Using the REST API
	Detailed Authentication Information

	Signing and Authenticating REST Requests
	Using Temporary Security Credentials
	The Authentication Header
	Request Canonicalization for Signing
	Constructing the CanonicalizedResource Element
	Constructing the CanonicalizedAmzHeaders Element
	Positional versus Named HTTP Header StringToSign Elements
	Time Stamp Requirement
	Authentication Examples
	Object GET
	Object PUT
	List
	Fetch
	Delete
	Upload
	List All My Buckets
	Unicode Keys

	REST Request Signing Problems
	Query String Request Authentication Alternative
	Creating a Signature
	Query String Request Authentication
	Using Base64 Encoding

	Browser-Based Uploads Using POST (AWS Signature Version 2)
	HTML Forms (AWS Signature Version 2)
	HTML Form Encoding
	HTML Form Declaration
	HTML Form Fields
	Policy Construction
	Expiration
	Conditions
	Condition Matching
	Character Escaping

	Constructing a Signature
	Redirection
	General Redirection
	Pre-Upload Redirection

	Upload Examples (AWS Signature Version 2)
	File Upload
	Policy and Form Construction
	Sample Request
	Sample Response

	Text Area Upload
	Policy and Form Construction
	Sample Request
	Sample Response

	POST with Adobe Flash
	Adobe Flash Player Security
	Adobe Flash Considerations

	Amazon S3 Resources
	SQL Reference for Amazon S3 Select and Glacier Select
	SELECT Command
	SELECT List
	FROM Clause
	WHERE Clause
	LIMIT Clause (Amazon S3 Select only)
	Attribute Access
	CSV
	JSON (Amazon S3 Select only)

	Case Sensitivity of Header/Attribute Names
	Using Reserved Keywords as User-Defined Terms
	Scalar Expressions

	Data Types
	Data Type Conversions
	Supported Data Types

	Operators
	Logical Operators
	Comparison Operators
	Pattern Matching Operators
	Math Operators
	Operator Precedence

	Reserved Keywords
	SQL Functions
	Aggregate Functions (Amazon S3 Select only)
	Conditional Functions
	COALESCE
	Syntax
	Parameters
	Examples

	NULLIF
	Syntax
	Parameters
	Examples

	Conversion Functions
	CAST
	Syntax
	Parameters
	Examples

	Date Functions
	DATE_ADD
	Syntax
	Parameters
	Examples

	DATE_DIFF
	Syntax
	Parameters
	Examples

	EXTRACT
	Syntax
	Parameters
	Examples

	TO_STRING
	Syntax
	Parameters
	Examples

	TO_TIMESTAMP
	Syntax
	Parameters
	Examples

	UTCNOW
	Syntax
	Parameters
	Examples

	String Functions
	CHAR_LENGTH, CHARACTER_LENGTH
	Syntax
	Parameters
	Examples

	LOWER
	Syntax
	Parameters
	Examples

	SUBSTRING
	Syntax
	Parameters
	Examples

	TRIM
	Syntax
	Parameters
	Examples

	UPPER
	Syntax
	Parameters
	Examples

	Document History
	Earlier Updates

	AWS Glossary

